用户名: 密码: 验证码:
UV-B增强及控释氮肥对转基因水稻生长和甲烷排放影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻是主要粮食作物之一,为全球近一半人口提供粮食。中波紫外辐射(UV-B)增强对水稻的影响广受关注;人口的增加和耕地面积的减少是影响粮食安全的主要矛盾,增施化肥是提高粮食产量的重要措施。本研究通过大田试验、盆栽试验及室内分析等方法,研究了UV-B增强和控释氮肥对抗除草剂转基因水稻生长及产量、光合特性、甲烷排放和水稻土甲烷产生潜力等方面的影响。开展本研究对于进一步完善转基因水稻生态风险评价的内容、指标和体系等方面具有重要的理论和实践意义。主要研究结果如下:
     (1)水稻生长及产量
     UV-B增强抑制了转基因水稻及其亲本常规水稻叶面积、分蘖数、株高、地上部和地下部生物量,最终造成水稻产量及其构成因素(主穗长、有效穗数、实粒数、结实率、千粒重等)的下降。
     控释氮肥处理的水稻叶面积和株高,于孕穗期前低于尿素分施处理,而孕穗期后逐渐接近。控释氮肥处理的水稻分蘖数于分蘖末期前少于尿素分施处理,分蘖末期后肥料处理间差距缩小。控释氮肥可促进水稻地上部、地下部生物量,从而促进水稻产量及其构成因素(有效穗数、实粒数、千粒重等)的增长。
     (2)水稻光合生理特性
     与对照相比,在分蘖期、扬花期及完熟期,UV-B增强抑制了转基因水稻及其亲本水稻剑叶的饱和光强净光合速率、蒸腾速率和单叶水分利用率;抑制了扬花期两种水稻剑叶的气孔导度。UV-B增强抑制了转基因及其亲本水稻分蘖期、扬花期及完熟期内剑叶净光合速率、气孔导度、蒸腾速率和单叶水分利用率的日变化以及分蘖期它们对光合有效辐射的响应。非直角双曲线Farquhar模型模拟的光合参数显示,在分蘖期,UV-B增强抑制了两种水稻的最大净光合速率(Pnmax)、暗呼吸速率(Rd)、光合补偿点(LCP)和光合饱和点(LSP)。
     与尿素相比,在分蘖期、扬花期及完熟期,控释氮肥提高了转基因及其亲本水稻剑叶饱和光强净光合速率、蒸腾速率和单叶水分利用率:提高了扬花期水稻剑叶的气孔导度。控释氮肥提高了转基因及其亲本水稻分蘖期、扬花期及完熟期内剑叶净光合速率、气孔导度、蒸腾速率和水分利用率的日变化以及分蘖期、完熟期它们对光合有效辐射的响应。非直角双曲线Farquhar模型模拟的光合参数显示,分蘖期控释氮肥促进了转基因水稻的Pnmax、Rd和LCP,促进了亲本水稻的Rd和LCP。完熟期控释氮肥促进了转基因及其亲本常规水稻的Pnmax、Rd、LCP和LSP。
     (3)水稻土甲烷排放
     UV-B增强对稻田CH4排放通量的季节性变化趋势没有影响。与对照相比,UV-B增强显著提高CH4排放通量、累积排放量(p<0.05)以及CH4排放通量日变化趋势(p>0.05)。
     与尿素相比,控释氮肥可显著降低CH4排放通量、全生育期累积排放量(p<0.05)以及CH4排放通量日变化趋势(p<0.05)。
     抗除草剂转基因水稻的CH4排放通量和累积排放量均显著低于亲本常规水稻(p<0.05)。
     (4)水稻土甲烷产生潜力
     UV-B增强明显提高水稻扬花期和完熟期内的根际与非根际水稻土的CH4产生潜力(p>0.05),控释氮肥则是抑制作用(p>0.05)。亲本常规水稻两个生育期内的根际与非根际水稻土CH4产生潜力高于转基因水稻。水稻根际土壤CH4产生潜力大于非根际。
     (5)水稻根系残体分解
     在相同水分条件下,CH4和C02的排放通量均表现为转基因水稻高于常规水稻。施用稻根可明显提高CH4和CO2的排放通量。在添加同种根系残体下,CH4排放总量呈现为好气明显低于淹水,而C02排放通量则相反。好气条件下,培养后期CH4排放通量与气温呈显著负相关。淹水条件下,在整个培养期内,无论添加何种根系残体,CH4排放通量与气温均呈显著正相关。淹水条件下,CH4排放通量与土壤微生物量碳呈显著正相关。
Rice is one of the predominant staple foods in the world, which feeds over50%of the worldwide population for about80%of their food requirements. So far, the effect of elevated UV-B radiation on rice production has received more attentions. Population explosion and limited arable soils are threatening food supply security. Field and pot experiment with rice cultivars were conducted to investigate the effects of elevated UV-B radiation and controlled-release nitrogen fertilizer (CRNF) on the growth characteristics, photo synthetic characteristics, CH4emission, CH4production potentials and so on. This study will be helpful in further improving ecological risk assessment on transgenic rice.
     Main results are as follows:
     (1) Rice growth characteristics:
     Elevated UV-B radiation inhibited rice single leaf area, till numbers, plant height, above and underground biomass, finally decreased rice production and component factors (i.e. main panicle length, effective panicles, filled grains, productive panicle rate,1000-grain weight and so on).
     Single leaf area and plant height were higher under urea treatment than CRNF treatment until booting stage, and then the difference between two fertilizer treatments gradually diminished. Tiller numbers between before and after late-tillering stage came to the similar conclusion. Application of CRNF finally increased above and underground biomass, rice production and component factors (i.e. effective panicles, filled grains,1000-grain weight and so on).
     (2) Rice photosynthetic characteristics:
     Elevated UV-B radiation decreased the net photosynthetic rate (Pn), transpiration rate (Tr), water use efficiency (WUE) of two cultivars at tillering, blooming and mature stage, stomata conductance (Gs) at blooming stage under saturation light. In addition, elevated UV-B radiation decreased the diurnal variation of Pn, Tr, Gs and WUE at above three stages and Pn, Tr, Gs and WUE to photosynthetic active radiation at tillering stage. Farquhar models showed that maximum apparent photosynthesis rate (Pnmax)、dark respiration rate (Rd)、light compensation point (LCP) and light saturation point (LSP) of two culivars were inhibited by elevated UV-B radiation at tillering stage.
     CRNF increased Pn, Tr, WUE of two rice cultivars at tillering, blooming and mature stage, Gs at blooming stage under saturation light. In addition, diurnal variation of Pn, Tr, Gs and WUE at above three stages and Pn, Tr, Gs and WUE to photosynthetic active radiation at tillering and mature stage were improved by CRNF application. Farquhar models showed that CRNF increased Pnmax、Rd and LCP of transgenic rice, Rd and LCP of parent rice at tillering stage and Pnmax、Rd、LCP and LSP of two cultivars at mature stage.
     (3) CH4emission in rice:
     Elevated UV-B radiation had no effect on seasonal dynamics of CH4flux in paddy field. Compared with control, elevated UV-B radiation increased CH4flux and total amount of CH4emission (p<0.05) and CH4diurnal variation (p>0.05).
     Compared with control (urea), one-time basal application of CRNF decreased CH4emission (p<0.05) and CH4diurnal variation (p<0.05) in the paddy soil.
     Regardless of UV-B radiation and fertilizer treatments, CH4flux and total amount of CH4emission were higher in parent rice than transgenic rice.
     (4) Methane production potentials in rhizosphere and non-rhizosphere paddy soil:
     Elevated UV-B radiation increased methane production potentials in rhizosphere and non-rhizosphere soils(p>0.05), while CRNF decreased them(p>0.05)at blooming and mature stage. Regardless of UV-B radiation and fertilizer treatments, methane production potentials in rhizosphere and non-rhizosphere from parent rice paddy soils were higher than from transgenic rice. Methane production potentials in rhizosphere soil were larger than non-rhizosphere soil.
     (5) Rice root residues decomposition:
     The fluxes of CH4and CO2were higher in the soil amended with transgenic rice root residues than those with conventional parental root residues. Compared with the control, the fluxes of CH4and CO2were obviously increased by amending rice root residues. The CH4fluxes were lower in the aerobic treatments than in the flooding treatments, but opposite for CO2fluxes. A significant correlation was found between CH4fluxes and soil temperatures, negatively under aerobic conditions at the later stage and positively under flooding condition. The CH4fluxes were significantly correlated with the amounts of microbial biomass C under flooding condition, regardless of the type of rice root residues amended.
引文
Aerts R, Ludwig F. Water-table changes and nutritional status affect trace gas emissions from laboratory columns of peatland soils. Soil Biol Biochem,1997,29:1691-1698.
    Aerts R, Toft S. Nutritional controls on carbon dioxide and methane emission from carex-dominated peat soils. Soil Biol Biochem,1997,29:168-169.
    Albritton D L, Wastson R J. Scientific assessment of stratospheric ozone change:1988 Globe Ozone [A]. Research and Monitoring Project Report No. W.[C]. WMO, Geneva:1990.
    Allen D J, Nogues S, Baker N R. Ozone depletion and increased UV-B radiation:is there a real threat to photosynthesis? J. Exp. Bot.,1998,328:1775-1788.
    Bierhuizen J F, Slatyer R O. Effect of atmospheric concentration of water and CO2 in determing transpiration of cotton leaves. Agric. Meteorol.,1965,2:259-270.
    Biggs R H, Kossuth S V. Effect of ultraviolet-B radiation enhancements under field condition. In:UV-B Biological and Climatic Effects Research (BACER), Final Report.1978a.
    Biggs R H, Koussuth S V. Report of UV-B biological and climate effects [M]. University of Florida Press,1978b,77.
    Cai Z C, Xing G X, Yan X Y, Xu H, Tsuruta H, Yagi K, Minami K. Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilisers and water management. Plant and Soil,1997,196(1):7-16.
    Cai Z C, Xu H, Zhang H H, et al. Estimate of methane emission from rice paddy fields in Taihu region. China Pedosphere,1994,4(4):297-306.
    Cai Z C, Tsuruta H, Minami K. Methane emission from rice fields in China:Measurement and influencing factors. J. Geophys. Res.,2000,105:17231-17242.
    Caldwell M M, Teramur A H, Tevini M, et al.太阳紫外辐射增强对陆地植物的影响,见AMBIO, Royal Swdish Academy of Science(中文版),1995:165.
    Cao G M, Xu X L, Long R J, et al. Methane emissions by alpine plant communities in the Qinghai Tibet Plateau. Biology Letters, UK,2008,4:681-684.
    Chen D Z, Wang M X, Shang G X J, Huang J. Methane emission from rice fields in the southeast China. Advance in earth sciences,1993,8(5):47-54.
    Chidthaisong A, Watanabe I. Methane formation and emission from flooded rice soil incorporated with 13C labelled rice straw. Soil Biology Biochemistry,1997,29: 1173-1181.
    Chin K J, Conrad R. Intermediary metabolism in methanogenic paddy soil and the influence of temperature. FEMS Microbiol Ecol,1995,18:85-102.
    Dai Q, Peng S B, Coronel V P, et al. Intraspecific responses of 188 rice cultivars to enhanced UV-B radiation. Environ. Exp. Bot.,1994,34:433-442.
    Daniel A, Lashof, Dilip R, Ahuia. Relative contributions of greenhouse gas emissions to global warming. Nature 1990,344:529-531.
    do Carmo J B, Keller M, Dias J D, et al. A source of methane from upland forests in the Brazilian Amazon. Geophysical Research Letters,2006,33, L04809, doi: 1011029/2005G1025436.
    Fan L T, Singh S K. Controlled release-A quantitative treatment[M]. Springer-Verlag, Berlin, 1990.
    Freney J R, Frevitt A C F, De Datta S K, et al. The interdependence of ammonia volatilization and denitrication as nitrogen loss processes in flooded rice fields in the Philippines. Biol Fert Soils,1990,9:31-36.
    Ghani A, Dexter M, Perrott K W. Hot-water extractable carbon in soils:a sensitive measurement for determining impacts of fertilization, grazing and cultivation. Soil Biol. Biochem.,2003,35:1231-1243.
    Gundersen P, RasmussenL. Nitrification in forestsoils:effects from nitrogen deposition on soilacidification and aluminium release. Rev. Environ. Contam. Toxicol.,1990,113: 1-45.
    Henning Rodhe. A comparison of the contribution of various gases to the greenhouse effect. Science,1990,248 (4960):1217-1219.
    Herrick J D, Thomas R B. Effects of CO2 enrichment on the photosynthetic light response of sun and shade leaves of canopy sweetgum trees (Liquidam bar styraciflua) in a forest ecosystem. Tree Physiol,1999,19:779-786.
    Hidema J, Teranishi M, Iwamatsu Y, et al. Spontaneously occurring mutations in the cyclobutane pyrimidine dimer photolyase gene cause different sensitivities to ultraviolet-B in rice. The Plant Journal,2005,43 (1):57-67.
    Holzapfe-1 pschorn A, Conrad R, Seiler W. Effects of vegetation on the emission of methane from submerged paddy soil. Plant Soil,1986,92:223-233.
    Hopkins L, Bond M A, Tobin A K. Effects of UV-B on the development and ultrastructure of the primary leaf of wheat (Triticumaestivum). Exp Bot,1996,47(Sup):20.
    Horst W J, Wagner A, Marschner H. Mucilage protects root meristems from aluminium injury. Z Pflanzenphysiol.,1982,105:435-444.
    Houghton J T, Ding Y. Climate Change 2001:The Scientific Basis. Cambridge:Cambridge University Press,2001,239-287.
    Hutsch B W. Methane oxidation in non-flooded soils as affected by crop production-invited paper. Eur. J. of Agron.,2001,14:237-2601.
    International fertilizer association. Plant nutrients for food security,1996,1:55-60.
    IPCC. Climate Change 2001:The Scientific Basis, Houghton J T, Ding Y, et al., (Eds.), Cambridge University Press, Cambridge, UK,2001:38-41.
    IPCC. Climate change 2007:The physical science basis[R]. Cambridge:Cambridge University Press,2007.
    James C. Preview-Global review of commercialized transgenic crops. ISAAA briefs,2001.
    James W R, Christopher S P. Global patterns of carbon dioxide emissions from soils. Global Biogeochemical Cycles,1995,9(1):23-36.
    Jean L M, Pierre R. Production, oxidation and consumption of methane by soils:A review. Eur. J. Soil Biol.,2001,37:25-50.
    Johnston H S. Reduction of stratospheric ozone by nitrogen oxide catalysts from supersonic transport exhaust. Science,1971,173:517-522.
    Jordan B R, Chow W S, Strid A, et al. Radiation in cab pabA RNA transcripts in response to supplemental UV-B radiation. FEBS Lett,1991,284:5-8.
    Kalbitz K, Schwesig D, Schmerwitz J. Changes in properties of soil-derived dissolved organic matter induced by biodegradation. Soil Biology and Biochemistry,2003,35:1129-1142.
    Kammann C, Grunhang L, Jager H J, et al. Methane fluxes from differentially managed grassland study plots the important role of CH4 oxidation in grassland with high potential for CH4 production. Environ. Pollution,2001,115:261-273.
    Keppler F, Hamilton J T G, McRoberts W C, Vigano I, Brass M, Rockmann T. Methoxyl groups of plant pectin as a precursor of atmospheric methane:evidence from deuterium labelling studies. New Phytologist,2008,178:808-814.
    Keppler F, Hamilton J T G., Rockmann, M B T. Methane emissions from terrestrial plants under aerobic conditions. Nature,2006,439 (12),187-191.
    Kerril B. Evidence for large upward trends of ultraviolet-B radiation lined to ozone depletion. Science,1994,262:1032-1034.
    Khalil M A K, Rasmussen R A, Moraes F. Atmospheric methane at cape measures:Analysis of a high-resolution database and its environmental implications. J Geophys Res,1993, 98(8):14753-14770.
    Kiehl J T, Trenberth K E. Earth's annual global mean energy budget. Bulletin of the American Meteorological Society,1997,78(2):197-208.
    Kim H Y. Effects of UV-B radiation on carotenoids, polyamines and lipid peroxidation in rice (Oryza sativa L.) leaves. J Korean Environ Sci Soc,1996,5(5):635-642.
    Kim H Y, Kobayashi K, Nouchi I, et al. Enhanced UV-B radiation has little effects on growth, 813C values and pigment of potgrown rice (Oryza sativa L.) in the field. Physiologia Plantarum,1996,96:1-5.
    Kimura M, Asiai K, Watanabe A, et al. Suppression of methane fluxes from flooded paddy soil wit h rice plants by foliar spray of nitrogen fertilizers. Soil Sci Plant Nutr,1992,38 (4):735-740.
    Lidon F C, Ramalho J C. Impact of UV-B irradiation on photosynthetic performance and chloroplast membrane components in Oryza sativa L. Journal of Photochemistry and Photobiology B:Biology,2011,104(3):457-466.
    Lou Y S, Inubushi K, Mizuno T, Hasegawa T, Lin Y, Sakai H, Cheng W, Kobayashi K. CH4 emission with differences in atmospheric CO2 enrichment and rice cultivars in a Japanese paddy soil. Global Change Biology,2008,14(11):2678-2687.
    Lou Z X, Wu R. A simple method for the transformation of rice is via the pollen-tube pathway. Plant Molecular Reporter,1998,6(3):165-174.
    Lu B R, Snow A A. Gene flow from genetically modified rice and its environmental consequences. BioScience,2005,55:669-678.
    Ma J, Ma E, Xu H, Yagi K, Cai Z C. Wheat straw management affects CH4 and N2O emissions from rice fields. Soil Biology and Biochemistry,2009,41,1022-1028.
    Maggs R, Ashmore M R. Growth and yield responses of Pakistan rice (Oryza sativa L.) cultivars to O3 and NO2. Environmental Pollution,1998,103(2):159-170.
    Maloney P, Brugen V, Hu S. Bacterical community structure in relation to the carbon environments in lettuce and tomato rhizospheres and in bulk soil. Microbial ecology, 1997,34(2):109-117.
    Mansey H L, Salisbury F B. Biochemical response of xanthium leaves to ultraviolet radiation. Radia Bo.,1971,11:386.
    McLeod A R, Fry S C, Loake G J, Messenger D J, Reay D S, Smith K A, Yun B W. Ultraviolet radiation drives methane emissions from terrestrial plant pectins. New Phytologist,2008,180 (1):124-132.
    Milkha, Aulakh, Rejner Wassmann, et al. Methane transport capacity of twenty-two rice cultivars from five major asian rice-growing countries. Agriculture Eeosystems and Environment,2002,91:59-71.
    Mirecki R M, Teramura A H. Effects of ultraviolet-B on soybean V. The dependence of plant sensitivity on the photosynthetic photon flux density during and after leaf expansion. Plant Physiol.,1984,74:475-480.
    Mitra S, Jain M C, Kumar S, Bandyopadhyay S K, Kalra N. Effect of rice cultivars on methane emission. Agriculture, Ecosystem and Environment,1999,73(3):177-183.
    Mohammed A R, Rounds E W, Tarpley L. Response of rice (Oryza sativa L.) tillering to subambient levels of ultraviolet-B radiation. Journal of Agronomy and Crop Science, 2007,193 (5):324-335.
    Mohammed A R, Tarpley L. Morphological and physiological responses of nine southern U.S. rice cultivars differing in their tolerance to enhanced ultraviolet-B radiation. Environmental and Experimental Botany,2011,70(2):174-184.
    Neue H U, Lantin R S, Wassmann R, et al. Methane emission from rice soils of the Philippines [M]. In:Atmospheric methane:Sources, sinks and role in global change (Khslil M A K, ed.), Spriger-Verlag Berlin Heidelberg,1994,55-63.
    Nouchi I, Mariko S. Mechanism of methane transport by rice plants. In:Oremland RS (ed) Biogeochemistry of global change. Chapman&Hall, New York,1993:336-352.
    Nouchi I. Mechanisms of methane transport through rice plants. In:Minami K, eds. CH4 and N2O:Global Emission and Controls from Rice Fields and Other Agricultural and Industrial Sources. Tokyo, Japan:Yokendo Publishers,1994:87-105.
    Nouchi I, Ito O, Harazono Y, et al. Effects of chronic ozone exposure on growth, root respiration and nutrient uptake of rice plants. Environmental Pollution,1991,74(2): 149-164.
    Papen H, Renneberg H. Microbial processes involved in emissions of radioactively important trace gases, Trans.14th Intern. Congr Soil Sci,1990,2:232-237.
    Paul W, et al. Intraspecific variation in sensitivity to UV-B radiation in rice. Crop Sci.,1993, 33:1041-1046.
    Ros J, Tevini M. Interaction of UV radiation and IAA during growth of seedlings and hypocotyls segments of sunflower. Plant Physiol,1995,146:295-302.
    Sanhueza E, Donoso L. Methane emission from tropical savanna Trachpogon sp. grasses. Atmospheric Chemistry and Physics,2006,6:5315-5319.
    Sass R L, Fisher F M, Wang Y B, et al. Methane emission from rice fields:The effect of floodwater management. Global Bigeochem Cycles,1992,6:249-262.
    Sass R L, Fisher Jr. F M. Methane emissions from rice paddies:a process study summary. Nutrient Cycling in Agroecosystems,1997,49(1-3):119-127.
    Saxena D, Flores S, Stotzky, G Transgenic palnts:Insecticidal toxin in root excudats from Bt corn. Nature,1999,402-480.
    Schutz H, et al. A three-year continuous record on the influence of daytime season and fertilizer treatment on the emission rates from an Italian rice paddy field. J. Geophys. Res.,1984,94:16405-16416.
    Scotto J G Biologically effective ultraviolet radiation:surface measurements in the United States 1974 to 1985. Science,1988,239:762-764.
    Shao K S, Li Z. Effect of rice cultivars and fertilizer management on methane emission in a rice paddy in Beijing. Nutrient Cyling in Agroecosytems,1997,49:139-146.
    Sharpatyi V A. On the mechanism of methane emission by terrestrial plants. Oxidation Communications,2007,30 (1):48-50.
    Shaviv A, Mikkelsen R L. Slow release fertilizers for a safer environment maintaining high agronomic use efficiency. Fertilizer Research,1993,35:1-12.
    Sheehy J E, Dionora M, Mitchell P L. Spikelet numbers, sink size and potential yield in rice. Field Crops Research,2001,71 (2):77-85.
    Shen A L, Liu C Z, Zhang F S, et al. Effects of different application rate of NPK on the growth of rice and N ertilizer utilization ratio under water leakage and non-leakage conditions. Chinese J. of Rice Sci.,1997,11(4):231-237.
    Sinha V, Williams J, Crutzen P J, et al. Methane emissions from boreal and tropical ecosystems derived from on-situ measurements. Atmospheric Chemistry and Physics Discussions,2007,7:14011-14039.
    Sisson W B, Caldwell M M, Photosynthesis dark respiration and growth of kumex patiented to ultraviolet irradiance (288-315 nm) simulating to a reduced atmospheric ozone colum. Plant Physiol,1976,38:563.
    Strid A, Chow W S, Anderson J M. Effect of supplementary ultraviolet-B radiation on photosynthesis in pisum sativum. Biochem Biophys Acta,1990,1020(3):260-265.
    Strid A, Porra R J. Alterations in pigment content in leaves of Pisum sativum after exposure to supplementary UV-B. Plant Cell Physiol,1992,33(7):1015-1023.
    Svensson B H. Different temperature optima in methane formation when enrichments from acid peat are supplemented with acetate or hydrogen. Applied Environmental Microbiology,1984,48:394-398.
    Teramura A H, Biggs R H, Kossuth S. Effects of ultraviolet-B irradiance on soybean II. Ineraction between ultraviolet-B and photosynthetically active radiation on net photosynthesis, dark respiration, and transpiration. Plant Physiol.,1980,65:483-488.
    Teramura A H, Ziska L H, Sztein A E. Changes in growth and photosynthetic capacity of rice with increased UV-B radiation. Physiol. Plant.,1991,83:373-380.
    Teramura A H. Effects of ultraviolet-B irradiance on soybean I. Importance of photosynthetically active radiation in evaluating ultraviolet-B irradiance effects on soybean and wheat growth. Physiol. Plant.,1980,48:333-339.
    Tevini M, Iwanzik W, Thoma U. Some effects of enhanced UV-B irradiation on the growth and composition of plants. Planta,1981,153:388-394.
    Thomas K L, Benstead J, Davies K L, et al. Role of wetland plants in the diurnal control of CH4 and CO2 fluxes in peat. Soil Biol Biochem,1996,28:17-23.
    Tokuo S, Kyoichi S, Masahiko S, et al. Single basal application of total nitrogen fertilizer with controlled release coated urea on non-tilled culture. Jpn. J. Crop Sci.,1993,62(3): 408-413.
    Tsutsuki K, et al. Behavior of anaerobic decomposition products in submerged soils:Effects of organic material amendment, soil properties and temperature. Soil Sci Plant Nutr., 1987,33:13-33.
    Van T K, Garrard L A, West S H. Effects of UV-B radiation on net photosynthesis of some crop plants. Crop Science,1976,16:715.
    Vance E D, Brookes P C, Jenkinson D S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem.,1987,9(6):703-707.
    Verma A, Subramanian V, Ramesh R. Methane emissions from a coastal lagoon:vembanad Lake, West Coast, India. Chemosphere,2002,47:883-889.
    Vigano I, van Weelden H, Holzinger R, Keppler F, McLeod A, Rockmann T. Effect of UV radiation and temperature on the emission of methane from plant biomass and structural components. Biogeosciences,2008,5 (3):937-947.
    Wada G, Aragones R C, Ando H. Effect of slow release fertilizer (meister) on the nitrogen uptake and yield of the rice (Oryza satival) plant in the tropics. Japanese Journal of Crop Science,1990,60:101-106.
    Wang C R, Huang G H, Liang Z B, W u J, Xu G Q, Yue J, Shi Y. Advances in the research on sources and sinks of CH4 and CH4 oxidation (uptake) in soil. Chinese Journal of Applied Ecology,2002,13 (12):1707-1712.
    Wang Y B, Feng H Y, Qu Y, Cheng J Q, Zhao Z G, Zhang M X, Wang X L, An L Z. The relationship between reactive oxygen species and nitric oxide in ultraviolet-B-induced ethylene production in leaves of maize seedlings. Environmental and experimental botany,2006,57:51-61.
    Wang Z P, Delaune D, Masscheleyn P H, et al. Soil redox and pH effects on methane reduction in a flooded rice soil. Soil Sci Soc Am J,1993,57:382-385.
    Wang Z P, Gulledge J, Zheng JQ, et al. Physical injury stimulates aerobic methane emissions from terrestrial plants. Biogeosciences,2009,6:615-621.
    Wang Z P, Han X G, Wang G G, et al. Aerobic methane emission from plants in the Inner Mongolia steppe. Environmental Science and Technology,2008,42(1):62-68.
    Wassmann R, Aulakh M. The role of rice plants in regulating mechanisms of methane emissions. Biology and Fertility of Soil,2000,3(1):20-29.
    Wassmann R, Buendial V, Lantin R S, et al. Mechanisms of crop management impact on methane emissions from rice fields in Los Banos, Philippines. Nutrient Cycling in Agroecosystems,2000,58:107-119.
    Wassmann R, Neue H U, Bueno C, et al. Methane production capacities of different rice soil derived from inherent and exogenous substrates. Plant and Soil,1998,203:227-237.
    Watson R T. Climate change:The supplementary report to the IPCC scientific assessment [A]. IPCC [C]. London:Cambridge Univ Press,1992,25-67.
    Welfare K, Flowers T J, Taylor G, et al. Additive and antagonistic effects of ozone and salinity on the growth, ion contents and gas exchange of five varieties of rice (Oryza sativa L.). Environmental Pollution,1996,92 (3):257-266.
    Wiehe W, Hoflich G Survival of plant growth promoting rhizosphere bacteria in the rhizosphere of different crops and migration to no-inculated plants and field conditions in north-east Germany. Microbiol.Res,1995,150:205-210.
    WMO (World Meteorological Organization). Scientific assessment of ozone depletion, In: Global ozone research and monitoring project[C]//Ajavon A N, Albritton D L, Watson R T, et al. Report No.47. Geneva, USA:World Meteorological Organization,2002.
    Wuebbles D J, Hayhoe K. Atmospheric methane and global change. Earth-Science Reviews, 2002,57177-57210.
    Xu H, Cai Z C, Jia Z J, et al. Effect of land management in winter crop season on CH4 emission during the following flooded and rice growing period. Nutrient Cycling in Agroecosystems,2000,58:327-332.
    Xu K, Qiu B S. Responses of super high-yield hybrid rice Liangyoupeijiu to enhancement of ultraviolet-B radiation. Plant Science,2007,172(1):139-149.
    Yagi K, Minami K. Effect of organic matter applications on methane emission from some Japanese paddy fields. Soil Sci Plant Nutr,1990,36 (4):599-610.
    Yagi K, Tsuruta H, Kanda K, et al. Effect of water management on methane emission from a Japanese rice paddy field:Automated methane monitoring. Global Biogeochem Clycle, 1996,10:255-267.
    Zou Jianwen, Liu Shuwei, Qin Yanmei, et al. Sewage irrigation increased methane and nitrous oxide emissions from rice paddies in southeast China. Agriculture, Ecosystems and Environment,2009,129:516-522.
    Clive James.2009年全球生物技术/转基因作物商业化发展态势-第一个十四年1996~2009[J].中国生物工程杂志,2010,30(2):1-22.
    蔡昆争,骆世明,段舜山.水稻根系的空间分布及其与产量的关系[J].华南农业大学学报(自然科学版),2003,24(3):1-4.
    蔡祖聪,沈光裕,颜小元,等.氮肥品种对稻田CH4排放的影响[J].土壤学报,1995,32(增刊):136-143.
    蔡祖聪.水分类型对土壤排放的温室气体组成和综合温室效应的影响[J].土壤学报,1999,36:484-491.
    曹兵,徐秋明,壬军,边秀芝.延迟释放型包衣尿素对水稻生长和氮素吸收的影响[J].植物营养与作物学报,2005,11(3):352-356.
    陈春梅,谢祖彬,朱建国,等.FACE处理的小麦秸秆还田对稻田CH4排放的影响[J].农业环境科学学报,2007,26(4):1550-1555.
    陈德章,王明星,上官行健,等.我国西南地区的稻CH4排放[J].地球科学进展,1993,8(5):47-54.
    陈建生,徐培智,唐拴虎,张发宝,谢春生.一次基施水稻控释肥技术的养分利用率及增产效果[J].应用生态学报,2005,16(10):1868-1871.
    陈建生,张发宝.发展作物专用肥,推进我国平衡施肥[J].磷肥与复肥,1999,4:8-10.
    陈贤友,吴良欢,李金先,应金耀.新型控释肥对水稻产量与氮肥利用率的影响探讨[J].土壤通报,2010,41(1):133-137.
    戴平安,聂军,郑圣先,肖剑.不同土壤肥力条件下水稻控释氮肥效应及其氮素利用的研究[J].土壤通报,2003,34(2):115-119.
    刁治民.西宁地区春小麦土壤微生物根际效应的研究[J].土壤肥料,1996,2:27-30.
    丁爱菊,王明星.稻田甲烷排放的初级模式[J].大气科学,1995,19(6):733-740.
    丁维新,蔡祖聪.氮肥对土壤甲烷产生的影响[J].农业环境科学学报,2003,22(3):380-383.
    董武娟,吴仁海.全球生态环境问题及保护对策[J].云南地理环境研究,2004,16(2): 74-78.
    杜昌文,周健民.控释肥料的研制及其进展[J].土壤,2002:127-133.
    方兴龙.桐城市水稻施用控失肥示范效果初探[J].安徽农学通报,2007,13(24):46-70.
    冯波,刘延忠,孔令安,李升东,司纪升,王法宏.氮肥运筹对垄作小麦生育后期光合特性及产量的影响[J].麦类作物学报2008,28(1):107-112.
    符建荣.控释氮肥对水稻的增产效应及提高肥料利用率的研究[J].植物营养与肥料学报,2001,7(2):145-152.
    侯扶江,责贵英.紫外线-B辐射对3种植物幼苗光合作用和呼吸作用的影响研究初报[J].草业学报,1998,7(3):77-79.
    侯扶江,韩发,师生波等.浅析植物对太阳紫外线-B辐射的适应性[J].生态学杂志,1997,16(2):31-35.
    侯扶江,贲贵英,颜景义,韩发,师生波,魏捷.增强紫外辐射对田间大豆生长和光合作用的影响[J].植物生态学报,1998,22(3):256-261.
    黄健,成秀虎.农业气象观测规范(上卷)[M].北京市:气象出版社,1993.
    黄科延,戴平安.早稻施用控释氮肥的效果[J].湖南农业大学学报(自然科学版),2002,28(1):12-15.
    黄少白,戴秋杰,刘晓忠,彭少兵,Vergara B S.水稻对紫外光B辐射增强的生化适应机制[J].作物学报,1998,24(4):464-469.
    黄维南.植物根系分泌物及其在农业生产上的意义[J].植物生理学通讯,1987,23(6):66-70.
    黄耀.地气系统碳氮交换-从实验到模型[M].北京:气象出版社,2003.
    贾仲君,蔡祖聪.水稻植株对稻田甲烷排放的影响[J].应用生态学报,2003,14(11):2049-2053.
    焦燕,黄耀等.有机肥施用、土壤有效铜和氮素对稻田甲烷排放的影响[J].农业环境科学学报,2003,22(5):563-569.
    李方敏,樊小林,刘芳,汪强.控释肥料对稻田氧化亚氮排放的影响[J].应用生态学报,2004,15(11):2170-2174.
    李方敏,樊小林,陈文东.控释肥对水稻和氮肥利用率的影响[J].植物营养与肥料学报,2005,11(4):494-500.
    李海涛,董铭,廖迎春,卢存福,梁涛.模拟UV-B增强胁迫对大田水稻生长及内源激素含量的影响[J].中国农学通报,2007,23(3):392-397.
    李涵茂,胡正华,杨燕萍,陈书涛,李岑子,索福喜,申双和.UV-B辐射增强对大豆叶绿素荧光特性的影响[J].环境科学,2009,30(12):3669-3675.
    李晶,王明,陈德章.水稻田甲烷的减排方法研究及评[J].大气科学,1998,22(3):354-362.
    李伶俐,马宗斌,林同保,等.控释氮肥对棉花的增产效应研究[J].中国生态农业学报,2007,15(3):45-47.
    李庆奎,朱兆良,于天良.中国农业持续发展中的肥料问题[M].南昌:江西科学技术出版社,1998:1-5.
    李韶山,王艳,刘颂豪.UV-B对水稻幼苗膜脂过氧化作用的影响[J].激光生物学报,2000,9(1):23-26.
    李香兰,徐华,曹金留,等.水分管理对水稻生长期CH4排放的影响[J].土壤,2007,39(2):238-242.
    李英,上官周平,陈培元,张春雷,薛青武,梁银丽.底墒和氮肥对小麦抽穗后绿色叶面积参数的调控模型[J].西北农业学报,1994,3(1):3-8.
    李元,王勋陵.紫外辐射增强对春小麦生理产量和品质的影响[J].环境科学学报,1998,18(5):504-509.
    李元,岳明.紫外辐射生态学[M].北京:中国环境科学出版社,2000:1-3.
    梁建生,曹显祖,张海燕,宋平,朱庆森.水稻籽粒灌浆期间茎鞘贮存物质含量变化及其影响因素研究[J].中国水稻科学,1994,8(3):151-156.
    林葆,李家康,金继运.中国肥料的跨世纪展望[A].中国农学会.植物保护与植物营养研究进展[C].北京:中国农业出版社,1999.453-457.
    林葆,李家康.当前我国化肥的若干问题和对策[J].磷肥与复肥,1997,2:1-23.
    林文雄,梁义元,金吉雄.水稻对UV-B辐射增强的抗性遗传及其生理生化特性的研究[J].应用生态学报,1999,10(1):31-34.
    林文雄,吴杏春,梁义元,陈芳育,郭玉春.UV-B辐射胁迫对水稻叶绿素荧光动力学的影响[J].中国生态农业学报,2002,10(1):8-11.
    林植芳,李双顺,林桂株.水稻叶片的衰老与超氧化物岐化酶活性及脂质过氧化作用的关系[J].植物学报,1984,26(6):605-615.
    刘德林,聂军,肖剑.15N标记水稻控释氮肥对提高氮素利用效率的研究[J].激光生物学报,2002,11(2):87-92.
    刘桃菊,戚昌瀚,唐建军.水稻根系建成与产量及其构成关系的研究[J].中国农业科学,2002,35(11):1416-1419.
    鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社:1999,226-227.
    罗付香,杨世民,袁继超,喻小平,雍远成,谢力.氮肥调控对川麦39灌浆期旗叶光合特性的影响[J].类作物学报,2006,26(4):79-84.
    吕玉虎.豫南稻区水稻缓/控释肥应用效果研究[J].中国农学通报,2012,28(09):97-101.
    毛达如.近代植物营养科学的方法论[J].植物营养与肥料学报,1994,1:1-4.
    毛晓艳,殷红,郭巍,王嘉.UV-B辐射增强对水稻产量及品质的影响[J].安徽农业科学,2007,35(4):1016-1017.
    闵航,陈美慈,钱泽澎.水稻田的甲烷释放及其生物学机理[J].土壤学报,1993,30(2):125-130.
    聂军,肖剑,戴平安,郑圣先.控释氮肥对水稻氮代谢关键酶活性及糙米蛋白质含量的影响[J].湖南农业大学学报(自然科学版),2003,29(4):318-321.
    聂军,郑圣先,戴平安,肖剑,易国英.控释氮肥调控水稻光合功能和叶片衰老的生理基础[J].中国水稻科学,2005,19(3):255-261.
    聂军,郑圣先,廖育林,戴平安,易国英.控释氮肥对水稻叶片内源激素含量及平衡的影响[J].湖南农业大学学报(自然科学版),2006,32(1):15-19.
    邱荣富,钱丽琴,王春芳,沈海根,赵小华.水稻缓/控释肥料试验研究初报[J].上海农业科技,2007,2:45-46.
    曲建升,曾静静,张志强.国际主要温室气体排放数据集比较分析研究[J].地球科学进展,2008,23(1):47-54.
    任万辉,许黎,王振会.中国稻田甲烷产生和排放研究Ⅰ产生和排放机理及其影响因子[J].气象,2004,30(6):3-7.
    师生波,贲贵英,赵新全等.增强UV-B辐射对高山植物麻花艽净光合速率的影响[J].植物生态学报,2001,25(5):520-524.
    师生波,贲贵英,韩发.不同海拔地区紫外线B辐射状况及植物叶片紫外线吸收物质含量的分析[J].植物生态学报,1999,23(6):529-535.
    石生伟,李玉娥,刘运通,万运帆,高清竹,张仲新[J].中国稻田CH4和N20排放及减排整合分析[J].中国农业科学,2010,43(14):2923-2936.
    宋付朋,张民,史衍玺,胡莹莹.控释氮肥的氮素释放特征及其对水稻的增产效应[J].土壤学报,2005,42(4):619-625.
    宋任祥,钱兆国,王鑫,王超.氮肥运筹对优质小麦光合速率及产量的影响[J].安徽农 业科学,2003,31(1):135-136.
    宋勇生,范晓晖,林德喜,等.太湖地区稻田氨挥发及影响因素的研究[J].土壤学报,2004,41(2):265-269.
    孙林,黄海山,赵秀勇,张荣刚.UV-B辐射增强对冬小麦生长发育及产量的影响[J].农村生态环境,2004,20(2):24-27.
    唐莉娜,林文雄,吴杏春,梁义元,陈芳育.UV-B辐射增强对水稻生长发育及其产量形成的影响[J].应用生态学报,2002,13(10):1278-1282.
    唐拴虎,陈建生,徐培智,张发宝,黄旭.生长调控型控释肥对水稻发育及产量的影响研究[J].广州农业科学,2006,9:9-12.
    唐拴虎,徐培智,陈建生,艾绍英,张发宝,黄旭.一次性施用控释肥对水稻根系活力及养分吸收特性的影响[J].植物营养与肥料学报,2007,13(4):591-596.
    唐拴虎,郑惠典,张发宝,徐培智,张育灿,陈建生.控释肥料养分释放规律及对水稻生长发育效应的研究[J].华南农业大学学报(自然科学版),2003,24(4):9-12.
    唐拴虎,杨少海,陈建生,等.水稻一次性施用控释肥料增产机理探讨[J].中国农业科学,2006,39(12):2511-2520.
    陶战,杜道邓,周毅,等.不同农作措施对稻田甲烷的排放量的影响[J].农业环境保护,1995,14(3):101-104.
    田纪春,陈建省,王延训,张永祥.氮素追肥后移对小麦籽粒产量和旗叶光合特性的影响[J].中国农业科学,2001,34(1):1-4.
    涂书新,孙锦荷,郭智芬等.根系分泌物与根际营养关系评述[J].土壤与环境,2000,9(1):64-67.
    王传海,郑有飞,何都良,吴国民.小麦不同指标对紫外辐射UV-B增加反应敏感性差异的比较[J].中国农学通报,2003,19(6):43-45.
    王传海,郑有飞,何雨红,万长建,宋玉芝.紫外辐射增加对小麦群体结构的影响[J].南京气象学院学报,2000,23(2):204-209.
    王德建,林静慧,孙瑞娟,等.太湖地区稻麦高产的氮肥适宜用量及其对地下水的影响[J].土壤学报,2003,40(3):426-432.
    王家玉,王胜佳,陈义,等.稻田土壤中氮素淋失的研究[J].土壤学报,1996,33(1):28-36.
    王明星,李品,郑循华等.稻田甲烷排放及产生、转化、输送机理[J].大气科学,1998,22(1):600-612.
    王明星.中国稻田甲烷排放[M].北京:科学出版社,2001,6-10.
    王少彬,苏维瀚,魏鼎文.太阳紫外线的生物有效辐射与大气臭氧含量减少的关系[J].环境科学学报,1993,13(1):114-120.
    王胜佳,王家玉,陈义.覆膜尿素对水稻的增产效应及其生理基础[J].浙江农业学报,1997,9(3):118-122.
    王伟妮,鲁剑巍,李银水,邹娟,苏伟,李小坤,李云春.当前生产条件下不同作物施肥效果和肥料贡献率研究[J].中国农业科学2010,43(19):3997-4007.
    吴杏春,林文雄,黄忠良.UV-B辐射增强对两种不同抗性水稻叶片光合生理及超显微结构的影响[J].生态学报,2007,27(2):554-564.
    武志杰,周健民.我国缓释、控释肥发展现状、趋势及对策[J].中国农业科技导报,2001,3(1):73-76.
    湘、鄂、赣、桂、琼、粤六省农业中专教材编审委员会.作物栽培[M].北京:气象出版社,1999.
    谢春生,唐拴虎,徐培智,张发宝,陈建生.一次性施用控释肥对水稻植株生长及产量的影响[J].植物营养与肥料学报,2006,12(2):177-182.
    谢小立,王卫东,上官行健等.施肥对稻田甲烷排放的影响明[J].农业生态环境(学报),1995,11(1):10-14.
    徐华,蔡祖聪,贾仲君,等.前茬季节稻草还田时间对稻CH4排放的影响[J].农业环境保护,2001,20(5):289-292.
    徐华,蔡祖聪,李小平.土壤Eh和温度对稻田甲烷排放季节变化的影响[J].农业环境保护,1999,18(4):145-149.
    徐明岗,李菊梅,李冬初,丛日环,秦道珠,申华平.控释氮肥对双季水稻生长及氮肥利用率的影响[J].植物营养与肥料学报,2009,15(5):1010-1015.
    徐万里,周勃,刘骅等.控释肥料的研究及其进展[J].新疆农业大学学报,2005:25(4):17-21.
    许莹,殷红,毛晓燕.UV-B辐射增加对水稻生长发育及产量的影响[J].中国农学通报,22(4):411-414.
    闫川,曹立勇,阮关海,黄益峰,陈珊宇,洪晓富.氮肥施用量对内5优8015穗后光合生产和产量及其结构的影响[J].杂交水稻,2011,26(6):43-46.
    严国红,万林生,孙明法.转基因水稻安全性问题的探讨[J].江西农业学报,2009,21(4):14-16.
    杨景宏,陈拓,王勋陵.增强紫外线-B辐射对小麦叶绿体膜组分和膜流动性的影响[J].植物生态学报,2000,24(1):102-105.
    杨连新,王余龙,石广跃,等.近地层高臭氧浓度对水稻生长发育影响研究进展[J].应用生态学报,2008,19(4):901-910.
    杨越超,张民,陈剑秋,段路路,耿毓清,郑磊.控释氮肥对水稻秧苗形态特征和生理特性的影响[J].植物营养与肥料学报,2010,16(5):1126-1135.
    杨志敏,颜景义,郑有飞.紫外辐射增强对大豆光合作用和生长的影响[J].生态学报,1996,16(2):154-159.
    叶笃正,符涂斌,董文杰,等.全球变化科学领域的若干研究进展[J].大气科学,2003,27(4):435-450.
    阴红彬,韩晓日,宋正国,曹宏杰,于成广.水稻专用控释肥的养分释放规律及对养分利用的影响[J].土壤肥料科学,2006,22(2):234-236.
    余柳青,渠开山,周勇军,李迪,刘小川,张朝贤,彭于发.抗除草剂转基因水稻对稻田杂草种群的影响[J].中国水稻科学,2005,19(1):68-73.
    岳向国,韩发,师生波等.不同强度的UV-B辐射对高山植物麻花艽光合作用及暗呼吸的影响[J].西北植物学报,2005,25(2):231-235.
    翟荣荣,冯跃,曹立勇,程式华,吴伟明.水稻叶片衰老研究进展[J].中国稻米,2011,17(1):7-12.
    张福锁等著.环境胁迫与植物根际营养[M].北京:中国农业出版社,1998.
    张竟秋,张丽,哈斯阿古拉.转基因作物及其生物安全.生物技术,2004,4:80-81.
    张民.控释和缓释肥的研究现状与进展[J].植物营养研究进展与展望,2000,10:177-196.
    张民,史衍玺,杨守祥等.控释和缓释肥的研究现状与进展[J].化肥工业,2001,(5):27-30.
    张文会,孙传清,佐藤雅志,日出间纯,熊谷忠,王象坤.紫外线(UV-B)照射对水稻产量及稻米蛋白质含量的影响[J].作物学报,2003,29(6):908-912.
    郑圣先,刘德林,聂军,戴平安,肖剑.控施氮肥在淹水稻田土壤上的去向及利用率[J].植物营养与肥料学报,2004,10(2):137-142.
    郑圣先,聂军,戴平安,郑颖俊.控释氮肥对杂交水稻生育后期根系形态生理特征和衰老的影响[J].植物营养与肥料学报,2006,12(2):188-194.
    郑圣先,聂军,熊金英,等.控释肥料提高氮素利用率及对水稻效应的研究[J].植物营养与肥料学报,2001,7(1):11-16.
    郑有飞,杨志敏,颜景义,万长建.作物对太阳紫外线辐射增加的生物效应及其评估[J].应用生态学报,1996,7(1):107-109.
    郑有飞,颜景义,万长建,等.未来紫外辐射增加对农作物的影响及其对策[J].中国农业气象,1996,17(4):50-53.
    周彦兵.转基因植物安全性评价.生物学通报,2001,36(12):11-12.
    朱德峰,林贤青,曹卫星.水稻深层根系对生长和产量的影响[J].中国农业科学,2001,34(4):429-432.
    朱文谷,胡孝尧,袁立伦,祝贺.白湖农场施用控失肥对水稻农艺性状及产量的影响[J].安徽农学通报,2009,15(5):118-119.
    朱兆良.农田中氮肥的损失与对策[J].土壤与环境,2000,9(1):1-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700