用户名: 密码: 验证码:
Paenibacillus polymyxa JSa-9抗菌物质的结构鉴定及小麦生防应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多年来,开发高效、安全无毒、性能稳定、广谱天然的抗菌物质一直是食品、医药、农业等领域的研究和应用热点。芽孢杆菌在自然界分布非常广泛,生理特性丰富多样,是土壤和植物微生态优势种群之一。本研究的目的在于从土壤中筛选出能产生活性高、抗菌谱广、安全的抗菌物质的菌株,对其抗菌物质进行分离纯化和结构鉴定,利用响应曲面法提高抗菌物质的产量,并评价其对小麦赤霉病菌的离体和活体条件的防治效果。研究结果分述如下:
     1.广谱抗菌活性芽孢杆菌的筛选及分类鉴定.从不同来源的六份土壤样品中根据形态不同共分离得到119株产芽孢杆菌,通过琼脂块法初筛及摇瓶发酵法复筛高效率地从中找出具有广泛抗菌谱的9株菌株。其中菌株JSa-9的抑菌谱最广,且抑菌活性强,不仅能较好地抑制革兰氏阳性细菌(Micrococcus luteus和Staphylococcus aureus)、革兰氏阴性菌(Escherichia coli和Pseudomouas fluorescens),而且对霉菌(Aspergillus niger和Penicillium notatum)也有显著的抑制作用。通过形态特征、培养特征和生理生化特性分析,初步判定其属于类芽孢杆菌属。分子生物学鉴定结果显示,JSa-9的16SrRNA基因序列和数据库中相似度最高的前14株菌均为多粘类芽孢杆菌,而且相似性均达到99%。在细菌系统发育分类学上,菌株JSa-9归属多粘类芽孢杆菌(Paenibacillus polymyxa), GenBank登录号为EU882855,并已保藏于中国普通微生物菌种保藏管理中心(CGMCC No.4314)。
     2. P. polymyxa JSa-9发酵液中抗菌糖蛋白的纯化和鉴定。P. polymyxa JSa-9的发酵上清液采用20-80%饱和度的硫酸铵分级盐析、DEAE-Sephacel离子交换层析及Sephadex G-100凝胶过滤层析纯化得到一种电泳纯分子量约为71.9kDa的抗菌蛋白,并通过高碘酸Schiff反应定性为糖蛋白。抑菌试验发现,该糖蛋白对3株革兰氏阳性细菌(M. luteus、B. cereus和S. aureus)、2种革兰氏阴性细菌(E. coli和P. fluorescens)以及5种霉菌(A.niger、P. expansum、A. oryzae、P. notatum和R. stolonifer)均具有显著的抑制效果。氨基酸组成分析显示,该蛋白含有11种氨基酸,富含Valine (3O.2%)、 Tyrosine (14.1%)、Lysine(12.6%)以及Threonine(11.5%),此四种氨基酸占总量的68%,氨基酸残基数约为294个,其N端前12个氨基酸序列经测定为Lys-Cys-Ala-Thr-Ile-Pro-Val-Val-lle-Lys-His-Leu。通过BLAST软件在NCBI网站中进行比较未发现同源蛋白,可判断该抗菌糖蛋白为一种新物质。苯酚-硫酸法测定表明,该蛋白含糖量约为28%。
     3. P. polymyxa JSa-9产脂肽LI-F、polymyxin B6及DBP的分离和鉴定.由乙酸乙酯从P. polymyxa JSa-9菌株发酵上清液中萃取得到抗菌粗提物,再经RP-HPLC纯化后,过柱液在UV210nm检测下出现4个活性峰。其中前三个峰表现出相似的抗菌活性,均只对革兰氏阳性细菌(M.luteus、B. cereus和S. aureus)和霉菌(A. niger、 P. expansum、A. oryzae、P. notatum和R. stolonifer)有抑制作用;而第四个峰显示出广谱的抗菌活性,对M. luteus、B. cereus、S. aureus、E. coli、P. fluorescens、A. niger、 P. expansum、A. oryzae、P. notatum和R. stolonifer均有效果。将四个活性峰经LC-MS结果显示,前三号峰分别含有一系列m/z883.82、897.16、897.28、911.87、947.69和961.67的物质,与LI-F类抗菌脂肽同系物的分子量相同;而四号峰含有m/z278.89的物质,与邻苯二甲酸二丁酯的分子量相吻合。随后MS/MS分析验证了上述结果,分子量为883、897、911、947和961Da的物质二级质谱断键方式和离子碎片峰与LI-F的分子结构相似,最终被分别鉴定为LI-F03a、LI-F03b、LI-F04a、LI-F04b知LI-F05b等五种LI-F脂肽,而分子量为278Da的物质被确定为邻苯二甲酸二丁酯(DBP)。
     采用超声波破碎和溶媒浸提法相结合获得P. polymyxa JSa-9菌体细胞内的抗菌粗提物,再经HPLC分离得到两个主要的活性峰(峰A和B)。其中前者对革兰氏阳性细菌和阴性菌(包括M.luteus、B. cereus、S. aureus、E. coli和P. fluorescens)均具有抑菌活性,而后者能抑制革兰氏阳性菌和植物病原真菌(M. luteus、B. cereus、S. aureus、 A. niger、P. expansum、A. oryzae、P. notatum和R. stolonifer)。将HPLC分离到的活性峰A与B分别进行LC-MS分析,峰A呈现出[M+H+]为m/z1219.72的信号,分子量与polymyxin B6非常吻合;而峰B出现了m/z901.55和915.51两个信号,与抗菌脂肽¨-F04的分子量较为接近,分别与LI-F04a和LI-F04b相差18Da。MS/MS分析表明,m/z1219.72的抗菌组分所含部分氨基酸序列为Dab-Thr-Dab-Dab-Thr-Dab-Dab, m/z901.55和915.51的分子结构中的部分氨基酸序列分别为Val-Val-Thr-Asn-Ala和Val-Val-Thr-Gln/Lys-Ala。氨基酸分析显示,峰A所含各种氨基酸的摩尔比为Dab:Thr:Phe:Leu/lle=6:2:1:1,与polymyxin B6相同;而峰B有着与LI-F04相同的氨基酸组成,含有Thr、Ala、Val、Asn和Gln,摩尔比为4:2:4:1:1。红外光谱试验进一步证明,峰A中的抗菌脂肽为多粘菌素B6;而峰B未出现内酯键的特征吸收,被分别鉴定为两种新型直链型的脂肽LI-F04a和LI-F04b。
     4. P. polymyxa JSa-9产抗茵脂肽LI-F的发酵工艺优化。发酵培养基筛选发现,Landy培养基能产生较高产量的抗菌脂肽LI-F。采用PB设计法对影响LI-F发酵的培养基组成和外在条件的关键因素进行筛选,结果表明,在所选取的13个相关因子中,对LI-F产量具有显著影响的因子是KCl、FeSO4、MgSO4和CuSO4。在PB试验结果的基础上,采用BBD响应曲面法对影响LI-F发酵的4个关键影响因素的最佳水平范围及其交互作用进行优化,并建立了预测模型方程。通过模型方程3D图及等高线图结果显示,在KC11.1g/L, FeSO40.27mg/L, MgSO40g/L、CuSO40.64mg/L的条件下,可获得LI-F产量的最大预测值。优化后的培养条件下脂肽产量达到733.9mg/L,约为起始的工艺下产量的1.7倍。
     5.LI-F在离体和活体试验中对小麦赤霉病菌的防治效果测定。P. polymyxa JSa-9产抗菌脂肽LI-F对小麦赤霉病菌菌丝的生长和孢子的萌发均具有明显的抑制作用。LI-F对菌丝生长的有效抑制中浓度(EC50)为13.69μg/mL。在30μg/mL浓度下,LI-F既能完全抑制赤霉病孢子的萌发,没有芽管形成。人工接种小麦赤霉病菌的防效结果表明,喷施800μg/mL浓度的脂肽LI-F对小麦赤霉病菌的治疗作用优于保护作用,防效可达到75.19%,略高于多茵灵的73.1%。
Over the years, the development of the novel antimicrobial substances with efficient, safe, stable and broad-spectrum activity has received increasing attention due to their potential use as natural preservatives in food industry, as probiotics in human health, and as therapeutic agents against pathogenic microorganisms. Bacillus species are widely distributed in nature, and possess diverse physiological characteristics. Bacillus is a genus that has been commonly found in soil and plants at the point of harvest. The objective of this work were (1) to isolate and screen antagonistic bacteria from the soil sample;(2) to purify and characterize the antimicrobial compounds from P. polymyxa strain JSa-9, which possessed broad-spectrum antibacterial and antifungal activities towards several pathogens;(3) to optimize the fermentation process for improved LI-F production by JSa-9;(4) to investigate the efficacy of LI-F for controlling Fusarium graminearum in vitro and in vivo. The results are described as follows:
     1. Screening and identification of the isolate of Bacillus spp. with a wide-spectrum antimicrobial activity. About119Bacillus spp. bacteria were isolated from different farmland and grassland soil samples collected from different six regions of China in terms of the divergence in morphology. Among them,9strains were found to have a broad-spectrum antimicrobial activity using the agar block and shaking flask method. Finally, the isolate JSa-9was determined for the next step of experimental strain because of its strongest and most broad-spectrum antibacterial and antifungal activities. According to the morphological and cultural characteristics, the physiological and biochemical properties, it was indicated that strain JSa-9was belong to the genus of Paenibacillus. From the16S rRNA sequence analysis (GenBank accession NO. EU882855), it was confirmed that strain JSa-9shared99%sequence similarity with that of Paenibacillus polymyxa. Therefore, strain JSa-9was designated as P. polymyxa JSa-9, and stored in China General Microbiology Culture Collection Center (CGMCC accession No:4314).
     2. Purification and identification of an antimicrobial glycoprotein from the culture supernatant of P. polymyxa JSa-9. A protein of about71.9kDa, isolated from a culture of strain JSa-9, exhibited wide-spectrum antibacterial and antifungal activities against M. luteus, B. cereus, S. aureus, E. coli, P. fluorescens, A. niger, P. expansum, A. oryzae, P. notatum and R. stolonifer. The purification procedure consisted of20~80%ammonium sulfate precipitation, ion-exchange chromatography on DEAE-Sephacel and Sephadex G-100column chromatography. The purified protein was characterized to be a glycoprotein, which contained53%of amino acids and28%of carbohydrate. The results also showed that large amounts of valine (30.2%), tyrosine (14.1%), lysine (12.6%), and threonine (11.5%) existed in the protein. Its N-terminal amino acid sequence was determined as Lys-Cys-Ala-Thr-Ile-Pro-Val-Val-Ile-Lys-His-Leu and the amino acid composition showed no significant homology with any known antagonistic proteins published so far using the BLAST network service in NCBI, so these results suggest that the purified antimicrobial glycoprotein from strain JSa-9may be novel.
     3. Extraction and identification of LI-F, polymyxin B6and DBP from the culture supernatant and cells of P. polymyxa JSa-9. Another two kinds of antimicrobial compounds were extracted from the fermentation broth of JSa-9using ethyl acetate and subsequently purified by high performance liquid chromatography. Four major distinct peaks were obtained in the elution time period through RP-HPLC. Of these fractions in the chromatogram, the fourth fraction was active against all the tested bacteria and fungi including M. luteus, B. cereus, S. aureus, E. coli, P. fluorescens, A.niger, P. expansum, A. oryzae, P. notatum and R. stolonifer, while three other fractions only exhibited similar inhibitory activity against fungi and Gram-positive bacteria namely M. luteus, B. cereus, S. aureus, A. niger, P. expansum, A. oryzae, P. notatum and R. stolonifer, but there was no activity against Gram-negative bacteria. By means of LC-MS and MS/MS, one of two antagonistic compounds with m/z278.89was determined as di-n-butyl phthalate. And another was characterized as a mixture of related peptides of molecular masses of883,897,911,947, and961Da, with the most likely structure of them determined to be a cyclic depsipeptide with an unusual GHPD bound to a free amino group. The fragmentation patterns for these peptides were consistent with the molecular structures of LI-F03a,03b,04a,04b, and05b, respectively.
     Additionally, three antagonistic substances were extracted from strain JSa-9cell pellets by methanol. Using HPLC method, two antagonistic fractions (peak A and B) were separated and collected from the methanol extract. One showed inhibition against both Gram-positive and Gram-negative bacteria (including M. luteus, B. cereus, S. aureus, E. coli and P. fluorescens), while the other was active against Gram-positive bacteria and fungi (M. luteus, B. cereus, S. aureus, A. niger, P. expansum, A. oryzae, P. notatum and R. stolonifer). Data from ESI-MS analysis showed that [M+H]+ion peaks were1219.72and901.55and915.51corresponding to peak A and B, respectively. The tentative sequences Dab-Thr-Dab-Dab-Thr-Dab-Dab in m/z1219.72, Val-Val-Thr-Asn-Ala in m/z901.55and Val-Val-Thr-Gln/Lys-Ala in m/z915.51were revealed by tandem mass spectrometry, respectively. They were found to be structurally related to polymyxin B6and the members of the LI-F family:LI-F04a and04b respectively by comparing their partial amino acid sequences with those from the literature. Amino acid analysis of peak A and B showed the presence of Dab, Thr, Phe, and Leu/Ile in a molar ratio of nearly6:2:1:1and Thr, Ala, Val, Asn, and Gln in a molar ratio of4:2:4:1:1, respectively. The data of infrared spectroscopy also illustrated that the two compounds with molecular masses of901and915Da were characterized as the linear lipopeptide analogs of antibiotics LI-F04a and04b respectively, while the other antimicrobial substance from peak A was identified as polymyxin B6.
     4. Optimization of fermentation process for improved LI-F production by P. polymyxa JSa-9. The medium screening experiment indicated that the strain JSa-9could obtain high yield of LI-F antibiotics in the Landy medium. The further PB design was undertaken to screen the key factors rapidly from the related13factors. By analyzing the statistical regression and the prediction profiler, the concentrations of KC1, FeSO4, MgSO4and CUSO4were found to be the most important factors for the production of LI-F. Based on the results of previous PB design, a four-factor six-level BBD was applied to optimize the LI-F production. The critical factors selected for the investigation were mentioned above. By analysis of the3D plots and their corresponding plots, the optimum values of the concentrations of KCl, FeSO4, MgSO4and CUSO4for obtaining the most production of Ll-F were1.1g/L,0.27mg/L,0g/L,0.64mg/L, respectively. The optimized cultivation conditions allowed LI-F production to be increased to733.9mg/L.
     5. Determination of the efficacy of LI-F for controlling the Fusarium graminearum in vitro and in vivo. LI-F antibiotics from P. polymyxa JSa-9could significantly inhibit the hypha growth and spore germination of Fusarium graminearum. The50%effective concentration (EC50) against Rhizopus slolonifer hyphae was fengycin13.69μg/mL. The concentration of LI-F antibiotics was30μg/mL when the conidia germination was completely inhibited and the germ tube did not appear. We clarified the application possibility of LI-F on the biological control of Fusaruim head blight of wheat by the test in vivo. The results indicated that the protective effect of LI-F was much better than its curative effect. Besides, LI-F at800μg/mL provided75.19%curative control efficacy against F. graminearum, which was much higher than that of MBC.
引文
1. Ash C, Priest F G, Collins M D. Molecular identification of rRNA group 3 Bacilli using PCR probe test. Proposal for the creation of a new genus Paenibacillus [J]. Antonie Van Leeuwenhoek,1993, 64:253-260.
    2. Lal S, Tabacchioni S. Ecology and biotechnological potential of Paenibacillus polymyxa:a minireview [J]. Indian Journal of Microbiology,2009,49:2-10.
    3. Timmusk S, West P V, Gow N A R,et al. Antagonistic effects of Paenibacillus polymyxa towards the oomycete plant pathogens phytophthora palmivora and pythium aphanidermatum. In:Timmusk 5. (ed.). Mechanism of action of the plant growth promoting bacterium Paenibacillus polymyxa [D], pp.1-28. Uppsala University, Uppsala, Sweden.
    4. Aryal U K, Hossain M K, Mridha M A U, et al. Effect of rhizobium inoculation on growth nodulation and nitrogenase activity of some legume tree species [J]. Journal of Plant Nutrition, 1999,22:1049-1059.
    5.姚乌兰,王云山,韩继刚,等.水稻生防菌株多粘类芽孢杆菌WY110抗菌蛋白的纯化及其基因克隆[J].遗传学报,2004,31:878-887.
    6. Timmusk S, Grantcharova N, Wagner E G H,et al. Paenibacillus polymyxa invades plant roots and forms biofilms [J]. Applied and Environmental Microbiology,2005,71:7292-7300.
    7. Ramazan A, Figen D, Adil A, et al. Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions [J]. Soil Biology and Biochemistry,2006,38:1482-1487.
    8. Ryu C M, Kim J, Choi O, et al. Natural of a root-associated Paenibacillus polymyxa from field-grown winter barley in Korea [J]. Journal of Microbiology Biotechnology,2005,15:984-991.
    9. Holl F B, Chanway C P, Turkington R, et al. Response of crested wheatgrass (Agropyron cristatum L.), perennial ryegrass(Lolium perenne) and white clover(Trifolium repens L.) to inoculation with Bacillus polymyxa. Soil Biology and Biochemistry,1988,20:19-24.
    10. Timmusk S, Nicander B, Granhall U, et al. Cytokinin production by Paenibacillus polymyxa [J]. Soil Biology and Biochemistry,1999,31:1847-1852.
    11. Raza W, Yang W, Shen Q R. Paenibacillus polymyxa:antibiotics, hydrolytic enzymes and hazard assessment [J]. Journal of Plant Pathology,2008,90:419-430.
    12. Lindberg T, Granhall U. Isolation and characterization of dinitrogen-fixing bacteria from the rhizosphere of temperate cereals and forage grasses [J]. Applied and Environmental Microbiology, 1984,48:684-689.
    13. Dutta S, Mishra A K. Dileep Kumar B S. Induction of systemic resistance against fusarial wilt in pigeon pea through interaction of plant growth promoting rhizobacteria and rhizobia [J].2008,40: 452-461.
    14. Ryu C M, Murphu J F, Mysore K S. Plant growth-promoting rhizobacteria systemically protect Arabidopsis thaliana against Cucumber mosaic virus by a salicylic acid and NPR1-independent and jasmonic acid-dependent signaling pathway [J]. Plant Journal,2004,39(3):381-392.
    15. Ryu C M, Kim J, Choi O, et al. Improvement of biological control capacity of Paenibacillus polymyxa E681 by seed pelleting on sesame [J]. Biological control,2006,39:282-289.
    16.徐玲,王伟,魏鸿刚,等.多粘类芽孢杆菌HY96-2对番茄青枯病的防治作用[J].中国生物防治,2006,22:216-220.
    17. Egamberdiyeva D. The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils [J]. Applied Soil Ecology,2007,36:184-189.
    18. Patra P, Natarajan K A. Surface chemical studies on selective separation of pyrite and galena in the presence of bacterial cells and metabolic products of Paenibacillus polymyxa [J]. Journal of Colloid and Interface Science,2006,298:720-729.
    19. Vijayalakshmi S P, Raichur A M. Bioflocculation of high-ash Indian coals using Paenibacillus polymyxa [J]. Internation Journal of Miner Process,2002,67:199-210.
    20. Bent E. Surface conlonization of lodgepole pine(Pinus contora Var latifolia) roots by Pseudomonas and Paenibacillus polymyxa under antibiotic conditions [J]. Plant Soil,2002,241: 187-196.
    21. Benedict R G, Langlykke A F. Antibiotic activity of Bacillus polymyxa [J]. Journal of Bacteriology, 1947,54:24-25.
    22. Catch J R, Jones T S, Wilkinson S. The chemistry of polymyxin A ('Aerosporin'). Isolation of the amino-acids; D-leucine, L-threonine, L-a, y-diaminobutyric acid and an unknown fatty acid [J]. Biochemistry Journal,1948,43:ⅹⅹⅶ.
    23. Catch J R, Jones T S, Wilkinson S. The chemistry of polymyxin A [J]. Annals of the New York Academy of Sciences,1949,51:917-923.
    24. Jones T S. The chemical basis for the classification of polymyxins [J]. Biochemistry Journal,1948, 43:ⅹⅹⅵ.
    25. Jones T S. Chemical evidence for the multiplicity of the antibiotics produced by Bacillus polymyxa [J]. Annals of the New York Academy of Sciences,1949,51:909-916.
    26. Ito M, Koyama Y. Jolipeptin, a new peptide antibiotic. Isolation, physicochemical and biological characteristics [J]. The Journal of Antibiotics (Tokyo),1972,25:304-308.
    27. Elverdam I, Larsen P, Lund E. Isolation and characterization of three new polymyxins in polymyxins B and E by high-performance liquid chromatography [J]. Journal of Chromatography, 1981,218:653-661.
    28. Horton J, Pankey G A. Polymyxin B, colistin, and sodium colistimethate [J]. Medical Clinics of North America,1982,66:135-142.
    29. Doi R H, McGloughlin M. Biology of Bacilli, Applications to Industry. Butterworth-Heinemann, Toronto, Ontario, Canada,1992.
    30. Pichard B, Larue J P, Thouvenot D. Gavaserin and saltavalin, new peptide antibiotics produced by Bacillus polymyxa [J]. FEMS Microbiology Letters,1995,133:215-218.
    31. Govaerts C, Orwa J, Van Schepdael A, et al. Characterization of polypeptide antibiotics of the polymyxin series by liquid chromatography electrospray ionization ion trap tandem mass spectrometry. Journal of Peptide Science,2002,7:45-55.
    32. Kavitha S, Senthilkumar S, Gnanamantckam S, et al. Isolation and partial characterization of antifungal protein from Bacillus polymyxa strain VLB16 [J]. Process Biochemistry,2005,40: 3236-3243.
    33. Piuri M, Sanchez-Rivas C, Ruzal S M. A novel antimicrobial activity of a. Paenibacillus polymyxa strain isolated from regioned fermented sausages [J]. Letters in Applied Microbiology,1998,27: 9-13.
    34. Beck H C, Hansen A M, Lauritsen F R. Novel pyrazine metabolites found in polymyxin biosynthesis by Paenibacillus polymyxa [J]. FEMS Microbiology Letters,2003,220:67-73.
    35. Lebuhn M, Heulin T, Hartmann A. Production of auxin and other indolic and phenolic compounds by Paenibacillus polymyxa strains isolated from different proximity to plant roots [J]. FEMS Microbiology Ecology,1997,22:325-334.
    36. Beatty P H, Jensen S E. Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola [J]. Canadian Journal of Microbiology,2002,48:159-169.
    37. Nakajima N, Chihara S, Koyama Y. A new antibiotic, gatavalin I. Isolation and characterization [J]. The Journal of Antibiotics (Tokyo),1972,25:243-247.
    38. Kajimura Y, Kaneda M. Fusaricidin A. A new depsipeptide antibiotic produced by Bacillus polymyxa KT-8, taxonomy, fermentation, isolation, structure elucidation and biological activity [J]. The Journal of Antibiotics (Tokyo),1996,49:129-135.
    39. Kajimura Y, Kaneda M. Fusaricidin B, C and D, new depsipeptide antibiotics produced by Bacillus polymyxa KT-8, isolation, structure elucidation and biological activity [J]. The Journal of Antibiotics (Tokyo),1997,50:220-228.
    40. Kurusu K, Ohba K. New peptide antibiotics LI-F03, F04, F05, F07, and F08, produced by Bacillus polymyxa I. Isolation and characterization [J]. The Journal of Antibiotics (Tokyo),1987,40: 1506-1514.
    41. Kuroda J, Fukai T, Konishi M, el al. LI-F antibiotics, a family of antifungal cyclic depsipeptides produced by Bacillus polymyxa L-1129 [J]. Heterocycles,2000,53:1533-1549.
    42. Kuroda J, Fukai T, Nomura T. Collision-induced dissociation of ring-opened cyclic depsipeptides with a guanidino group by electrospray ionization/ion trap mass spectrometry [J]. Journal of Mass Spectrometry,2001,36:30-37.
    43. Bell P H, Bone J F, English J P, el al. Chemical studies on polymyxin:comparison with aerosporin [J]. Annals of the New York Academy of Sciences,1949,51:897-908.
    44. Alipour M, Halwani M, Omri A, et al. Antimicrobial effectiveness of liposomal polymyxin B against resistant Gram-negative bacterial strains [J]. International Journal of Pharmaceutics,2008, 355:293-298.
    45. O'Dowd H, Kim B, Margolis P, et al. Preparation of tetra-Boc-protected polymyxin B nonapeptide [J]. Tetrahedron Letters,2007,48:2003-2005.
    46. Ogita A, Konishi Y, Borjihan B, et al. Synergistic fungicidal activities of polymyxin B and ionophores, and their dependence on direct disruptive action of polymyxin B on fungal vacuole [J]. The Journal of Antibiotics (Tokyo),2009,62:81-87.
    47. Kline T, Holub D, Therrien J, Leung T, et al. Synehesis and characterization of the colistin peptide polymyxin E1 and related antimicrobial peptides [J]. Journal of peptide Research,2001,57: 175-187.
    48. Evans M E, Feola D J, Rapp, R P. Poymyxin B sulfate and colistin:old antibiotic for emerging multiresistant Gram-negative bacteria [J]. Annals of Parmacotherapy,1999,33:960-967.
    49. Donald K M D. Current use for old antibacterial agents:polymyxins, rifampin, and aminoglycosides [J]. Infectious Disease Clinics of North America,2004,18:669-689.
    50.杨少波,刘训理.多粘类芽孢杆菌及其产生的生物活性物质研究进展[J].微生物学通报,2008,35:1621-1625.
    51. Murray F J, Tetrault P A, Kaufmann O W, et al. Circulin and antibiotic from an organism resembling Bacillus circulans [J]. Journal of Bacteriology,1949,57:305-312.
    52. He Z, Kisla D, Zhang L, et al. Isolation and identification of a Paenibacillus polymyxa strain that coproduces a novel antibiotic and polymyxin [J]. Applied and Environmental Microbiology,2007, 73:168-178.
    53. Choi S K, Park S Y, Kim R, et al. Identification and functional analysis of the fusaricidin biosynthetic gene of Paenibacillus polymyxa E681 [J]. Biochemical and Biophysical Research Communications,2008,365:89-95.
    54.周华强,谭芙蓉,周颖,等.多粘类芽孢杆菌极端嗜热多肽的纯化及性质研究[J].现代农药,2007,6:40-43.
    55.谢晶,葛绍荣,陶勇,等.多粘类芽孢杆菌BS04拮抗成分分离纯化及其特性[J].化学研究与应用,2004,16:775-777.
    56. Wang Z W, Liu X L. Medium optimization for antifungal active substance production from a newly islated Paenibacillus sp. using reponse surface methodology [J]. Bioresource Technology,2008, 99:8245-8251.
    57.李玉芬,陆平,周绪霞.多粘类芽孢杆菌β-葡聚糖酶特性及其基因克隆[J].浙江大学学报,2004,30:331-335.
    58. Mavingui P, Heulin T. In vitro chitinase and antifungal activity of a soil, rhizosphere and rhizoplane population of Bacillus polymyxa [J]. Soil Biology and Biochemistry,1994,26: 801-803.
    59. Cho K M, Hong S Y, Lee S M, et al. a CEL44c-man26A gene of endophytic Paenibacillus polymyxa GS01 has multi-glycosyl hydrolases in two catalytic domains [J]. Applied Microbiology and Biotechnology,2006,73:618-630.
    60. Lebedev A A, Shlyapnikov S V, Pustobaev V N, et al. Structural characterization of extracellular ribonuclease of Bacillus polymyxa:amino acid sequence determination and spatial structure prediction [J]. FEBS Letters,1996,392:105-109.
    61. Nielsen P, Sorensen J. Multi-target and medium-independent fungal antagonism by hydrolytic enzymes in Paenibacillus polymyxa and Bacillus pumilus strains from barley rhizosphere [J]. FEMS Microbiology Ecology,2004,22:183-192.
    62. Larson N K, Ismail B, Nielsen S S, et al. Activity of Bacillus polymyxa protease on components of the plasmin system in milk [J]. International Dairy Journal,2006,16:586-592.
    63.陈雪丽,郝再彬,王光华,等.多粘类芽孢杆菌BRF-1抗菌蛋白的分离纯化[J].中国生物防治,2007,23:156-159.
    64.宋永燕,李平,郑爱萍,等.生防细菌LM-3的鉴定及其抗菌蛋白的研究[J].四川大学学报,2006,43:1110-1115.
    65.石志琦,胡梁斌,于淑池,等.细菌P-FS08的鉴定及其对几种植物病原真菌的拮抗作用[J].南京农业大学学报,2005,28:48-52.
    66. Stern N J, Svetoch E A, Eruslanov B V, et al. Paenibacillus polymyxa purified bacteriocin as therapeutic control of Campylobacter jejuni in chickens [J]. Journal of Food Protection,2005,68: 1450-1453.
    67. Tenover F C. Mechanisms of antimicrobial resistance in bacteria [J]. American Journal of Infectious Control 2006.34:S3-S7.
    68. Clausell A, Garcia-Subirats M, Pujol M, et al. Gram-negative outer and inner membrance models: Insertion of cyclic cationic lipopeptides [J]. Journal of Physical Chemistry,2007,111:551-563.
    69. Endo A, Kakiki K, Misato T. Mechanism of action of the antifungal agent polyoxin D [J]. Journal of Bacteriology,1970,104:189-196.
    70. Bartnicki-Garcia S, Lippman E. Inhibition of Mucor rouxii by polyoxin D:effects on chitin synthetase and morphological development [J]. Journal of General Microbiology,1972,71: 301-309.
    71. Bowers B, Levin G, Cabib E. Effect of polyoxin D on chitin synthesis and septum formation in Saccharomyces cerevisiae [J]. Journal of Bacteriology,1974,119:564-575.
    72. Ishizaki H, Mitsuoka K, Kunoh H. Effect of polyoxin on fungi. I. Optical microscopic observations of mycelia of Alternaria kikuchiana Tanaka [J]. Annual Physiology Society of Japan,1974,40: 433-438.
    73. Ohta N, Kakiki K, Misato T. Studies on the mode of action of polyoxin D. effect of polyoxin D on the synthesis of fungal cell wall chitin [J]. Annual Physiology Society of Japan,1970,34: 1224-1234.
    74. Tamehiro N, Okamoto-Hosoya Y, Okamoto S, et al. Bacilysocin, a novel phospholipids antibiotic produced by Bacillus subtilis 168 [J]. Antimicrobial Agents and Chemotherapy,2002,46: 315-320.
    75.高学文,姚仕义,Huong Pham,等.Bacillus subtilis B2菌株产生的表面活性素变异体的纯化和鉴定[J].微生物学报,2003,43(5):647-652.
    76. Kim P I, Bai H, Bai D, et al. Purification and characterization of a lipopeptide produced by Bacillus thuringiensis CMB26 [J]. Journal of Applied Microbiology,2004,97:942-949.
    77. Galvez A, Maqueda M, Cordovilla P, et al. Characterization and biological activity against Naegleria fowleri of amonebicins produced by Bacillus licheniformis D-13 [J]. Antimicrobial Agents and Chemotherapy,1994,38:1314-1319.
    78. Hyronimus B, Le Marrec C, Urdaci M C. Coagulin, a bactereiocin-like inhibitory substance produced by Bacillus coagulans 14 [J]. Journal of Applied Microbiology,1998,85(1):42-50.
    79. Oscariz J. Characterization and mechanism of action of cerein 7, a bacteriocin produced by Bacillus cereus Bc7 [J]. Journal of Applied Microbiology,2000,89:361-369.
    80. Ongena M, Jacques P, Toure Y, et al. Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis [J]. Applied Microbiology and Biotechnology,2005,69: 29-38.
    81.毛亮,周怡,张婷婷,等.多黏性芽孢杆菌HT16抗真菌物质的分离及特性研究[J].食品科技,2009,34:2-5.
    82.孙雪文,周金燕,钟娟,等.ZK-1菌发酵液中抗真菌活性化合物的纯化与部分特性研究[J].微生物学报,2007,34(1):88-91.
    83. Pattnaik P. Purification and characterization of a bacteriocin-like compound (Lichenin) produced anaerobically by Bacillus licheniformis isolated from water buffalo [J]. Journal of Applied Microbiology,2001,91(4):636-642.
    84.裴韬,任大明,石皎.小麦赤霉病拮抗菌P72抗菌物质的分离纯化和性质研究[J].安徽农业科学,2009,37(6):2576-2577.
    85. Morikawa M, Ito M, Imanaka T. Isolation of a new surfactin producer Bacillus pumilus A-1, and cloning and nucleotide sequence of the regulator gene, psf-1 [J]. Journal of Fermentation and Bioengineering,1992,74:255-261.
    86. Galvez A, Maqueda M, Cordovilla P, et al. Characterization and biological activity against Naegleria fowleri of amonebicins produced by Bacillus licheniformis D-13 [J]. Antimicrobial Agents and Chemotherapy,1994,38:1314-1319.
    87. Cremin P A, Zeng L. High-throughput analysis of natrual product compound libraries by parallel LC-MS evaporative light scattering detection [J]. Analytical Chemistry,2002,74:5492-5500.
    88. Vater J, Kablitz B, Wilde C, et al. Matrix-assisted laser desorption ionization-time of flight mass spectrometry of lipopeptide biosurfactants in whole cells and culture filtrates of Bacillus subtilis C-1 isolated from petroleum sludge [J]. Applied and Environmental Microbiology,2002,68: 6210-6219.
    89. Selim S, Negrel J, Govaerts C, et al. Isolation and partial characterization of antagonistic peptides produced by Paenibacillus sp. strain B2 isolated from sorghum mycorrhizosphere [J]. Applied and Environmental Microbiology,2005,71:6501-6507.
    90.陈华,王丽,袁成凌,等.高效液相色谱-电喷雾质谱法分离和鉴定枯草芽孢杆菌产生的脂肽类化合物[J].色谱,2008,26:343-347.
    91. Bie X M, Lu Z X, Lu F X. Identification of fengycin homologues from Bacillus subtilis with ESI-MS/CID [J]. Journal of Microbiological Methods,2009,79:272-278.
    92. Anandaraj B, Vellaichamy A, Kachman M, et al. Co-production of two new peptide antibiotics by a bacterial isolate Paenibacillus alvei NP75 [J]. Biochemical and Biophysical Research Communications,2009,379:179-185.
    93. Kaifer P A. Flow NMR applications in combinatorial chemistry [J]. Current Opinion in Chemical Biology,2003,7:389-394.
    94. Dachtler M, Glaser T, Kohler K, et al. Combined HPLC-MS and HPLC-NMR on-line coupling for the separation and determination of lutein and zeaxanthin stereoisomers in spinach and in retina [J]. Analytical Chemistry,2001,73(3):667-674.
    95. Bringmann G, Messer K, Wolf K, et al. Dioncophylline E from Dioncophyllum thollonii, the first 7,3'-coupled dioncophyllaceous naphthylisoquinoline alkaloid [J]. Phytochemistry,2002,60(4): 389-397.
    96.陈中义,张杰,黄大坊.植物病害生防芽孢杆菌抗菌机制与遗传改良研究[J].植物病理学报,2003,33:97-103.
    97.赵爽,刘伟成,裘季燕,等.多粘类芽孢杆菌抗菌物质和防病机制之研究进展[J].中国农学通报,2008.24:347-350.
    98. Lipsitch M. The rise and fall of antimicrobial resisitance [J]. Trends in Microbiology,2001,9: 438-444.
    99. Katz E, Demain A L. The peptide antibiotics of Bacillus:chemistry, biogenesis and possible role [J]. Bacteriological Reviews,1977,41:449-475.
    100. Riley M A, Wertz J E. Bacteriocins:evolution, ecology and application [J]. Annual Review Microbiology,2002,56:117-137.
    101. McAuliffe O, Ross R P, Hill C. Lantibiotics:structure, biosynthesis and mode of action [J]. FEMS Microbiology Review,2001,25:285-308.
    102. Nes I, Diep D, Havarstein L, et al. Biosynthesis of bacteriocins in lactic acid bacteria [J]. Antonie Van Leeuwenhoek,1996,70(2):113-128.
    103. Cintas L M, Casaus P, Fernandez M F, et al. Comparative antimicrobial activity of enterocin L50, pediocin PA-1, nisin A and lactocin S against spoilage and foodborne pathogenic bacteria [J]. Food Microbiology,1998,15(3):289-298
    104. Stiles M E, Hastings J W. Bacteriocins production by lactic acid bacteria:potential for use in meat preservation [J]. Trends in Food Science & Technology,1991,2:247-251.
    105.雷阳.浅述可用于食品防腐剂的微生物物质[J].贵州畜牧兽医,2002,26(04):16-17.
    106. Delves-Broughton J, Blackburn P, Evans R, et al. Applications of the bacteriocins, nisin [J]. Antonie Van Leeuwenhoek,1996,69(2):193-202.
    107.胡国良,黄兴国,杨承剑,等.抗菌肽的特性及其在畜牧生产中的应用[J].广东畜牧兽医科技,2007,32(2):17-20.
    108.陈晓生,刘为民,温刘发,等.抗菌肽替代抗生素对肉鸭生产性能及血清代谢激素水平的影响[J].中国家禽,2005,27(5):7-9.
    1. Riley M A, Wertz J E. Bacteriocins:evolution, ecology and application [J]. Annual Review Microbiology,2002,56:117-137.
    2. Katz E, Demain A L. The peptide antibiotics of Bacillus:chemistry, biogenesis and possible role [J]. Bacteriological Reviews,1977,41:449-475.
    3. Jansen E F, Hirschmann D J. Subtilin, an antibacterial product of Bacillus subtilis culturing conditions and properties [J]. Archive Biochemistry,1944,4:297-309.
    4. Kim P I, Chung K C. Production of an antifungal protein for control of Colletotrichum lagenarium by Bacillus amyloliquefaciens MET0908 [J]. FEMS Microbiology Letters,2004,234:177-183.
    5. Morikawa M, Ito M, Imanaka T. Isolation of a new surfactin producer Bacillus pumilus A-1, and cloning and nucleotide sequence of the regulator gene, psf-1 [J]. Journal of Fermentation and Bioengineering,1992,74:255-261.
    6. Galvez A, Maqueda M, Cordovilla P, et al. Characterization and biological activity against Naegleria fowleri of amonebicins produced by Bacillus licheniformis D-13 [J]. Antimicrobial Agents and Chemotherapy,1994,38:1314-1319.
    7. Oscariz J. Characterization and mechanism of action of cerein 7, a bacteriocin produced by Bacillus cereus Bc7 [J]. Journal of Applied Microbiology,2000,89:361-369.
    8. Beatty P H, Jensen S E. Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola [J]. Canadian Journal of Microbiology,2002,48:159-169.
    9. Perez C, Suare C, Castro G R. Antimicrobial activity determined in strains of Bacillus circulans cluster [J]. Folia of Microbiology,1993,38:25-28.
    10.沈萍,范秀容,李广武.微生物学实验(第三版)[M].北京:高等教育出版社,1999.
    11.东秀珠,蔡妙英.常见细菌系统鉴定手册(第一版)[M].北京:科学出版社,2001.
    12.许其放,黄秀梨.八株芽孢杆菌菌株的分类及固氮活性的测定[J].微生物学通报,1998,25(5):253-258.
    13.蔡妙英,刘聿太,战立克.芽孢杆菌属(译本)[M].北京:农业出版社,1983.
    14. Deng Y, Lu Z X, Lu F X, et al. Study on an antimicrobial protein produced by Paenibacillus polymyxa JSa-9 isolated from soil [J]. World Journal of Microbiology Biotechnology,2011,27: 1803-1807.
    15. Vaara M. Antibiotic-supersusceptible mutants of Escherichia coli and Salmonella typhimurium [J]. Antimicrobial Agents and Chemotherapy,1993,37:2255-2260.
    16. Nikaido H. Multidrug efflux pumps of gram-negative bacteria [J]. Journal of Bacteriology,1996, 178:5853-5859.
    17. Stein T. Bacillus subtilis antibiotics:structures, syntheses and specific functions [J]. Molecular Microbiology,2005,56:845-857.
    18. Lin J, Akiba M, Sahin O, et al. CmeR functions as a transcriptional repressor for the multidrug efflux pumu CmeABC in Campylobacter jejuni [J]. Antimicrobial Agents and Chemotherapy, 2005,49:1067-1075.
    19.焦振泉,刘秀梅.细菌分类和鉴定的新热点16S-23S rDNA区间[J].微生物通报,2001,28(1):85-89.
    20.温博海.立克次体16S rRNA基因序列分析[J].中国人兽共患病杂志,1999,15(6):9-10.
    21. Ash C, Priest F G, Collins M D. Molecular identification of rRNA group 3 Bacilli using PCR probe test. Proposal for the creation of a new genus Paenibacillus [J]. Antonie Van Leeuwenhoek,1993, 64:253-260.
    22. Ryu C M, Kim J, Choi O, et al. Improvement of biological control capacity of Paenibacillus polymyxa E681 by seed pelleting on sesame [J]. Biological control,2006,39(3):282-289.
    23. Egamberdiyeva D. The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils [J]. Applied Soil Ecology,2007,36(2):184-189.
    24. Partha P, Natarajan K A. Surface chemical studies on selective separation of pyrite and galena in the presence of bacterial cells and metabolic products of Paenibacillus polymyxa [J]. Journal of Colloid and Interface Science,2006,298(2):720-729.
    25. Vijayalakshmi S P, Raichur A M. Bioflocculation of high-ash Indian coals using Paenibacillus polymyxa [J]. International Journal of Miner Process,2002,67:199-210.
    26.杨少波,刘训理.多粘类芽孢杆菌及其产生的生物活性物质研究进展[J].微生物学通报,2008,35(10):1621-1625.
    27.赵爽,刘伟成,裘季燕,等.多粘类芽孢杆菌抗菌物质和防病机制之研究进展[J].中国农学通报,2008,24(7):347-350.
    1. Ramazan A, Figen D, Adil A, et al. Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions [J]. Soil Biol Biochem,2006, 38:1482-1487.
    2. Ito M, Koyama Y. Jolipeptin, a new peptide antibiotic. Isolation, physicochemical and biological characteristics [J]. The Journal of Antibiotics (Tokyo),1972,25:304-308.
    3. Nakajima N, Chihara S, Koyama Y. A new antibiotic, gatavalin I. Isolation and characterization [J]. The Journal of Antibiotics (Tokyo),1972,25:243-247.
    4. Pichard B, Larue J P, Thouvenot D. Gavaserin and saltavalin, new peptide antibiotics produced by Bacilluspolymyxa [J]. FEMS Microbiology Letters,1995,133:215-218.
    5. Beatty P H, Jensen S E. Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola [J]. Canadian Journal of Microbiology,2002,48:159-169.
    6. He Z G, Kisla D, Zhang L W, et al. Isolation and identification of a Paenibacillus polymyxa strain that coproduces a novel lantibiotic and polymyxin [J]. Applied and Environmental Microbiology, 2007,73:168-178.
    7.姚乌兰,王云山,韩继刚,等.水稻生防菌株多粘类芽孢杆菌WY110抗菌蛋白的纯化及其基因克隆[J].遗传学报,2004,31:879-887.
    8. Kavitha S, Senthilkumar S, Gnanamanickam S, et al. Isolation and partial characterization of antifungal protein from Bacillus polymyxa VLB16 [J]. Process Biochem,2005,40:3236-3243.
    9.宋永燕,李平,郑爱萍,等.生防细菌LM-3的鉴定及其抗菌蛋白的研究[J].四川大学学报,2006,43:1110-1115.
    10.赵德立,曾林子,李晖,等.多粘类芽孢杆菌JW-725抗茵活性物质及其发酵条件的初步研究[J].植物保护,2006,32:47-50.
    11.陈雪丽,郝再彬,王光华,等.多粘类芽孢杆菌BRF-1抗菌蛋白的分离纯化[J].中国生物防治,2007,23:156-159.
    12.沈萍,范秀容,李广武.微生物学实验(第三版)[M].北京:高等教育出版社,1999.
    13. Tagg J R, McGiven A R. Assay system for bacteriocins [J]. Journal of Applied Microbiology,1971, 21:943-948.
    14. Bradford M M. A rapid and sensitive method for the quantity of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Anal Biochem,1976,72:248-254.
    15. LaemmLi U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 [J]. Nature,1970,227:680-685.
    16.王玉琪,巫光宏,林先丰,等.多糖和糖蛋白聚丙烯酰胺凝胶电泳染色方法的改进[J].理学通讯,2009,45:169-172.
    17. Dubio M, Gilles K A, Hamilton J K, et al. Colorimetric method for determination of sugars and related substances [J]. Anal Chem,1956,28:350-352.
    18. Berger L R, Reynold D M. The chitinase system of a strain of Streptomyces griseus [J]. Biochim Biophys Acta,1958,29:522-534.
    19. Borriss R, Zemek J, Augustin J, et al. Beta-1,3-1,4-glucannse in spore-forming microorganisms. Ⅱ. Production of beta-glucan hydrolases by various Bacillus species [J]. Zentralbl Bakteriol,1980,135: 435-442.
    20. Cantwell B A, McConnell D J. Molecular cloning and expression of a Bacillus subtilis β-glucanase gene in Escherichia coli [J]. Gene,1983,23:211-219.
    21.王璋.食品酶学[M].中国轻工业出版社,1990.
    22.陆健.蛋白质纯化技术及应用[M].化学工业出版社,2005.
    1. Beatty P H, Jensen S E. Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola [J]. Canadian Journal of Microbiology,2002,48:159-169.
    2 Ito M, Koyama Y. Jolipeptin, a new peptide antibiotic. Isolation, physicochemical and biological characteristics [J]. The Journal of Antibiotics (Tokyo),1972,25:304-308.
    3. Kajimura Y, Kaneda M. Fusaricidin A. A new depsipeptide antibiotic produced by Bacillus polymyxa KT-8, taxonomy, fermentation, isolation, structure elucidation and biological activity [J]. The Journal of Antibiotics (Tokyo),1996,49:129-135.
    4. Kajimura Y, Kaneda M. Fusaricidin B, C and D, new depsipeptide antibiotics produced by Bacillus polymyxa KT-8, isolation, structure elucidation and biological activity [J]. The Journal of Antibiotics (Tokyo),1997,50:220-228.
    5. Kurusu K, Ohba K. New peptide antibiotics LI-F03, F04, F05, F07, and F08, produced by Bacillus polymyxa I. Isolation and characterization [J]. The Journal of Antibiotics (Tokyo),1987,40: 1506-1514.
    6. Nakajima N, Chihara S, Koyama Y. A new antibiotic, gatavalin I. Isolation and characterization [J]. The Journal of Antibiotics (Tokyo),1972,25:243-247.
    7. Pichard B, Larue J P, Thouvenot D. Gavaserin and saltavalin, new peptide antibiotics produced by Bacillus polymyxa [J]. FEMS Microbiology Letters,1995,133:215-218.
    8. Choi S K, Park S Y, Kim R, et al. Identification and functional analysis of the fusaricidin biosynthetic gene of Paenibacillus polymyxa E681 [J]. Biochemical and Biophysical Research Communications,2008,365:89-95.
    9.杨世忠,牟伯中,吕应年,等.环脂肽氨基酸顺序的质谱测定[J].化学学报,2004,21:2200-2204.
    10.吴世容,李志良,李根容,等.生物质谱的研究及其应用[J].重庆大学学报,2004,27:123-127.
    11. Akpa E, Jacques P, Wathelet B, et al. Influence of culture conditions on lipopeptide production by Bacillus subtilis [J]. Applied Biochemistry and Biotechnology,2001,93:551-561.
    12. Davis D A, Lynch H C, Varley J. The production of surfactin in batch culture by Bacillus subtilis ATCC21332 is strongly influenced by the conditions of nitrogen metabolism [J]. Enzyme Technology,1999,25:329-332.
    13. Bie X M, Lu Z X, Lu F X. Identification of fengycin homologues from Bacillus subtilis with ESI-MS/CID [J]. Journal of Microbiological Methods,2009,79:272-278.
    14. Sandrin C, Peypoux F, Michel G. Co-production of surfactin and iturin A, lipopeptides with surfactant and antifungal properties by Bacillus subtilis [J]. Applied Biochemistry and Biotechnology,1990,12:370-376.
    15. Landy M, Warren GH, Rosenman SB, et al. An antibiotic from Bacillus subtilis active against pathogenic fungi [J]. Proceedings of the Society for Experimental Biology and Medicine,1948,67: 539-41.
    16. McVay C S, Rolfe R D. In vitro and in vivo activities of nitazoxanide against Clostridium difficile [J]. Antimicrobial Agents and Chemotherapy,2000,44:2254-2258.
    17. Kuroda J, Fukai T, Nomura T. Collision-induced dissociation of ring-opened cyclic depsipeptides with a guanidino group by electrospray ionization/ion trap mass spectrometry [J]. Journal of Mass Spectrometry,2001,36:30-37.
    18. Govaerts C, Orwa J, Van Schepdael A, et al. Characterization of polypeptide antibiotics of the polymyxin series by liquid chromatography electrospray ionization ion trap tandem mass spectrometry [J]. Journal of Peptide Science,2002,7:45-55.
    19. Lee Y K, Senthilkumar M, Kim J H, et al. Purification and partial characterization of antifungal metabolite from Paenibacillus lentimorbus WJ5 [J]. World Journal of Microbiology and Biotechnology,2008,24:1591-1597.
    20.刘向阳,杨世忠,牟伯中,等.微生物脂肽的结构[J].生物技术通报,2005,4:18-27.
    21.吕应年,杨世忠,牟伯中,等.脂肽的分离纯化与结构研究[J].微生物学通报,2005,1:67-73.
    22.毛亮,周怡,张婷婷,等.多黏性芽孢杆菌HT16抗真菌物质的分离及特性研究[J].食品科技,2009,34:2-5.
    23.程智慧,佟飞,金瑞.大蒜秸秆水浸液的抑菌作用和抑菌成分初步分析[J].西北植物学报,2008,28:324-330.
    24.宋瑞清,高海燕.炭团菌提取物对樟子松枯梢病菌的抑菌活性及稳定性[J].微生物学报,2009,49:910-917.
    25. Roy R N, Laskar S, Sen S K. Dibutyl phthalate, the bioactive compound produced by Streptomyces albidoflavus 321.2 [J]. Microbiological Research,2006,161:121-126.
    1. Raza W, Wu H S, Shen Q R. Use of response surface methodology to evaluate the effect of metal ions (Ca2+, Ni2+, Mn2+,Cu2+) on production of antifungal compounds by Paenibacillus polymyxa [J]. Bioresource Technology,2010,10:1904-1912.
    2. Yu X, Hallett S G, Sheppard J, et al. Application of the Plackett-Burman experimental design to evaluate nutritional requirements for the production of Colletotrichum coccodes spores [J]. Applied Microbiology and Biotechnology,1997,47:301-305.
    3. Miller A, Sitter R R. Using the folded-over 12-run Plackett-Burman design to consider interactions [J]. Technometrics,2001,43:44-55.
    4. Reddy P R M, Reddy G, Seenayya G. Production of thermostable pullulanase by Clostridium thermosulfurogenes SV2 in solid-state fermentation:optimization of nutrients levels using response surface methodology [J]. Bioprocess Engineering,1999,21:497-503.
    5. Annadurai G. Design of optimum response surface experiments for adsorption of direct dye to chitosan [J]. Bioprocess Engineering,2000,23:451-455.
    6. Ambat P, Ayyanna C. Optimizing medium constituents and fermentation conditions for citric acid production from palmyra jaggery using response surface method [J]. World Journal of Microbiology and Biotechnology,2001,17:331-335.
    7. Chen Q H, He G Q, Mokhtar A M A. Optimization of medium composition for the production of elastase by Bacillus sp. EL31410 with response surface methodology [J]. Enzyme and Microbial Technology,2002,30:667-672.
    8. Lai L S T, Pan C C, Tzeng B K. The influence of medium design on lovastatin production and pellet formation with a high-producing mutant of Aspergillus terreus in submerged cultures [J]. Process Biochemistry,2003,38:1314-1326.
    9. Ratnam B V V, Narasimha Rao M, Damodar Rao M, et al. Optimization of fermentation conditions for the production of ethanol from sago starch using response surface methodology [J]. World Journal of Microbiology and Biotechnology,2003,19:523-526.
    10. Davis D A, Lynch H C, Varley J. The production of surfactin in batch culture by Bacillus subtilis ATCC21332 is strongly influenced by the conditions of nitrogen metabolism [J]. Enzyme and Microbial Technology,1999,25:329-332.
    11. Akpa E, Jacques P, Wathelet B, et al. Influence of culture conditions on lipopetide production by Bacillus subtilis [J]. Applied Biochemistry and Biotechnology,2001,93:551-561.
    12.曹小红,李凡,蔡萍,等Bacillus natto TK-1产脂肽发酵条件的优化[J].食品工业科技,2006,4:91-93.
    13. Sen R, Swaminathan T. Application of response surface methodology to evaluate the optimum environmental conditions for the enhanced production of surfactin [J]. Applied Microbiology and Biotechnology,1997,74:358-363.
    14. Sen R. Response surface optimization of the critical media components for the production of surfactin [J]. Journal of Chemical Technology and Biotechnology,1997,68:263-270.
    15.王智文,刘训理,何亮,等.Cp-S316菌株发酵培养基的优化及其对烟草赤星病菌的抑制作用[J].农业环境科学学报,2007,26:723-728.
    16.刘瑞君,李凤珍.多粘芽孢杆菌204产生的高粘性多糖性质的研究[J].微生物学杂志,1990,4:34-38.
    1. Mcmullen M, Jones R, Gallenberg D. Scab of wheat and barley:A re-emerging disease [J]. Plant Disease,1997,81:1340-1348.
    2.徐雍率,陈利锋.小麦赤霉病防治理论研究与实践[M].南京,江苏科学技术出版社,1993.
    3.段双科,李宁,吴兴元,等.小麦赤霉病菌种保存及致病性研究[J].西北农业学报,2003,12:38-42.
    4.胡光荣,赵纯森,廖玉才.我国小麦禾谷镰刀菌(Fusarium graminearum)营养体亲合性与致病性研究[J].植物病理学报,2003:33:379-380.
    5.王永礼.小麦赤霉病的药剂防治研究[J].现代农业科技,2005,7:19.
    6. Cook R J. Making greater use of introduced microorganisms for biological control of plant pathogens [J]. Annual Review of Phytopathology,1993,31:53-80.
    7.杨慧勇,李飞凤,陆琼娴,等.拮抗菌株AFR0406对小麦赤霉病菌和纹枯病菌的生物活性测定[J].江苏农业科学,2006,6:142-144.
    8. Khan N I, Schisler D A, Boehm M J, et al. Selection and evaluation of microorganisms for biocontrol of Fusarium head blight of wheat incited by Gibberella zeae [J]. Plant disease,2001,85: 1253-1258.
    9.徐广军.枯草芽孢杆菌BS(3-1)对小麦赤霉病(Fusarium graminearum)的生物防治研究[D].四川农业大学,2003.
    10. Tagg J R, McGiven A R. Assay system for bacteriocins [J]. Journal of Applied Microbiology,1971, 21:943-948.
    11. Chen C J, Wang J X, Luo Q Q, et al. Characterization and fitness of carbendazim-resistant strains of Fusarium graminearum (Wheat scab) [J]. Pest Management Science,2007,63:1201-1207.
    12. Barratt B I P, Howarth F G, Withers T M, et al. Progress in risk assessment for classical biological control [J]. Biological Control,2010,52:245-254.
    13. Timmusk S, Grantcharova N, Wagner E G H,et al. Paenibacillus polymyxa invades plant roots and forms biofilms [J]. Applied and Environmental Microbiology,2005,71:7292-7300.
    14. Lal S, Tabacchioni S. Ecology and biotechnological potential of Paenibacillus polymyxa:a minireview [J]. Indian Journal of Microbiology,2009,49:2-10.
    15. Beatty P H, Jensen S E. Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola [J]. Canadian Journal of Microbiology,2002,48:159-169.
    16.周明国,王建新.禾谷镰孢菌对多菌灵的敏感性基线及抗药性菌株生物学性质研究[J].植物病理学报,2001,31:365-370.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700