用户名: 密码: 验证码:
胃癌干细胞的分离鉴定及其在胃癌侵袭转移中的作用与分子机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胃癌是严重危害人类健康的恶性肿瘤,在东亚、东欧和南美等地区高发,其死亡率居恶性肿瘤第二位,尽管近年来手术、化疗及生物治疗等多种治疗方法的进步,胃癌患者的5年生存率仍然较低,究其原因是我们对胃癌的发生发展机制尚不十分清楚。
     近年来肿瘤干细胞(cancer stem cells, CSCs)理论的兴起为我们深入认识胃癌的发生发展机制提供了新的思路。本研究中我们使用成球培养法从胃癌细胞中分离/富集了胃癌干细胞(gastric cancer stem cells, GCSCs),并发现GCSCs具有高侵袭转移和多药耐药的特性。通过芯片分析,我们筛选出在GCSCs中一系列差异表达的基因及miRNA分子,发现炭疽毒素2型受体(anthrax toxin receptor2,ANTXR2)在GCSCs中表达增高尤为突出,因此进一步研究了ANTXR2在调控GCSCs自我更新维持及侵袭转移中的作用及其可能的分子机制,并探讨了其在胃癌标本中表达的临床意义。
     主要方法、研究结果及结论如下:
     1、使用成球培养法成功分离/富集GCSCs,并进行了生物学特性鉴定。
     (1)建立了胃癌细胞成球培养的方法,胃癌细胞SGC7901、MGC803和BGC823在无血清干细胞培养基和低黏附培养板培养条件下能够成球生长,并能够连续传代;(2)实时定量PCR及Western blot方法检测发现细胞球细胞(sphere cells,SC)较单层培养细胞(monolayer cells,MN)高表达干性相关基因Sox2、Oct4和Bmi1;(3)克隆形成实验表明SGC7901-SC的克隆形成能力强于SGC7901-MN细胞(156±5vs35±2, P<0.05);(4)SGC7901-SC细胞于含血清的培养基中培养时,可发现其分化标记物CK18,氢钾ATP酶(H-K-ATPase)阳性的细胞增加;(5)移植瘤实验表明同数量级的SGC7901-SC比SGC7901-MN细胞具有更强的肿瘤形成能力,且SGC7901-SC形成的移植瘤中CK18和H-K-ATPase阳性细胞的比例比SGC7901-MN低(分别为13%±4%vs94%±2%,20%±4%vs42%±3%, P<0.05),说明SGC7901-SC细胞更加幼稚。上述结果从干性基因表达、克隆形成能力、多向分化能力和成瘤能力等几个主要方面证实了成球生长的细胞具有CSCs的特性。2、GCSCs呈EMT表型并具有高侵袭转移潜能。
     (1)在SGC7901-SC及SGC7901-MN形成的体内移植瘤中我们发现,SGC7901-SC形成的移植瘤浸润周围组织并有淋巴结转移,而SGC7901-MN细胞形成的移植瘤具有完整的包膜。(2)实时定量PCR及Western blot检测发现SGC7901-SC较SGC7901-MN高表达Vimentin和MMP2,低表达E-cadherin,呈现EMT表型。(3)体外Transwell小室侵袭实验发现SGC7901-SC较SGC7901-MN具有更强的侵袭能力(153±16vs51±12,P<0.05);
     3、GCSCs具有多药耐药特性。
     (1)化疗药杀伤实验发现SGC7901-SC较SGC7901-MN具有更强的化疗药5-Fu、DDP和ADR耐受能力。(2)实时定量PCR检测发现SGC7901-SC较SGC7901-MN高表达ABCC4,低表达MDR1,而MRP1和ABCG2的表达无明显差异。
     4、发现GCSCs与单层培养细胞差异表达的一系列基因及miRNA分子。通过信号通路分析发现Wnt、Notch信号通路、TGFβ信号通路、VEGF信号通路、p450细胞色素家族及抗凋亡信号通路在GCSCs活化,提示其可能在GCSCs的自我更新、侵袭转移、多药耐药和诱导脉管生成中发挥重要作用。
     5、通过基因芯片筛选出GCSCs高表达分子ANTXR2,发现ANTXR2在调控胃癌细胞的成球及成瘤能力及侵袭转移中具有重要作用。
     (1)实时定量PCR及流式分析发现ANTXR2在GCSCs上高表达;(2)免疫荧光双染发现ANTXR2与GCSCs标志物CD44具有共定位现象;(3)利用慢病毒干扰SGC7901和XN0422细胞ANTXR2的表达后,可以显著抑制胃癌细胞的成球能力、增殖能力、成瘤能力和侵袭转移能力;(4)发现过表达ANTXR2后可以增强胃癌细胞AGS和HGC27的克隆形成能力。
     6、探讨了ANTXR2调控胃癌细胞干性维持及侵袭转移的可能分子机制。
     (1)利用慢病毒干扰SGC7901和XN0422细胞ANTXR2的表达后,可以显著抑制胃癌细胞干性相关分子β-catenin、Sox2、Bmi1和CD44的表达,同时其EMT标志物Vimentin表达降低,E-cadherin上升;(2)对稳定干扰ANTXR2的SGC7901细胞进行基因芯片及信号通路分析,发现MAPK信号通路改变最大。使用MAPK信号通路关键靶点抑制剂SB203580、PD98059及SP600125作用于过表达ANTXR2的HGC27细胞发现,ERK磷酸化抑制剂PD98059及JNK磷酸化SP600125都能显著抑制该细胞的克隆形成能力,而以PD98059的作用更为显著;(3)Western blot检测发现在稳定干扰ANTXR2的SGC7901细胞中ERK的磷酸化水平降低,同时Src-Tyr416磷酸化降低,Src-Tyr527磷酸化增加,提示ANTXT2的作用可能通过Src/ERK信号通路。
     7、发现ANTXR2在胃癌标本中表达具有重要的临床意义。对181例胃癌标本免疫组化染色检测结果显示,ANTXR2的表达与胃癌患者TNM分期(P=0.024),浸润深度(P=0.03)成正相关,而与患者的生存时间成负相关(P=0.006)。ANTXR2可以用作判断胃癌预后的指标。
     本文的主要结论如下:成球培养法是一种能够成功分离/富集GCSCs的有效方法;所获得的GCSCs具有自我更新、高成瘤、高侵袭转移和多药耐药的特性;其特性可能依赖于Wnt、Notch信号通路、TGFβ信号通路、p450细胞色素家族和抗凋亡信号通路的活化;ANTXR2在GCSCs干性维持及侵袭转移调控中发挥重要作用,其调控作用的发挥可能主要依赖Src/ERk信号通路的激活。ANTXR2的表达与临床病理参数成正相关,与患者生存时间成负相关,可以用作判断胃癌预后的指标。
Gastric cancer is the second leading cause of cancer related mortality, especially in EastAsia, East European and South America. Despite of the development of surgery andchemotherapy, the five year survival rate remains low. Recently, emerging of cancer stem cell(CSC) hypothesis provides us a new way insight into the mechanism underlining gastriccancer initiation and progression. To demonstrate the existence of gastric cancer stem cells(GCSCs) and explore their malignant behavior, we established a method of sphere formingculture to gain the tumor spheres from gastric cancer cell lines. Tumor sphere cells possessedself-renew, multi-potent differentiation ability and highly tumorigenicity, indicating thattumor spheres enriched GCSCs. Moreover, GCSCs exhibited properties of high invasion,metastasis and multi-drug resistance. A series of genes and miRNAs differential expressionbetween GCSCs and Monolayer cells were screened by gene microarray and miRNA arrayanalysis. Among the differential expression molecular, ANTXR2was particularlyover-expressed in GCSCs. Then, roles of ANTXR2in gastric cancer stemness, invasion andmetastasis were explored.
     Main methods, results and conclusion as follow:
     1. Tumor spheres formed from gastric cancer cells possess stem cell properties.1)Gastric cancer cells of SGC7901,MGC803and BGC823could grow as tumor sphere inserum free conditioned medium.2) Compared with monolayer cells (MN), sphere cells(SC)highly expressed stemness genes Sox2,Oct4and Bmi1;3) SGC7901-SC possessed highercolony formation ability than SGC7901-MN cells (156±5vs35±2, p<0.05);4) CulturedSGC7901-SC in medium supplemented with10%FBS, the cells could produce more maturecells expressing CK18and H-K-ATPase;5) Xenograft assay showed that SGC7901-SC werehighly tumorigenic, and the xenograft formed by SGC7901-SC with lower proportion ofCK18and H-K-ATPase positive cells compared to xenograft formed by SGC7901-MN(13%±4%vs94%±2%,p<0.05and20%±4%vs42%±3%, p<0.05respectively), indicating that xenografte formed by SGC7901-SC are immature. Those data suggesting that sphere cellspossess stem cell properties.
     2. GCSCs possess highly invasive and metastatic ability in association with epithelialmesenchymal transition.1) We found xenograft tumors formed by SGC7901-SC cells invadedinto the capsule and metastasized to lymph nodes. In contrast, there were compact capsulessurrounding SGC7901-MN-xenografts without any invasion or metastasis;2)Invasive abilityof SGC7901-SC were measured by Transwell invasion assay, and we found that SGC7901-SCwith higher invasive ability in vitro compared to SGC7901-MN(153±16vs51±12,p<0.05);3) Expression of invasive related genes in SGC7901-SC were detected by Real time PCR andWestern blot, we found that SGC7901-SC with increased expression of Vimentin, MMP2anddecreased expression of E-cadherin.
     3. GCSCs show the property of multi-drug resistance.1) SGC7901-SC were moreresistant to chemo-drugs5-Fu,DDP and ADR compared to SGC7901-MN;2) SGC7901-SCshowed higher expression of ABCC4, lower expression of MDR1compared to SGC7901-MN.There was no significant difference of MRP1and ABCG2expression between SGC7901-SCand SGC7901-MN.
     4. We found a series of genes and miRNAs differentially expressed betweenSGC7901-SC and SGC7901-MN by gene array and miRNA array analysis. Signalingpathways of Wnt, Notch, TGFβ, VEGF, p450and anti-apoptosis were activated in GCSCs,indicating these signaling pathways may be involved in the self-renewal, invasion, metastasis,multi-drug resistance and angiogenesis in GCSCs.
     5. ANTXR2plays important roles in gastric cancer stemness maintenance, invasion andmetastasis.1) ANTXR2was found highly expressed in GCSCs by gene array analysis andconfirmed by real time PCR and FACS;2) ANTXR2was co-localized with stem cell markerCD44in gastric cancer samples;3) Silenced ANTXR2expression in gastric cancer cells byshRNA, the ability of sphere formation, proliferation, invasion and metastasis was impaired;4)Over-expressing ANTXR2, the colony formation ability of gastric cancer cells was increased.
     6. The possible molecular mechanisms of ANTXR2in stemness maintenance, invasionand metastasis of gastric cancer cells were explored.1) Silenced ANTXR2expression ingastric cancer cells by shRNA, the expression of stemness and EMT related genes Sox2,Bmi1,CD44, β-catenin and Vimentin was down-regulated, meanwhile, the expression of E-cadherin was up-regulated;2) Gene array analysis showed that silencing ANTXR2expression mainly resulted in change of MAPK signaling pathway. Using the inhibitors ofMAPK signaling pathway, the result was confirmed. ERK inhibitor PD98059and JNKinhibitor SP600125could significantly inhibited the colony formation of gastric cancer cellswith over-expression of ANTXR2, and the ERK inhibitor PD98059is more effective;3)Silencing ANTXR2expression resulted in decreased phosphorylation of ERK, Src-Tyr416and increased phosphorylation of Src-Tyr527in gastric cancer cells, indicating that thefunction of ANTXT2may be dependent on the Src/ERK signaling pathway.
     7. ANTXR2expression has important clinical significance in patients with gastric cancer.Immunohistochemistry(IHC) was used to detect the expression of ANTXR2in181specimensof gastric cancer, the result showed that the expression of ANTXR2was correlated withinvasive depth (p=0.03), TNM stage (p=0.024) and shorter survival time (p=0.006),indicating that ANTXR2is an indicator of poor prognosis in gastric cancer.
     In summary, sphere formation culture is an effective method for isolation/enrichment ofGCSCs. GCSCs possesses highly invasive, metastasis and multi-drug resistant properties.Multi-signaling pathways, such as Wnt, Notch, TGF-beta, p450metabolism enzyme familyand anti-apoptosis signaling pathway, may be involved in regulation of the GCSCs behaviors;Our results also demonstrated that ANTXR2play important roles in stemness maintenance,invasion and metastasis of GCSCs. The function of ANTXR2may be dependent on Src/ERKsignaling pathway. Expression of ANTXR2is positively correlated with clinic pathologicparameters and negatively correlated with survival time, indicating that it can be used as anindicator of poor prognosis of patients with gastric cancer.
引文
1. Jemal, A., et al., Global cancer statistics. CA Cancer J Clin,2011.61(2): p.69-90.
    2. Chen, W., et al., Report of incidence and mortality in China cancer registries,2009. ChinJ Cancer Res,2013.25(1): p.10-21.
    3. Gill, S., et al., Asian ethnicity-related differences in gastric cancer presentation andoutcome among patients treated at a canadian cancer center. J Clin Oncol,2003.21(11):p.2070-6.
    4. Clarke, M.F., et al., Cancer stem cells--perspectives on current status and futuredirections: AACR Workshop on cancer stem cells. Cancer Res,2006.66(19): p.9339-44.
    5. Bonnet, D. and J.E. Dick, Human acute myeloid leukemia is organized as a hierarchythat originates from a primitive hematopoietic cell. Nat Med,1997.3(7): p.730-7.
    6. Singh, S.K., et al., Identification of human brain tumour initiating cells. Nature,2004.432(7015): p.396-401.
    7. Al-Hajj, M., et al., Prospective identification of tumorigenic breast cancer cells. ProcNatl Acad Sci U S A,2003.100(7): p.3983-8.
    8. Ricci-Vitiani, L., et al., Identification and expansion of human colon-cancer-initiatingcells. Nature,2007.445(7123): p.111-5.
    9. Eramo, A., et al., Identification and expansion of the tumorigenic lung cancer stem cellpopulation. Cell Death Differ,2008.15(3): p.504-14.
    10. Ping, Y.F. and X.W. Bian, Consice review: Contribution of cancer stem cells toneovascularization. Stem Cells,2011.29(6): p.888-94.
    11. Facompre, N., et al., Stem-like cells and therapy resistance in squamous cell carcinomas.Adv Pharmacol,2012.65: p.235-65.
    12. Ortensi, B., et al., Cancer stem cell contribution to glioblastoma invasiveness. Stem CellRes Ther,2013.4(1): p.18.
    13. Chang, J.T. and S.A. Mani, Sheep, wolf, or werewolf: Cancer stem cells and theepithelial-to-mesenchymal transition. Cancer Lett,2013.
    14. Patel, P. and E.I. Chen, Cancer stem cells, tumor dormancy, and metastasis. FrontEndocrinol (Lausanne),2012.3: p.125.
    15. Sugihara, E. and H. Saya, Complexity of cancer stem cells. Int J Cancer,2013.132(6): p.1249-59.
    16. Fukuda, K., et al., Tumor initiating potential of side population cells in human gastriccancer. Int J Oncol,2009.34(5): p.1201-7.
    17. Takaishi, S., et al., Identification of gastric cancer stem cells using the cell surfacemarker CD44. Stem Cells,2009.27(5): p.1006-20.
    18. Fang, D., et al., A tumorigenic subpopulation with stem cell properties in melanomas.Cancer Res,2005.65(20): p.9328-37.
    19. Yuan, X., et al., Isolation of cancer stem cells from adult glioblastoma multiforme.Oncogene,2004.23(58): p.9392-400.
    20. Inagaki, A., et al., Long-term maintenance of brain tumor stem cell properties under atnon-adherent and adherent culture conditions. Biochem Biophys Res Commun,2007.361(3): p.586-92.
    21. Di Fiore, R., et al., Identification and expansion of human osteosarcoma-cancer-stemcells by long-term3-aminobenzamide treatment. J Cell Physiol,2009.219(2): p.301-13.
    22. Yu, S.C., et al., Isolation and characterization of cancer stem cells from a humanglioblastoma cell line U87. Cancer Lett,2008.265(1): p.124-34.
    23. Dalerba, P., R.W. Cho, and M.F. Clarke, Cancer stem cells: models and concepts. AnnuRev Med,2007.58: p.267-84.
    24. Visvader, J.E. and G.J. Lindeman, Cancer stem cells in solid tumours: accumulatingevidence and unresolved questions. Nat Rev Cancer,2008.8(10): p.755-68.
    25. Cheng, L., S. Bao, and J.N. Rich, Potential therapeutic implications of cancer stem cellsin glioblastoma. Biochem Pharmacol,2010.80(5): p.654-65.
    26. Schmuck, R., et al., Genotypic and phenotypic characterization of side population ofgastric cancer cell lines. Am J Pathol,2011.178(4): p.1792-804.
    27. Nishii, T., et al., Cancer stem cell-like SP cells have a high adhesion ability to theperitoneum in gastric carcinoma. Cancer Sci,2009.100(8): p.1397-402.
    28. Zhang, H., et al., Not all side population cells contain cancer stem-like cells in humangastric cancer cell lines. Dig Dis Sci,2013.58(1): p.132-9.
    29. Zhang, C., et al., Identification of CD44+CD24+gastric cancer stem cells. J Cancer ResClin Oncol,2011.137(11): p.1679-86.
    30. Jiang, J., et al., Trastuzumab (herceptin) targets gastric cancer stem cells characterizedby CD90phenotype. Oncogene,2012.31(6): p.671-82.
    31. Chen, T., et al., Identification and expansion of cancer stem cells in tumor tissues andperipheral blood derived from gastric adenocarcinoma patients. Cell Res,2012.22(1): p.248-58.
    32. Han, M.E., et al., Cancer spheres from gastric cancer patients provide an ideal modelsystem for cancer stem cell research. Cell Mol Life Sci,2011.68(21): p.3589-605.
    33. Reynolds, B.A. and S. Weiss, Generation of neurons and astrocytes from isolated cells ofthe adult mammalian central nervous system. Science,1992.255(5052): p.1707-10.
    34. Reynolds, B.A. and S. Weiss, Clonal and population analyses demonstrate that anEGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev Biol,1996.175(1): p.1-13.
    35. Yang, L., et al., Gastric cancer stem-like cells possess higher capability of invasion andmetastasis in association with a mesenchymal transition phenotype. Cancer Lett,2011.310(1): p.46-52.
    36. Cioce, M., et al., Mammosphere-forming cells from breast cancer cell lines as a tool forthe identification of CSC-like-and early progenitor-targeting drugs. Cell Cycle,2010.9(14): p.2878-87.
    37. Weiswald, L.B., et al., In situ protein expression in tumour spheres: development of animmunostaining protocol for confocal microscopy. BMC Cancer,2010.10: p.106.
    38. Pollard, S.M., et al., Glioma stem cell lines expanded in adherent culture havetumor-specific phenotypes and are suitable for chemical and genetic screens. Cell StemCell,2009.4(6): p.568-80.
    39. Yilmaz, M. and G. Christofori, EMT, the cytoskeleton, and cancer cell invasion. CancerMetastasis Rev,2009.28(1-2): p.15-33.
    40. Yang, J. and R.A. Weinberg, Epithelial-mesenchymal transition: at the crossroads ofdevelopment and tumor metastasis. Dev Cell,2008.14(6): p.818-29.
    41. Thiery, J.P., et al., Epithelial-mesenchymal transitions in development and disease. Cell,2009.139(5): p.871-90.
    42. Iwatsuki, M., et al., The clinical significance of vimentin-expressing gastric cancer cellsin bone marrow. Ann Surg Oncol,2010.17(9): p.2526-33.
    43. Kim, M.A., et al., Prognostic importance of epithelial-mesenchymal transition-relatedprotein expression in gastric carcinoma. Histopathology,2009.54(4): p.442-51.
    44. Fuyuhiro, Y., et al., Clinical significance of vimentin-positive gastric cancer cells.Anticancer Res,2010.30(12): p.5239-43.
    45. Zhong, X.Y., et al., Positive association of up-regulated Cripto-1and down-regulatedE-cadherin with tumour progression and poor prognosis in gastric cancer.Histopathology,2008.52(5): p.560-8.
    46. Santisteban, M., et al., Immune-induced epithelial to mesenchymal transition in vivogenerates breast cancer stem cells. Cancer Res,2009.69(7): p.2887-95.
    47. Morel, A.P., et al., Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One,2008.3(8): p. e2888.
    48. Mani, S.A., et al., The epithelial-mesenchymal transition generates cells with propertiesof stem cells. Cell,2008.133(4): p.704-15.
    49. Yu, S.C. and X.W. Bian, Enrichment of cancer stem cells based on heterogeneity ofinvasiveness. Stem Cell Rev,2009.5(1): p.66-71.
    50. Roy, R., J. Yang, and M.A. Moses, Matrix metalloproteinases as novel biomarkers andpotential therapeutic targets in human cancer. J Clin Oncol,2009.27(31): p.5287-97.
    51. Chu, D., et al., Matrix metalloproteinase-9is associated with disease-free survival andoverall survival in patients with gastric cancer. Int J Cancer,2010.
    52. Mrena, J., et al., MMP-2but not MMP-9associated with COX-2and survival in gastriccancer. J Clin Pathol,2006.59(6): p.618-23.
    53. Sun, W.H., et al., Expression of cyclooxygenase-2and matrix metalloproteinase-9ingastric carcinoma and its correlation with angiogenesis. Jpn J Clin Oncol,2005.35(12):p.707-13.
    54. Zhang, S., et al., Imbalance between expression of matrix metalloproteinase-9and tissueinhibitor of metalloproteinase-1in invasiveness and metastasis of human gastriccarcinoma. World J Gastroenterol,2003.9(5): p.899-904.
    55. Wu, Z.Y., et al., Lymph node micrometastasis and its correlation with MMP-2expressionin gastric carcinoma. World J Gastroenterol,2006.12(18): p.2941-4.
    56. Yuan, S., et al., Effective elimination of cancer stem cells by a novel drug combinationstrategy. Stem Cells,2013.31(1): p.23-34.
    57. Tian, Q., et al., Human multidrug resistance associated protein4confers resistance tocamptothecins. Pharm Res,2005.22(11): p.1837-53.
    58. Zhang, Y.H., et al., Silencing MRP4by small interfering RNA reverses acquired DDPresistance of gastric cancer cell. Cancer Lett,2010.291(1): p.76-82.
    59. Hanahan, D. and R.A. Weinberg, The hallmarks of cancer. Cell,2000.100(1): p.57-70.
    60. Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. Cell,2011.144(5): p.646-74.
    61. Takebe, N., et al., Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehogpathways. Nat Rev Clin Oncol,2011.8(2): p.97-106.
    62. Park, J.T., et al., Notch3overexpression is related to the recurrence of ovarian cancer andconfers resistance to carboplatin. Am J Pathol,2010.177(3): p.1087-94.
    63. Jung, S.G., et al., Prognostic significance of Notch3gene expression in ovarian serouscarcinoma. Cancer Sci,2010.101(9): p.1977-83.
    64. Gupta, N., et al., Notch3induces epithelial-mesenchymal transition and attenuatescarboplatin-induced apoptosis in ovarian cancer cells. Gynecol Oncol,2013.
    65. Chen, L., et al., CD95promotes tumour growth. Nature,2010.465(7297): p.492-6.
    66. Steller, E.J., et al., The death receptor CD95activates the cofilin pathway to stimulatetumour cell invasion. EMBO Rep,2011.12(9): p.931-7.
    67. Wang, J.F. and K.C. Chou, Molecular modeling of cytochrome P450and drugmetabolism. Curr Drug Metab,2010.11(4): p.342-6.
    68. Diasio, R.B. and M.R. Johnson, Dihydropyrimidine dehydrogenase: its role in5-fluorouracil clinical toxicity and tumor resistance. Clin Cancer Res,1999.5(10): p.2672-3.
    69. Lo, H.W. and F. Ali-Osman, Genetic polymorphism and function of glutathioneS-transferases in tumor drug resistance. Curr Opin Pharmacol,2007.7(4): p.367-74.
    70. Ping, Y.F., et al., The chemokine CXCL12and its receptor CXCR4promote glioma stemcell-mediated VEGF production and tumour angiogenesis via PI3K/AKT signalling. JPathol,2011.224(3): p.344-54.
    71. Lohela, M., et al., VEGFs and receptors involved in angiogenesis versuslymphangiogenesis. Curr Opin Cell Biol,2009.21(2): p.154-65.
    72. Zavadil, J., et al., Integration of TGF-beta/Smad and Jagged1/Notch signalling inepithelial-to-mesenchymal transition. EMBO J,2004.23(5): p.1155-65.
    73. Massague, J., TGFbeta in Cancer. Cell,2008.134(2): p.215-30.
    74. Ambros, V., The functions of animal microRNAs. Nature,2004.431(7006): p.350-5.
    75. Bartel, D.P., MicroRNAs: genomics, biogenesis, mechanism, and function. Cell,2004.116(2): p.281-97.
    76. Durkin, S.G. and T.W. Glover, Chromosome fragile sites. Annu Rev Genet,2007.41: p.169-92.
    77. Calin, G.A. and C.M. Croce, MicroRNA signatures in human cancers. Nat Rev Cancer,2006.6(11): p.857-66.
    78. Calin, G.A., et al., Human microRNA genes are frequently located at fragile sites andgenomic regions involved in cancers. Proc Natl Acad Sci U S A,2004.101(9): p.2999-3004.
    79. He, L., et al., A microRNA polycistron as a potential human oncogene. Nature,2005.435(7043): p.828-33.
    80. Yu, F., et al., let-7regulates self renewal and tumorigenicity of breast cancer cells. Cell,2007.131(6): p.1109-23.
    81. Ji, Q., et al., MicroRNA miR-34inhibits human pancreatic cancer tumor-initiating cells.PLoS One,2009.4(8): p. e6816.
    82. Ying, Z., et al., Loss of miR-204expression enhances glioma migration and stem cell-likephenotype. Cancer Res,2013.73(2): p.990-9.
    83. Okuda, H., et al., miR-7suppresses brain metastasis of breast cancer stem-like cells bymodulating KLF4. Cancer Res,2013.73(4): p.1434-44.
    84. Fang, Y., et al., miRNA expression profile of colon cancer stem cells compared tonon-stem cells using the SW1116cell line. Oncol Rep,2012.28(6): p.2115-24.
    85. Park, Y.T., et al., MicroRNAs overexpressed in ovarian ALDH1-positive cells areassociated with chemoresistance. J Ovarian Res,2013.6(1): p.18.
    86. Meng, F., et al., Functional analysis of microRNAs in human hepatocellular cancer stemcells. J Cell Mol Med,2012.16(1): p.160-73.
    87. Wang, B., et al., TGFbeta-mediated upregulation of hepatic miR-181b promoteshepatocarcinogenesis by targeting TIMP3. Oncogene,2010.29(12): p.1787-97.
    88. Yang, C.C., et al., miR-181as a putative biomarker for lymph-node metastasis of oralsquamous cell carcinoma. J Oral Pathol Med,2011.40(5): p.397-404.
    89. Kim, C.H., et al., miRNA signature associated with outcome of gastric cancer patientsfollowing chemotherapy. BMC Med Genomics,2011.4: p.79.
    90. Shi, L., et al., hsa-mir-181a and hsa-mir-181b function as tumor suppressors in humanglioma cells. Brain Res,2008.1236: p.185-93.
    91. Xu, Z., et al., MicroRNA-181regulates CARM1and histone arginine methylation topromote differentiation of human embryonic stem cells. PLoS One,2013.8(1): p. e53146.
    92. Cichocki, F., et al., Cutting edge: microRNA-181promotes human NK cell developmentby regulating Notch signaling. J Immunol,2011.187(12): p.6171-5.
    93. Zhu, D.X., et al., miR-181a/b significantly enhances drug sensitivity in chroniclymphocytic leukemia cells via targeting multiple anti-apoptosis genes. Carcinogenesis,2012.33(7): p.1294-301.
    94. Pouliot, L.M., et al., Contributions of microRNA dysregulation to cisplatin resistance inadenocarcinoma cells. Exp Cell Res,2013.319(4): p.566-74.
    95. Ouyang, Y.B., et al., miR-181targets multiple Bcl-2family members and influencesapoptosis and mitochondrial function in astrocytes. Mitochondrion,2012.12(2): p.213-9.
    96. Chen, G., et al., MicroRNA-181a sensitizes human malignant glioma U87MG cells toradiation by targeting Bcl-2. Oncol Rep,2010.23(4): p.997-1003.
    97. Wang, Y., et al., Transforming growth factor-beta regulates the sphere-initiating stemcell-like feature in breast cancer through miRNA-181and ATM. Oncogene,2011.30(12):p.1470-80.
    98. Lin, S., et al., Prognostic Role of MicroRNA-181a/b in Hematological Malignancies: AMeta-Analysis. PLoS One,2013.8(3): p. e59532.
    99. Tanaka, M., et al., Down-regulation of miR-92in human plasma is a novel marker foracute leukemia patients. PLoS One,2009.4(5): p. e5532.
    100.Sanchez-Jimenez, C., et al., Identification of a set of miRNAs differentially expressed intransiently TIA-depleted HeLa cells by genome-wide profiling. BMC Mol Biol,2013.14:p.4.
    101.Li, D., et al., Aberrant expression of miR-638contributes to benzo(a)pyrene-inducedhuman cell transformation. Toxicol Sci,2012.125(2): p.382-91.
    102.Vetter, G., et al., miR-661expression in SNAI1-induced epithelial to mesenchymaltransition contributes to breast cancer cell invasion by targeting Nectin-1and StarD10messengers. Oncogene,2010.29(31): p.4436-48.
    103.Murphy, N.C., et al., Loss of STARD10expression identifies a group of poor prognosisbreast cancers independent of HER2/Neu and triple negative status. Int J Cancer,2010.126(6): p.1445-53.
    104.Scobie, H.M., et al., Human capillary morphogenesis protein2functions as an anthraxtoxin receptor. Proc Natl Acad Sci U S A,2003.100(9): p.5170-4.
    105.Deuquet, J., et al., The dark sides of capillary morphogenesis gene2. EMBO J,2012.31(1): p.3-13.
    106.Bell, S.E., et al., Differential gene expression during capillary morphogenesis in3Dcollagen matrices: regulated expression of genes involved in basement membrane matrixassembly, cell cycle progression, cellular differentiation and G-protein signaling. J CellSci,2001.114(Pt15): p.2755-73.
    107.Dowling, O., et al., Mutations in capillary morphogenesis gene-2result in the allelicdisorders juvenile hyaline fibromatosis and infantile systemic hyalinosis. Am J HumGenet,2003.73(4): p.957-66.
    108.Hanks, S., et al., Mutations in the gene encoding capillary morphogenesis protein2causejuvenile hyaline fibromatosis and infantile systemic hyalinosis. Am J Hum Genet,2003.73(4): p.791-800.
    109.Reeves, C.V., et al., Anthrax toxin receptor2is expressed in murine and tumorvasculature and functions in endothelial proliferation and morphogenesis. Oncogene,2010.29(6): p.789-801.
    110.Graziosi, L., et al., Mechanistic role of p38MAPK in gastric cancer dissemination in arodent model peritoneal metastasis. Eur J Pharmacol,2012.674(2-3): p.143-52.
    111.Nishioka, N., et al., Plasminogen activator inhibitor1RNAi suppresses gastric cancermetastasis in vivo. Cancer Sci,2012.103(2): p.228-32.
    112.Kim, J., et al., Tumor initiating but differentiated luminal-like breast cancer cells arehighly invasive in the absence of basal-like activity. Proc Natl Acad Sci U S A,2012.109(16): p.6124-9.
    113.Yamashita, T., et al., Discrete nature of EpCAM(+) and CD90(+) cancer stem cells inhuman hepatocellular carcinoma. Hepatology,2012.
    114.Wang, J.Y., et al., Silibinin suppresses the maintenance of colorectal cancer stem-likecells by inhibiting PP2A/AKT/mTOR pathways. J Cell Biochem,2012.113(5): p.1733-43.
    115.Kurpios, N.A., et al., Single unpurified breast tumor-initiating cells from multiple mousemodels efficiently elicit tumors in immune-competent hosts. PLoS One,2013.8(3): p.e58151.
    116.Kalluri, R. and R.A. Weinberg, The basics of epithelial-mesenchymal transition. J ClinInvest,2009.119(6): p.1420-8.
    117.Nurwidya, F., et al., Epithelial mesenchymal transition in drug resistance and metastasisof lung cancer. Cancer Res Treat,2012.44(3): p.151-6.
    118.Voulgari, A. and A. Pintzas, Epithelial-mesenchymal transition in cancer metastasis:mechanisms, markers and strategies to overcome drug resistance in the clinic. BiochimBiophys Acta,2009.1796(2): p.75-90.
    119.Lazaris, A., et al., Immunohistochemical assessment of basement membrane componentsin colorectal cancer: prognostic implications. J Exp Clin Cancer Res,2003.22(4): p.599-606.
    120.Takahashi, S., et al., Cytoplasmic expression of laminin gamma2chain correlates withpostoperative hepatic metastasis and poor prognosis in patients with pancreatic ductaladenocarcinoma. Cancer,2002.94(6): p.1894-901.
    121.Smrkolj, S., M. Erzen, and S. Rakar, Prognostic significance of topoisomerase II alphaand collagen IV immunoexpression in cervical cancer. Eur J Gynaecol Oncol,2010.31(4):p.380-5.
    122.Kim, E.K. and E.J. Choi, Pathological roles of MAPK signaling pathways in humandiseases. Biochim Biophys Acta,2010.1802(4): p.396-405.
    123.Hazzalin, C.A. and L.C. Mahadevan, MAPK-regulated transcription: a continuouslyvariable gene switch? Nat Rev Mol Cell Biol,2002.3(1): p.30-40.
    124.Boulton, T.G., et al., ERKs: a family of protein-serine/threonine kinases that are activatedand tyrosine phosphorylated in response to insulin and NGF. Cell,1991.65(4): p.663-75.
    125.Jelinek, T., et al., Ras-induced activation of Raf-1is dependent on tyrosinephosphorylation. Mol Cell Biol,1996.16(3): p.1027-34.
    126.von Thun, A., et al., ERK2drives tumour cell migration in three-dimensionalmicroenvironments by suppressing expression of Rab17and liprin-beta2. J Cell Sci,2012.125(Pt6): p.1465-77.
    127.Ha, G.H., J.S. Park, and E.K. Breuer, TACC3promotes epithelial-mesenchymal transition(EMT) through the activation of PI3K/Akt and ERK signaling pathways. Cancer Lett,2013.332(1): p.63-73.
    128.Shin, S., et al., ERK2but not ERK1induces epithelial-to-mesenchymal transformationvia DEF motif-dependent signaling events. Mol Cell,2010.38(1): p.114-27.
    129.Chen, T., et al., The viral oncogene Np9acts as a critical molecular switch forco-activating beta-catenin, ERK, Akt and Notch1and promoting the growth of humanleukemia stem/progenitor cells. Leukemia,2013.
    130.Sunayama, J., et al., Crosstalk between the PI3K/mTOR and MEK/ERK pathwaysinvolved in the maintenance of self-renewal and tumorigenicity of glioblastoma stem-likecells. Stem Cells,2010.28(11): p.1930-9.
    131.Judd, N.P., et al., ERK1/2regulation of CD44modulates oral cancer aggressiveness.Cancer Res,2012.72(1): p.365-74.
    132.Abrami, L., B. Kunz, and F.G. van der Goot, Anthrax toxin triggers the activation ofsrc-like kinases to mediate its own uptake. Proc Natl Acad Sci U S A,2010.107(4): p.1420-4.
    133.Kasahara, K., et al., Src signaling regulates completion of abscission in cytokinesisthrough ERK/MAPK activation at the midbody. J Biol Chem,2007.282(8): p.5327-39.
    134.Zhang, L., et al., C-Src-mediated RANKL-induced breast cancer cell migration byactivation of the ERK and Akt pathway. Oncol Lett,2012.3(2): p.395-400.
    135.Wei, W., et al., The LDL receptor-related protein LRP6mediates internalization andlethality of anthrax toxin. Cell,2006.124(6): p.1141-54.
    136.Ye, Z.J., et al., LRP6protein regulates low density lipoprotein (LDL) receptor-mediatedLDL uptake. J Biol Chem,2012.287(2): p.1335-44.
    137.Perobner, I., et al., LRP6mediates Wnt/beta-catenin signaling and regulates adipogenicdifferentiation in human mesenchymal stem cells. Int J Biochem Cell Biol,2012.44(11):p.1970-82.
    1. Parkin, D.M., et al., Global cancer statistics,2002. CA Cancer J Clin,2005.55(2): p.74-108.
    2. Yang, L., Incidence and mortality of gastric cancer in China. World J Gastroenterol,2006.12(1): p.17-20.
    3. Heppner, G.H., Tumor heterogeneity. Cancer Res,1984.44(6): p.2259-65.
    4. Visvader, J.E. and G.J. Lindeman, Cancer stem cells in solid tumours: accumulatingevidence and unresolved questions. Nat Rev Cancer,2008.8(10): p.755-68.
    5. Ward, R.J. and P.B. Dirks, Cancer stem cells: at the headwaters of tumor development.Annu Rev Pathol,2007.2: p.175-89.
    6. Vries, R.G., M. Huch, and H. Clevers, Stem cells and cancer of the stomach and intestine.Mol Oncol,2010.4(5): p.373-84.
    7. Clarke, M.F., et al., Cancer stem cells--perspectives on current status and futuredirections: AACR Workshop on cancer stem cells. Cancer Res,2006.66(19): p.9339-44.
    8. Bonnet, D. and J.E. Dick, Human acute myeloid leukemia is organized as a hierarchythat originates from a primitive hematopoietic cell. Nat Med,1997.3(7): p.730-7.
    9. Singh, S.K., et al., Identification of human brain tumour initiating cells. Nature,2004.432(7015): p.396-401.
    10. Al-Hajj, M., et al., Prospective identification of tumorigenic breast cancer cells. ProcNatl Acad Sci U S A,2003.100(7): p.3983-8.
    11. Ricci-Vitiani, L., et al., Identification and expansion of human colon-cancer-initiatingcells. Nature,2007.445(7123): p.111-5.
    12. Huang, C.P., et al., ALDH-positive lung cancer stem cells confer resistance to epidermalgrowth factor receptor tyrosine kinase inhibitors. Cancer Lett,2012.
    13. Facompre, N., et al., Stem-like cells and therapy resistance in squamous cell carcinomas.Adv Pharmacol,2012.65: p.235-65.
    14. Ping, Y.F. and X.W. Bian, Consice review: Contribution of cancer stem cells toneovascularization. Stem Cells,2011.29(6): p.888-94.
    15. Ortensi, B., et al., Cancer stem cell contribution to glioblastoma invasiveness. Stem CellRes Ther,2013.4(1): p.18.
    16. Chang, J.T. and S.A. Mani, Sheep, wolf, or werewolf: Cancer stem cells and theepithelial-to-mesenchymal transition. Cancer Lett,2013.
    17. Patel, P. and E.I. Chen, Cancer stem cells, tumor dormancy, and metastasis. FrontEndocrinol (Lausanne),2012.3: p.125.
    18. Reya, T., et al., Stem cells, cancer, and cancer stem cells. Nature,2001.414(6859): p.105-11.
    19. Nowell, P.C., The clonal evolution of tumor cell populations. Science,1976.194(4260): p.23-8.
    20. Karam, S.M. and C.P. Leblond, Dynamics of epithelial cells in the corpus of the mousestomach. III. Inward migration of neck cells followed by progressive transformation intozymogenic cells. Anat Rec,1993.236(2): p.297-313.
    21. Karam, S.M. and C.P. Leblond, Dynamics of epithelial cells in the corpus of the mousestomach. II. Outward migration of pit cells. Anat Rec,1993.236(2): p.280-96.
    22. Karam, S.M., Mouse models demonstrating the role of stem/progenitor cells in gastriccarcinogenesis. Front Biosci,2010.15: p.595-603.
    23. Nam, K.T., et al., Spasmolytic polypeptide-expressing metaplasia (SPEM) in the gastricoxyntic mucosa does not arise from Lgr5-expressing cells. Gut,2012.61(12): p.1678-85.
    24. Houghton, J., et al., Gastric cancer originating from bone marrow-derived cells. Science,2004.306(5701): p.1568-71.
    25. Mani, S.A., et al., The epithelial-mesenchymal transition generates cells with propertiesof stem cells. Cell,2008.133(4): p.704-15.
    26. Singh, S.K., et al., Identification of a cancer stem cell in human brain tumors. Cancer Res,2003.63(18): p.5821-8.
    27. Yu, S.C., et al., Isolation and characterization of cancer stem cells from a humanglioblastoma cell line U87. Cancer Lett,2008.265(1): p.124-34.
    28. Yu, S.C. and X.W. Bian, Enrichment of cancer stem cells based on heterogeneity ofinvasiveness. Stem Cell Rev,2009.5(1): p.66-71.
    29. Pece, S., et al., Biological and molecular heterogeneity of breast cancers correlates withtheir cancer stem cell content. Cell,2010.140(1): p.62-73.
    30. Kamohara, Y., et al., The search for cancer stem cells in hepatocellular carcinoma.Surgery,2008.144(2): p.119-24.
    31. Clement, V., et al., Marker-independent identification of glioma-initiating cells. NatMethods,2010.7(3): p.224-8.
    32. Walia, V. and R.C. Elble, Enrichment for breast cancer cells with stem/progenitorproperties by differential adhesion. Stem Cells Dev,2010.19(8): p.1175-82.
    33. Takaishi, S., et al., Identification of gastric cancer stem cells using the cell surfacemarker CD44. Stem Cells,2009.27(5): p.1006-20.
    34. Chen, W., et al., Identification of CD44+Cancer Stem Cells in Human Gastric Cancer.Hepatogastroenterology,2013.60(127).
    35. Han, M.E., et al., Cancer spheres from gastric cancer patients provide an ideal modelsystem for cancer stem cell research. Cell Mol Life Sci,2011.68(21): p.3589-605.
    36. Chen, T., et al., Identification and expansion of cancer stem cells in tumor tissues andperipheral blood derived from gastric adenocarcinoma patients. Cell Res,2012.22(1): p.248-58.
    37. Jiang, J., et al., Trastuzumab (herceptin) targets gastric cancer stem cells characterizedby CD90phenotype. Oncogene,2012.31(6): p.671-82.
    38. Zhang, C., et al., Identification of CD44+CD24+gastric cancer stem cells. J Cancer ResClin Oncol,2011.137(11): p.1679-86.
    39. Katsuno, Y., et al., Coordinated expression of REG4and aldehyde dehydrogenase1regulating tumourigenic capacity of diffuse-type gastric carcinoma-initiating cells isinhibited by TGF-beta. J Pathol,2012.228(3): p.391-404.
    40. Ohkuma, M., et al., Absence of CD71transferrin receptor characterizes human gastricadenosquamous carcinoma stem cells. Ann Surg Oncol,2012.19(4): p.1357-64.
    41. da Cunha, C.B., et al., De novo expression of CD44variants in sporadic and hereditarygastric cancer. Lab Invest,2010.90(11): p.1604-14.
    42. Okayama, H., et al., CD44v6, MMP-7and nuclear Cdx2are significant biomarkers forprediction of lymph node metastasis in primary gastric cancer. Oncol Rep,2009.22(4): p.745-55.
    43. Ishimoto, T., et al., CD44+slow-cycling tumor cell expansion is triggered by cooperativeactions of Wnt and prostaglandin E2in gastric tumorigenesis. Cancer Sci,2010.101(3):p.673-8.
    44. Jang, B.I., et al., The Role of CD44in the Pathogenesis, Diagnosis, and Therapy ofGastric Cancer. Gut Liver,2011.5(4): p.397-405.
    45. Wenqi, D., et al., EpCAM is overexpressed in gastric cancer and its downregulationsuppresses proliferation of gastric cancer. J Cancer Res Clin Oncol,2009.135(9): p.1277-85.
    46. Staunton, D.E., et al., Primary structure of ICAM-1demonstrates interaction betweenmembers of the immunoglobulin and integrin supergene families. Cell,1988.52(6): p.925-33.
    47. Yashiro, M., T. Sunami, and K. Hirakawa, CD54expression is predictive for lymphaticspread in human gastric carcinoma. Dig Dis Sci,2005.50(12): p.2224-30.
    48. Bektas, S., et al., CD24and galectin-1expressions in gastric adenocarcinoma andclinicopathologic significance. Pathol Oncol Res,2010.16(4): p.569-77.
    49. Chou, Y.Y., et al., Cytoplasmic CD24expression is a novel prognostic factor indiffuse-type gastric adenocarcinoma. Ann Surg Oncol,2007.14(10): p.2748-58.
    50. Lee, T.K., et al., CD24(+) liver tumor-initiating cells drive self-renewal and tumorinitiation through STAT3-mediated NANOG regulation. Cell Stem Cell,2011.9(1): p.50-63.
    51. Dennis, J.E., et al., Clinical-scale expansion of a mixed population ofbone-marrow-derived stem and progenitor cells for potential use in bone-tissueregeneration. Stem Cells,2007.25(10): p.2575-82.
    52. Dan, Y.Y., et al., Isolation of multipotent progenitor cells from human fetal liver capableof differentiating into liver and mesenchymal lineages. Proc Natl Acad Sci U S A,2006.103(26): p.9912-7.
    53. Yang, Z.F., et al., Significance of CD90+cancer stem cells in human liver cancer. CancerCell,2008.13(2): p.153-66.
    54. Duester, G., Families of retinoid dehydrogenases regulating vitamin A function:production of visual pigment and retinoic acid. Eur J Biochem,2000.267(14): p.4315-24.
    55. Ginestier, C., et al., ALDH1is a marker of normal and malignant human mammary stemcells and a predictor of poor clinical outcome. Cell Stem Cell,2007.1(5): p.555-67.
    56. Sullivan, J.P., et al., Aldehyde dehydrogenase activity selects for lung adenocarcinomastem cells dependent on notch signaling. Cancer Res,2010.70(23): p.9937-48.
    57. Huang, E.H., et al., Aldehyde dehydrogenase1is a marker for normal and malignanthuman colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis.Cancer Res,2009.69(8): p.3382-9.
    58. Nishikawa, S., et al., Aldehyde dehydrogenasehigh gastric cancer stem cells are resistantto chemotherapy. Int J Oncol,2013.42(4): p.1437-42.
    59. Hogge, D.E., et al., Enhanced detection, maintenance, and differentiation of primitivehuman hematopoietic cells in cultures containing murine fibroblasts engineered toproduce human steel factor, interleukin-3, and granulocyte colony-stimulating factor.Blood,1996.88(10): p.3765-73.
    60. Tani, H., R.J. Morris, and P. Kaur, Enrichment for murine keratinocyte stem cells basedon cell surface phenotype. Proc Natl Acad Sci U S A,2000.97(20): p.10960-5.
    61. Haraguchi, N., et al., Characterization of a side population of cancer cells from humangastrointestinal system. Stem Cells,2006.24(3): p.506-13.
    62. Fukuda, K., et al., Tumor initiating potential of side population cells in human gastriccancer. Int J Oncol,2009.34(5): p.1201-7.
    63. Schmuck, R., et al., Genotypic and phenotypic characterization of side population ofgastric cancer cell lines. Am J Pathol,2011.178(4): p.1792-804.
    64. Nishii, T., et al., Cancer stem cell-like SP cells have a high adhesion ability to theperitoneum in gastric carcinoma. Cancer Sci,2009.100(8): p.1397-402.
    65. Ehata, S., et al., Transforming growth factor-beta decreases the cancer-initiating cellpopulation within diffuse-type gastric carcinoma cells. Oncogene,2011.30(14): p.1693-705.
    66. Wu, T., J.Y. Li, and S.X. Lu,[Isolation and characterization of side population cells inhuman gastric cancer cell line BGC-823]. Zhonghua Zhong Liu Za Zhi,2012.34(4): p.264-8.
    67. She, J.J., et al., Side population cells isolated from KATO III human gastric cancer cellline have cancer stem cell-like characteristics. World J Gastroenterol,2012.18(33): p.4610-7.
    68. Li, R., et al., Characterization of side population cells isolated from the gastric cancercell line SGC-7901. Oncol Lett,2013.5(3): p.877-883.
    69. Zhang, H.H., et al., Characterization of cancer stem-like cells in the side population cellsof human gastric cancer cell line MKN-45. J Zhejiang Univ Sci B,2013.14(3): p.216-23.
    70. Zhang, H., et al., Not all side population cells contain cancer stem-like cells in humangastric cancer cell lines. Dig Dis Sci,2013.58(1): p.132-9.
    71. Reynolds, B.A. and S. Weiss, Clonal and population analyses demonstrate that anEGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev Biol,1996.175(1): p.1-13.
    72. Song, Z., et al., Sonic hedgehog pathway is essential for maintenance of cancer stem-likecells in human gastric cancer. PLoS One,2011.6(3): p. e17687.
    73. Yang, L., et al., Gastric cancer stem-like cells possess higher capability of invasion andmetastasis in association with a mesenchymal transition phenotype. Cancer Lett,2011.310(1): p.46-52.
    74. Zheng, Q., et al., Floating cells with stem cell properties in gastric cell line SGC-7901.Tumori,2011.97(3): p.393-9.
    75. Cai, C. and X. Zhu, The Wnt/beta-catenin pathway regulates self-renewal of cancerstem-like cells in human gastric cancer. Mol Med Rep,2012.5(5): p.1191-6.
    76. Xue, Z., et al., Identification of cancer stem cells in vincristine preconditioned SGC7901gastric cancer cell line. J Cell Biochem,2012.113(1): p.302-12.
    77. Golebiewska, A., et al., Critical appraisal of the side population assay in stem cell andcancer stem cell research. Cell Stem Cell,2011.8(2): p.136-47.
    78. Yamashita, T., et al., Discrete nature of EpCAM(+) and CD90(+) cancer stem cells inhuman hepatocellular carcinoma. Hepatology,2012.
    79. Rocco, A., et al., CD133and CD44cell surface markers do not identify cancer stem cellsin primary human gastric tumors. J Cell Physiol,2012.227(6): p.2686-93.
    80. Wang, B., et al., Chimeric5/35adenovirus-mediated Dickkopf-1overexpressionsuppressed tumorigenicity of CD44(+) gastric cancer cells via attenuating Wnt signaling.J Gastroenterol,2012.
    81. Tanner, M., et al., Amplification of HER-2in gastric carcinoma: association withTopoisomerase IIalpha gene amplification, intestinal type, poor prognosis and sensitivityto trastuzumab. Ann Oncol,2005.16(2): p.273-8.
    82. Marx, A.H., et al., HER-2amplification is highly homogenous in gastric cancer. HumPathol,2009.40(6): p.769-77.
    83. Zhi, Q.M., et al., Salinomycin can effectively kill ALDH(high) stem-like cells on gastriccancer. Biomed Pharmacother,2011.65(7): p.509-15.
    84. Zieker, D., et al., Induction of tumor stem cell differentiation-novel strategy to overcometherapy resistance in gastric cancer. Langenbecks Arch Surg,2013.
    85. Cao, L., et al., Omental milky spots in screening gastric cancer stem cells. Neoplasma,2011.58(1): p.20-6.
    1. Hanahan, D. and R.A. Weinberg, The hallmarks of cancer. Cell,2000.100(1): p.57-70.
    2. Greenlee, R.T., et al., Cancer statistics,2001. CA Cancer J Clin,2001.51(1): p.15-36.
    3. Steeg, P.S., Tumor metastasis: mechanistic insights and clinical challenges. Nat Med,2006.12(8): p.895-904.
    4. Stacker, S.A., et al., Lymphangiogenesis and cancer metastasis. Nat Rev Cancer,2002.2(8): p.573-83.
    5. Geiger, T.R. and D.S. Peeper, Metastasis mechanisms. Biochim Biophys Acta,2009.1796(2): p.293-308.
    6. Eccles, S.A. and D.R. Welch, Metastasis: recent discoveries and novel treatmentstrategies. Lancet,2007.369(9574): p.1742-57.
    7. Li, F., et al., Beyond tumorigenesis: cancer stem cells in metastasis. Cell Res,2007.17(1):p.3-14.
    8. Lee, J., et al., Tumor stem cells derived from glioblastomas cultured in bFGF and EGFmore closely mirror the phenotype and genotype of primary tumors than doserum-cultured cell lines. Cancer Cell,2006.9(5): p.391-403.
    9. Donnenberg, V.S., et al., Localization of CD44and CD90positive cells to the invasivefront of breast tumors. Cytometry B Clin Cytom,2010.78(5): p.287-301.
    10. Luo, W., et al., Embryonic stem cells markers SOX2, OCT4and Nanog expression andtheir correlations with epithelial-mesenchymal transition in nasopharyngeal carcinoma.PLoS One,2013.8(2): p. e56324.
    11. Pallini, R., et al., Cancer stem cell analysis and clinical outcome in patients withglioblastoma multiforme. Clin Cancer Res,2008.14(24): p.8205-12.
    12. Okudela, K., et al., Expression of the potential cancer stem cell markers, CD133, CD44,ALDH1, and beta-catenin, in primary lung adenocarcinoma--their prognosticsignificance. Pathol Int,2012.62(12): p.792-801.
    13. Woo, T., et al., Prognostic value of CD133expression in stage I lung adenocarcinomas.Int J Clin Exp Pathol,2010.4(1): p.32-42.
    14. Wang, Q., et al., Cancer stem cell marker CD133+tumour cells and clinical outcome inrectal cancer. Histopathology,2009.55(3): p.284-93.
    15. Zhao, P., Y. Li, and Y. Lu, Aberrant expression of CD133protein correlates with Ki-67expression and is a prognostic marker in gastric adenocarcinoma. BMC Cancer,2010.10:p.218.
    16. Horst, D., et al., Prognostic significance of the cancer stem cell markers CD133, CD44,and CD166in colorectal cancer. Cancer Invest,2009.27(8): p.844-50.
    17. Merlos-Suarez, A., et al., The intestinal stem cell signature identifies colorectal cancerstem cells and predicts disease relapse. Cell Stem Cell,2011.8(5): p.511-24.
    18. Yu, S.C. and X.W. Bian, Enrichment of cancer stem cells based on heterogeneity ofinvasiveness. Stem Cell Rev,2009.5(1): p.66-71.
    19. Yilmaz, M. and G. Christofori, EMT, the cytoskeleton, and cancer cell invasion. CancerMetastasis Rev,2009.28(1-2): p.15-33.
    20. Yang, J. and R.A. Weinberg, Epithelial-mesenchymal transition: at the crossroads ofdevelopment and tumor metastasis. Dev Cell,2008.14(6): p.818-29.
    21. Huber, M.A., N. Kraut, and H. Beug, Molecular requirements for epithelial-mesenchymaltransition during tumor progression. Curr Opin Cell Biol,2005.17(5): p.548-58.
    22. Massague, J., TGFbeta in Cancer. Cell,2008.134(2): p.215-30.
    23. Huber, M.A., et al., NF-kappaB is essential for epithelial-mesenchymal transition andmetastasis in a model of breast cancer progression. J Clin Invest,2004.114(4): p.569-81.
    24. Peter, M.E., Regulating cancer stem cells the miR way. Cell Stem Cell,2010.6(1): p.4-6.
    25. Morel, A.P., et al., Generation of breast cancer stem cells throughepithelial-mesenchymal transition. PLoS One,2008.3(8): p. e2888.
    26. Radisky, D.C. and M.A. LaBarge, Epithelial-mesenchymal transition and the stem cellphenotype. Cell Stem Cell,2008.2(6): p.511-2.
    27. Martin, F.T., et al., Potential role of mesenchymal stem cells (MSCs) in the breast tumourmicroenvironment: stimulation of epithelial to mesenchymal transition (EMT). BreastCancer Res Treat,2010.124(2): p.317-26.
    28. Liu, G., et al., Analysis of gene expression and chemoresistance of CD133+cancer stemcells in glioblastoma. Mol Cancer,2006.5: p.67.
    29. Salmaggi, A., et al., Glioblastoma-derived tumorospheres identify a population of tumorstem-like cells with angiogenic potential and enhanced multidrug resistance phenotype.Glia,2006.54(8): p.850-60.
    30. Yu, F., et al., let-7regulates self renewal and tumorigenicity of breast cancer cells. Cell,2007.131(6): p.1109-23.
    31. Yu, F., et al., Mir-30reduction maintains self-renewal and inhibits apoptosis in breasttumor-initiating cells. Oncogene,2010.29(29): p.4194-204.
    32. Zhou, J., et al., Activation of the PTEN/mTOR/STAT3pathway in breast cancer stem-likecells is required for viability and maintenance. Proc Natl Acad Sci U S A,2007.104(41):p.16158-63.
    33. Mulholland, D.J., et al., Pten loss and RAS/MAPK activation cooperate to promote EMTand metastasis initiated from prostate cancer stem/progenitor cells. Cancer Res,2012.72(7): p.1878-89.
    34. Brabletz, T., et al., Opinion: migrating cancer stem cells-an integrated concept ofmalignant tumour progression. Nat Rev Cancer,2005.5(9): p.744-9.
    35. Li, G., et al., CD133(+) single cell-derived progenies of colorectal cancer cell line SW480with different invasive and metastatic potential. Clin Exp Metastasis,2010.27(7): p.517-27.
    36. Lin, Y., et al., Association of the actin-binding protein transgelin with lymph nodemetastasis in human colorectal cancer. Neoplasia,2009.11(9): p.864-73.
    37. Hermann, P.C., et al., Distinct populations of cancer stem cells determine tumor growthand metastatic activity in human pancreatic cancer. Cell Stem Cell,2007.1(3): p.313-23.
    38. Yamashita, T., et al., Discrete nature of EpCAM(+) and CD90(+) cancer stem cells inhuman hepatocellular carcinoma. Hepatology,2012.
    39. Dr. John Z Srbely, BSc, Dc, DAc, PhD(student). J Can Chiropr Assoc,2005.49(2): p.74.
    40. Prall, F., Tumour budding in colorectal carcinoma. Histopathology,2007.50(1): p.151-62.
    41. Nakanishi, Y., et al., Correlation between tumor budding and post-resection prognosis inpatients with invasive squamous cell carcinoma of the thoracic esophagus. World J Surg,2011.35(2): p.349-56.
    42. Koike, M., et al., Multivariate analysis of the pathologic features of esophagealsquamous cell cancer: tumor budding is a significant independent prognostic factor. AnnSurg Oncol,2008.15(7): p.1977-82.
    43. Taira, T., et al., Characterization of the immunophenotype of the tumor budding and itsprognostic implications in squamous cell carcinoma of the lung. Lung Cancer,2012.76(3): p.423-30.
    44. Puppa, G., et al., Diagnostic reproducibility of tumour budding in colorectal cancer: amulticentre, multinational study using virtual microscopy. Histopathology,2012.61(4): p.562-575.
    45. Karamitopoulou, E., et al., Tumour budding is a strong and independent prognostic factorin pancreatic cancer. Eur J Cancer,2013.49(5): p.1032-9.
    46. Wang, C., et al., Tumor budding correlates with poor prognosis and epithelial-mesenchymal transition in tongue squamous cell carcinoma. J Oral Pathol Med,2011.40(7): p.545-51.
    47. Ohike, N., et al., Tumor budding as a strong prognostic indicator in invasive ampullaryadenocarcinomas. Am J Surg Pathol,2010.34(10): p.1417-24.
    48. Kazama, S., et al., Tumour budding at the deepest invasive margin correlates with lymphnode metastasis in submucosal colorectal cancer detected by anticytokeratin antibodyCAM5.2. Br J Cancer,2006.94(2): p.293-8.
    49. Masuda, R., et al., Tumor budding is a significant indicator of a poor prognosis in lungsquamous cell carcinoma patients. Mol Med Rep,2012.6(5): p.937-43.
    50. Koyuncuoglu, M., et al., Tumor budding and E-Cadherin expression in endometrialcarcinoma: are they prognostic factors in endometrial cancer? Gynecol Oncol,2012.125(1): p.208-13.
    51. Thiery, J.P., Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer,2002.2(6): p.442-54.
    52. Karamitopoulou, E., et al., Systematic analysis of proteins from different signalingpathways in the tumor center and the invasive front of colorectal cancer. Hum Pathol,2011.42(12): p.1888-96.
    53. Karamitopoulou, E., Tumor budding cells, cancer stem cells and epithelial-mesenchymaltransition-type cells in pancreatic cancer. Front Oncol,2012.2: p.209.
    54. Luo, W.R., et al., Tumour budding and the expression of cancer stem cell markeraldehyde dehydrogenase1in nasopharyngeal carcinoma. Histopathology,2012.61(6): p.1072-81.
    55. Hostettler, L., et al., ABCG5-positivity in tumor buds is an indicator of poor prognosis innode-negative colorectal cancer patients. World J Gastroenterol,2010.16(6): p.732-9.
    56. Prall, F., C. Maletzki, and M. Linnebacher, The EpCAM high/CD44high colorectalcarcinoma stem cell phenotype is not preferentially expressed in tumour buds.Histopathology,2010.56(4): p.553-5.
    57. Aktas, B., et al., Stem cell and epithelial-mesenchymal transition markers are frequentlyoverexpressed in circulating tumor cells of metastatic breast cancer patients. BreastCancer Res,2009.11(4): p. R46.
    58. Gorges, T.M. and K. Pantel, Circulating tumor cells as therapy-related biomarkers incancer patients. Cancer Immunol Immunother,2013.
    59. Cristofanilli, M., et al., Circulating tumor cells, disease progression, and survival inmetastatic breast cancer. N Engl J Med,2004.351(8): p.781-91.
    60. Cohen, S.J., et al., Relationship of circulating tumor cells to tumor response,progression-free survival, and overall survival in patients with metastatic colorectalcancer. J Clin Oncol,2008.26(19): p.3213-21.
    61. Danila, D.C., et al., Circulating tumor cell number and prognosis in progressivecastration-resistant prostate cancer. Clin Cancer Res,2007.13(23): p.7053-8.
    62. Husemann, Y., et al., Systemic spread is an early step in breast cancer. Cancer Cell,2008.13(1): p.58-68.
    63. Pantel, K. and R.H. Brakenhoff, Dissecting the metastatic cascade. Nat Rev Cancer,2004.4(6): p.448-56.
    64. Ilina, O. and P. Friedl, Mechanisms of collective cell migration at a glance. J Cell Sci,2009.122(Pt18): p.3203-8.
    65. Erpenbeck, L. and M.P. Schon, Deadly allies: the fatal interplay between platelets andmetastasizing cancer cells. Blood,2010.115(17): p.3427-36.
    66. Suzuki, M., et al., Dormant cancer cells retrieved from metastasis-free organs regaintumorigenic and metastatic potency. Am J Pathol,2006.169(2): p.673-81.
    67. Cameron, M.D., et al., Temporal progression of metastasis in lung: cell survival,dormancy, and location dependence of metastatic inefficiency. Cancer Res,2000.60(9): p.2541-6.
    68. Glinsky, V.V., et al., Intravascular metastatic cancer cell homotypic aggregation at thesites of primary attachment to the endothelium. Cancer Res,2003.63(13): p.3805-11.
    69. Fidler, I.J., Metastasis: guantitative analysis of distribution and fate of tumorembolilabeled with125I-5-iodo-2'-deoxyuridine. J Natl Cancer Inst,1970.45(4): p.773-82.
    70. Gupta, P.B., et al., The evolving portrait of cancer metastasis. Cold Spring Harb SympQuant Biol,2005.70: p.291-7.
    71. Ma, J., et al., Isolation of tumorigenic circulating melanoma cells. Biochem Biophys ResCommun,2010.402(4): p.711-7.
    72. Chen, T., et al., Identification and expansion of cancer stem cells in tumor tissues andperipheral blood derived from gastric adenocarcinoma patients. Cell Res,2012.22(1): p.248-58.
    73. Theodoropoulos, P.A., et al., Circulating tumor cells with a putative stem cell phenotypein peripheral blood of patients with breast cancer. Cancer Lett,2010.288(1): p.99-106.
    74. Iinuma, H., et al., Clinical significance of circulating tumor cells, including cancerstem-like cells, in peripheral blood for recurrence and prognosis in patients with Dukes'stage B and C colorectal cancer. J Clin Oncol,2011.29(12): p.1547-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700