用户名: 密码: 验证码:
铝合金T形筋挤压成形数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝合金T形筋板件广泛应用于实际生产中,按传统切削工艺,既耗费工时,浪费材料,且强度不够。采用挤压成形工艺生产T形筋,所得筋无需再进行加工。大大提高T形筋的综合机械性能,而且加工效率和材料利用率很高,经济效益十分显著。
     利用有限元模拟分析软件DEFORM-3D对T形筋的挤压成形进行了数值模拟分析,得到其在不同压下量下等效应力图、等效应变图,damage图和载荷一行程曲线图。以研究T形筋挤压成形时金属流动规律,以及成形时容易出现缺陷的地方。
     选择不同温度、摩擦因子、筋的高宽比、腹板宽度参数进行多次模拟。根据模拟结果对比分析以上参数对成形工艺影响。随着T形筋高宽比增大,其damage值会增大,易出现表面裂纹缺陷。随着腹板宽度增大,T形筋成形载荷也会增大,载荷大小与腹板宽度成线性关系。宽腹板T形筋采用整体加载,有金属不易流动、T形筋难成形,载荷过大等缺陷,必须采用新工艺。
     宽腹板T形筋进行无约束局部加载时,1/b(冲头宽度与筋宽的比值)较小时,坯料主要发生剪切变形,腹板两端翘起,筋腔无法得到完全充填,随着1/b增大,坯料由剪切变形向镦挤变形转换,筋腔充填深度越来越大。当1/b=15时,筋腔完全得到充填,此时需要载荷为520KN,没有达到减小载荷预期效果。
     宽腹板T形筋进行有约束局部加载时,冲头宽度1=9mm时,筋腔得到完全充填,其载荷为102KN,远小于整体加载时载荷930KN,达到减小载荷目的。随着过渡区宽度增大,冲头与约束垫板间隙也越大,出现金属反挤现象也越明显。
T-shape rib of Al alloy is applied to practice production. Adopting tradition cutting method, decrease work efficiency, waste material and intensity of T-shaped rib is not enough. Adopting extrusion forming, T-shaped rib of Al alloy need not to be processed again. Adopting extrusion forming, enhance intensity of T-shaped rib, work efficiency and material using ratio, economy benefit is very high.
     Adopting 3D finite element simulation software DEF0RM-3D, the simulation is employed to examine the extrusion forming process in T-shaped rib of Al alloy. The effective stress distribution, the effective strain distribution, damage and the load-stroke curve of the whole process are got. It is used to research rule of metal flow, where disfigurement appear in extrusion forming of Al alloy T-shaped rib and the load of extrusion forming.
     Select temperature, friction coefficient, high-wide ratio of rib, helix angle and width of board parameters, the extrusion process in T-shaped rib is simulated frequently. Based on the simulation result, analyze parameters effect on the extrusion forming process in T-shaped rib. With height of rib accretion, damage of rib is accretion, exterior crack is easy appearance. With width of board accretion, the load of T-shaped rib is also accretion, the load and width of board are linearity connection. Adopting whole loading in T-shaped of width board, there is metal flowing difficulty, excessive high load. It must adopt new technology.
     Adopting inhibitive local loading in width board T-shape rib, 1/b ( width of punch and width of rib ratio) is low, the metal is shearing deformation, exterior of board is tilted up, the cavity of rib can't be filled with metal entirety. With 1/b accretion, the deformation mode of metal transforms gradually from shearing to extrusion, the height of rib cavity filled enhance gradually. When 1/b is 15, cavity of rib is filled with metal completely, the load is 520KN. It doesn't achieve anticipate decreasing load effect.
     Adopting nonrestraint local loading in width board T-shaped rib, the width of punch is 9mm, the rib cavity is filled completely, the load which is 102KN is much lower than the load of whole loading which is 930KN. With interim width accretion, clearance of the punch and inhibit board is also accretion, converse extrusion appear in evidence.
引文
[1]温景林.金属的挤压与拉拔工艺学.东北大学出版社,2003.
    [2]马怀宪.金属塑性加工学.冶金工业出版社,2006.
    [3]H.Keife.KUSE-A Computer Program for 2D Material Forming Analysis.Journal of Material Processing Technology.1993,36(3):321-337.
    [4]W.B.Bae,D.YYang.An Upper Bound Analysis of the Backward Extrusion of Internally Elliptic-shaped rubes form Round Billets.Journal of Materials Processing Technology.1992,30(1):13-30.
    [5]B.O.Oyekanmi,A,N.Bramiey,F.H.Osman.The Validtion of the Upper Bound Element Technology(UBET)in the Prediction of Strain Distribution in Forgings.Journal of Materials Processing Technology.1992,30(2):231-244.
    [6]R.Kopp,K.Karhausen,R.Schneiders.Application of FEM to Prediction of Microstructure in Hot Forming of Metals.Advanced Technology of Plasticity 1993-Proc.of the 4th ICTR,Beijing,1993:1203-1211.
    [7]H.WShin,D.WKim,N.kim.A Simplified Three-dimensional Finite-elementAnalysis of the Non-axisymmetric Extrusion Process.Journal of Materials Processing Technology.1993,38(3):567-587.
    [8]Q.Yang,S.Qu,Qzhu,et al.FE Simulation Method for a Forging System.Journal of Materials Processing Technology.1997,63(1-3):678-683.
    [9]洪深泽.挤压工艺及模具设计.机械工业出版社,1996.
    [10]吴诗惇.冷温挤压技术.国防工业出版社,1995.
    [11]朱祖芳.铝合金阳极氧化与表面处理.化学工业出版社,2004.
    [12]司乃潮等.有色金属材料及制备.化学工业出版社,2006.
    [13]潘复生等.铝合金及应用.化学工业出版社,2006.
    [14]M.Kiuchi and M.Hoshino.Computer Aided Simulations of Complex Three-dimensional Extrusion.Advanced Tecbnology of Plasticity,1990,1:387-394.
    [15]Shivpuri R,MominS.Computer Aided Design of DiestoControl Dimensional Quality of Extruded Shaped,Annals of the CIRP,1992,41:275.
    [16]Hyun-Woo Shin,Dong-Woo Kim and Naksoo Kim.A simplified three-dimensional finite-element analysis of the non-axisymmetric extrusion processes.Journal of materials processing technology[J],1993,38:567-587.
    [17]Vadim L.Berezlmoy.Friction-assissted extrusion as an alternative to the indirect and direct extrusion of hard aluminum alloys.Light metal age[J],1997,55(3-4):8-13,
    [18]Pradip K.Saha.Thermodynamics and tribology in aluminum extrusion.Wear[J],1998,218(2):179-190.
    [19]Yang D.Y,Park K.,Kang Y.S.Integrated Finite Element Simulation for the Hot Extrusion of Complicated Al Alloy Profiles.Journal of Materials Processing Technology.2001,111(1-3):25-30
    [20]Lof.J.,Blokhuis.Y.FEM Simulations of the Extrusion of Complex Thin-walled Aluminium Sections.Journal of Materials Processing Technology 2002,122(2-3):344-354.
    [21]洪深泽.杯形件反挤压的成形极限.锻压机械,1989,24(6):61
    [22]蔡薇,柳瑞清高温挤压变形的模拟实验研究,锻压技术.1999,(1):8-9.
    [23]刘汉武等.铝型材挤压分流组合模有限元分析与计算,模具工业,1999,4:9-11.
    [24]刘汉武等.基于即遗传算法的铝型材挤压模具优化设计.哈尔滨工业大学学报.2000,32(4):86-88
    [25]周飞等.铝型材挤压过程有限元数值模拟.中国有色金属学报,1998,8(4):637-642.
    [26]叶治平.铝型材挤压模的分流结构与强度校核轻合金加工技术,1994,22(1):23-27.
    [27]于沪平等.平面分流焊合模成型过程的数值模拟.锻压技术,1999,24(5):9-11.
    [28]于冬镇.多孔空心铝型材挤压模的优化设计.轻合金加工技术,1996,24(12):23-25.
    [49]解英艳等.铝型材挤压模具工作带长度的合理选择与计算.机械设计与制造,1995,3:25-27.
    [30]闫洪等.铝型材挤压模CAD/CAE/CAM研究进展.轻合金加工技术,1999,27(10):1-4.
    [31]周杰等.塑性有限元法中的局部节点重定位技术.锻压技术,2001,3:6-8.
    [33]郝南海等.应用有限元法校核铝型材挤压模具工作带设计.太原重型机械学院学报,1996,17(4):310-312.
    [34]傅永华.有限元分析基础.武汉大学出版社,2003.
    [35]李人宪.有限元法基础.国防工业出版社,2002.
    [36]丁林高.TC4合金热扭压成形数值模拟.合肥工业大学硕士学位论文.
    [37]刘建生等.金属塑性加工有限元模拟技术与应用.冶金工业出版社,2003.
    [38]谢贻权等,弹性和塑性力学中的有限单元法.机械工业出版社,1981.
    [39]李萍.Ti-15-3 合金热反挤成形的数值模拟与组织预报.哈尔滨工业大学学报.2001,6:50-51.
    [40]杜平安.有限元网格划分的基木原则,机械设计与制造[J],2000,1(2):34-36.
    [41]吴跃江等.局部加载条件对筋板类构件成形材料流动影响的模拟研究[J].中国机械工程增刊,2006,17(10):12-15.
    [42]苏德权等.铝型材挤压温度范围的选择[J].锻压技术,1995,6:12-14.
    [43]温景林.金属挤压与拉拔工艺学[M].东北大学出版社,2003.
    [44]周明智等,方盒形件精密挤压成形三维弹塑性有限元模拟[J].合肥工业大学学报(自然科学版),2005,28(8):881-884.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700