用户名: 密码: 验证码:
人参连作对土壤微生物群落的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人参(Panax ginseng C. A. Mey.)具有很高的药用价值,但强忌连作特性严重影响了人参的规范化栽培,老参地重茬栽参会导致人参长势变弱、病害高发等问题。本课题从不同年限人参栽培土壤的微生物群落结构及碳源代谢能力着手,以期从人参栽培土壤微生物角度解析人参连作障碍机理,为人参生产提供理论依据。本课题从人参主产区吉林省抚松县大方村、黄泥村和五里地村分别采集1~6年生人参根际土壤(紧贴根表皮的土壤)和根围土壤(根周围的土壤)。
     利用随机扩增多态性DNA标记法(RAPD)分析了土壤微生物的遗传多样性,结果表明,直播参根际土壤微生物的遗传多样性高于根围土壤,而移栽人参的根围土壤微生物的遗传多样性高于根际土壤。在根际土壤中,大方村和黄泥村三年生人参根际土壤的遗传多样性最高。
     利用BiologTM EcoPlate开展了人参栽培土壤微生物碳源利用能力的研究。结果表明,随人参生长年限增加,根际土壤微生物的碳源利用能力表现为先升高,后降低。与根围土壤相比,根际土壤微生物的碳源利用能力相对较高;部分人参根际土壤的山农多样性指数以及碳源利用率高于与之对应的人参根围土壤。主成分分析结果表明,大方村和五里地村的大部分根际土壤聚在一起,而大部分根围土壤聚在一起;黄泥村的主成分分析图中,生长年限相同的人参栽培土壤聚在一起。
     利用扩增核糖体DNA限制性内切酶分析方法分析发现,大方村人参栽培土壤主要山α-变形菌纲Alphaproteobacteria、β-变形菌纲Betaproteobacteria、γ-变形菌纲Gammaproteobacteria、拟杆菌门Bacteroidetes、酸杆菌门Acidobacteria、厚壁菌门Firmicutes、疣微菌门Verrucomicrobia七个门或纲的细菌以及Unknown bacteria组成,随着人参栽培年限的增长,细菌种群结构会发生变化。在一年生、二年生三年生以及五年生(3+2)人参根际土以及三年生人参根围土中均有发现假单胞菌Pseudomonas、伯克霍尔德菌Burkholderia、芽孢杆菌Bacillus等,他们中部分是对病原真菌生长具有抑制作用的细菌,其中一年生和二年生人参根际土中所占比例较高。由饱和度曲线可知,在所有土壤样品中,只有六年生(3+3)人参根围土细菌多样性大于六年生(3+3)人参根际土,其余土壤样品均是根际土壤细菌多样性高于其对应的围土壤细菌多样性。
     用自毒物质处理新林土,经Biolog分析发现,未经自毒物质处理的对照组土壤微生物碳源代谢能力明显高于处理过的土壤;主成分分析结果表明,对照组与其余土壤样品被划分成两组,说明二者的碳源利用特征存在明显差别。经邻苯二甲酸二异丁酯、丁二酸二异丁酯以及混合自毒物质处理的土壤微生物对碳源的利用能力较低;RAPD结果聚类分析表明,三份土壤样品的相似系数比较高,但微生物遗传多样性较低。
Ginseng(Panax ginseng C. A. Meyer), is usually used as adaptogenic, anti-aging etc. health tonic. It is mainly cultivated in China, Korea, and Japan etc. Asian countries. It has been regarded as one of the most important remedies in oriental medicine for more than1,000years. As herbaceous perennial plant, ginseng grows at least six years from sow to harvest. During the long growing process, soilborne diseases made severe threaten on the health of P. ginseng root. Rhizosphere and nonrhizosphere soils of one to six years ginseng were sampled from Dafang, Huangni and Wulidi in Jilin province.
     The genetic diversity of microbial community of the selected soils were characterized by culture-independent approaches, random amplified polymorphic DNA (RAPD). Results showed that, genetic diversity index of rhizosphere soil of ginseng that had not been transplanted was higher than the nonrhizosphere soil, while, after been transplanted, the diversity index of rhizosphere soil was lower than the nonrhizosphere soil. Genetic diversity index of the rhizosphere soil of3yr-ginseng was the highest one in both Dafang and Huangni.
     Metabolic function variance of microbe in the soil samples were characterized by community level physiological profiles (CLPP) using BiologTM EcoPlate. With the increasing of cultivating years, the carbon substrates metabolic activities of soil microbes-at three sites were increased and then dtscreased finally. AW CD value and utilization for six types of carbon source of the rihzosphere soil were higher than the corresponding nonrihzosphere soil. Except for the5yr-rhizosphere soil WLD2+3R sampled from Wulidi, the Shannon diversity indexes of the rihzosphere soils were higher than the nonrihzosphere soils. In principal component analysis of Dafang and Huangni, most of the rihzosphere soils gathered together, while most of the nonrihzosphere soils gathered. In Wulidi, soils with the same cultivating years gathered.
     We also analysed the microbial community structure of the rihzosphere soils and nonrihzosphere soils sampled from Dafang. We found that, Verrucomicrobia, Acidobacteria, Proteobacteria, Bacteroidetes, Acidobacteria, Firmicutes, Verruco-microbia were the dominants in the soils. With the increasing of cultivating years, plant disease preventive or plant growth promoting bacteria, such as Pseudomonas, Burkholderia, Bacillus, etc., tended to be rare.
     We made autotoxins solution, and sprayed on the new forest soil sampled from Fusong of Jilin Province. After three months, we examined the varience of microbial community using RAPD, results showed that the soils with the treatment of diisobutyl phthalate, diisobutyl succinate and the mixed autotoxins have lower genetic diversity index than the the CK and the soils treated with the other autotoxins. Cluster analysis showed that similarity coefficient of these soils is relatively high. In the metabolic function variance analysis of microbe in the soil samples characterized by community level physiological profiles (CLPP) using Bio logTM EcoPlate, we found that, the carbon substrates metabolic activity of control is higher than those treated with autotoxins. The AWCD value of soils that treated by diisobutyl phthalate, diisobutyl succinate and the mixed autotoxins were lower than those treated by the other autotoxins. In the principal component analysis, control was seperated with the soils treated by autoxins.
引文
[1]Anderson TH. Microbial eco-physiological indicators to assess soil quality [J]. Agric Ecosyst Environ,2003,98:285-293.
    [2]Bais HP, Weir TL, Perry LG, et al. The role of root exudates in rhizosphere interactions with plants and other organisms [J]. Annu Rev Plant Biol,2006,57: 233-266.
    [3]Becker PM, Stottmeister U. General (Biolog GN) versus site-relevant (pollutant-dependent) sole-carbon-source utilization patterns as a means to approaching community functioning [J]. Can J Microbiol,1998,44:913-919.
    [4]Bej AK, Perlin M, Atlas RM. Effect of introducing genetically engineered microorganisms on soil microbial community diversity [J]. FEMS Microbiol Ecol, 1991,86:169-176.
    [5]Birkett MA, Chamberlain K, Hooper AM, et al. Does allelopathy offer real promise for practical weed management and for explaining rhizosphere interactions involving higher plants [J]. Plant Soil,2001,232:31-39.
    [6]Borneman J, Triplett E. Molecular microbial diversity in soils from eastern Amazonia:evidence for unusual microorganisms and microbial shifts associated with deforestation [J]. Appl Environ Microbiol,1997,63:2647-2653.
    [7]Bossio DA, Scow KM, Gunapala N, et al. Determinants of soil microbial communities:effects of agricultural management ,season and soil type on phospholipid fatty acid profiles [J]. Microb Ecol 1998,36:1-12.
    [8]Brussaard L, de Ruiter PC, Brown GG. Soil biodiversity for agricultural sustainability [J]. Agric Ecosyst Environ,2007,121:233-244.
    [9]Cairney JWG. Evolution of mycorrhiza systems [J]. Naturwissenschaften,2000, 87:467-475.
    [10]Carney KM, Matson PA. The influence of tropical plant diversity and composition on soil microbial communities [J]. Microbiol Ecology,2006,52:226-238.
    [11]Choi KH, Dobbs FC. Comparison of two kinds of Biolog microplates (GN and ECO) in their ability to distinguish among aquatic microbial communities [J]. J Microbiol Methods,1999,36:203-213.
    [12]Classen AT, Boyle SI, Haskins KE, et al. Community-level physiological profiles of bacteria and fungi:plate type and incubation temperature influences on contrasting soils [J]. FEMS Microbiol Ecol 2003,44:319-328.
    [13]Dakora FD, Phillips DA. Root exudates as mediators of mineral acquisition in low-nutrient environments [J]. Plant Soil,2002,245:35-47.
    [14]Derry AM, Staddon WJ, Trevors JT. Functional diversity and community structure of microorganisms in uncontaminated and creosote-contaminated soils as determined by solecarbon-source-utilization [J]. World J Microbiol Biotechnol, 1998,14:571-578.
    [15]Derry AM, Staddon WJ, Kevan PG, et al. Functional diversity and community structure of micro-organisms in three arctic soils as determined by sole-carbon-source-utilization [J]. Biodivers Conserv,1999,8:205-221.
    [16]Dodd JC, Boddington CL, Rodriguez A, et al. Mycelium of arbuscular mycorrhizal fungi (AMF) from different genera:form, function and detection [J]. Plant Soil, 2000,226,131-151.
    [17]Duineveld BM, Rosado AS, van Elsas JD, et al. Analysis of the dynamics of bacterial communities in the rhizosphere of the chrysanthemum via denaturing gradient gel electrophoresis and substrate utilization patterns [J]. Appl Environ Microbiol,1998,64:4950-4957.
    [18]Ellis RJ, Thompson IP, Bailey MJ. Metabolic profiling as a means of characterizing plant-associated microbial communi-ties. FEMS Microbiol. Ecol [J].1995,16:9-18.
    [19]el Fantroussi S, Verschuere L, Verstraete W, et al. Effect of phenylurea herbicides on soil microbial communities estimated by analysis of 16S rRNA gene fingerprints and community-level physiological profiles. Appl. Environ. Microbiol[J].1999,65:982-988.
    [20]Filion M, St-Arnaud M, Fortin JA. Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms [J].New Phytol,1999,141:525-533.
    [21]Garbeva P, Van Veen JA, Van Elsas JD. Microbial diversity in soil:selection of microbial populations by plant and soil type and implications for disease suppressiveness [J]. Annu Rev Phytopathol,2004,42:243-270.
    [22]Garland, J.L.. Patterns of potential C source utilization byrhizosphere communities. Soil Biol. Biochem [J].1996,28:223-230.
    [23]Garland, J.L.. Analytical approaches to the characterization of samples of microbial communities using patterns of potential C source utilization. Soil Biol. Biochem [J].1996,28,213-221.
    [24]Garland JL, Mills AL. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization [J]. Appl Environ Microbiol,1991,57:2351-2359.
    [25]Gattas-Hallak AM, Davide LC, Souza LF. Effects of sorghum (Sorghub bicolor L.) root exudates on the cell cycle of the bean plant (Phaselus vulgaris) root [J]. Genet Mol Biol,1999,22(1):95-99.
    [26]Gelsomino A, Keijzer-Wolters A, Cacco G, et al. Assessment of bacterial community structure in soil by polymerase chain reaction, and denaturing gradient gel electrophoresis [J]. Microbiol. Methods,1999,38:1-15.
    [27]George E, Marschner H, Jakobsen I. Role of arbuscular mycorrhizal fungi in uptake of phosphorous and nitrogen from soil [J]. Crit Rev Biotechnol,1995,15: 257-270.
    [28]Giller KE, Beare MH, Lavelle P, et al. Agricultural intensification, soil biodiversity and agroecosystem function [J]. Appl Soil Ecol,1997,6:3-16.
    [29]Grayston, S.J., Campbell, CD.. Functional biodiversity of microbial communities i n the rhizospheres of hybrid larch (Larix eurolepis) and sitka spruce (Picea sitchensis) [J]. Tree Phys-iol.1996,16:1031-1038.
    [30]Grayston, S.J., Wang, S., Campbell, C.D., et al. Selective influence of plant species on microbial diversity in the rhizosphere[J]. Soil Biol. Biochem.1998, 30:369-378.
    [31]Griffiths BS, Kuan HL, Ritz K, et al. The relationship between microbial structure and functional stability, tested experimentally in an upland pasture soil [J]. Microb Ecol,2004,47:104-113.
    [32]Hale MG, Moore LD, Griffin GJ. In Interactions between non-pathogen soil microorganisms and plants [A]. In:Dommergues YR, Krupa SV. eds. Root exudates and exudation [M]. New York:Elsevier,1978:163-203.
    [33]Harman GE, Petzoldt R, Comis A, et al. Interactions between Trichoderma harzianum strain T22 and maize inbred line Mol7 and effects of these interactions on diseases caused by Pythium ultimum and Colletotrichum graminicola [J]. Phytopathol,2004,94:147-153.
    [34]Harris J. Soil microbial communities and restoration ecology:facilitators or followers? [J] Science,2009,325:573-574.
    [35]Hejl AM, Koster KL. The allelochemical sorgoleone inhibits root H+-ATPase and water uptake [J]. J Chem Ecol,2004,30(11):2181-2191.
    [36]Ibekwe AM, Kennedy A.C. Phospholipid fatty acid profiles and carbon utilization patterns for analysis of microbial community structure underfield and green house conditions. FEMS Microbiol. Ecol.1998,26:151-163.
    [37]Jannsen PH. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes [J]. Appl Environ Microbiol,2006,72:1719-1728.
    [38]Karthikeyanb B, Jaleelac CA, Lakshman GM, et al. Studies on rhizosphere microbial diversity of some commercially important medicinal plants [J]. Colloids Surf. B:Biointerfaces,2008,62(1):143-145.
    [39]Knief C, Lipski A, Dunfield PR. Diversity and activity of methanotrophic bacteria in different upland soils [J]. Appl. Environ. Microbiol.2003,69 (11):6703-6714.
    [40]Konopka A, Oliver L, Turco R F. The use of carbon substrate utilization patterns in environmental and ecological microbiology [J]. Microbiol. Ecol.,1998,35(2): 103-115.
    [41]Li ZP, Wu XC, Chen BY. Changes in transformation of soil organic C and functional diversity of soil microbial community under different land uses [J]. Agric Sci China,2007,6:1235-1245.
    [42]Lin WX, He HQ, Guo YC, et al. Rice allelopathy and its physiobiochemical characteristics [J]. Chinese J Appl Ecol,2001,12(6):871-875.
    [43]Liu B, Zeng Q, Yan FM, et al. Effects of transgenic plants on soil microorganisms [J]. Plant Soil,2005,271:1.
    [44]Lynch JM, Benedetti A, Insam H, et al. Microbial diversity in soil:ecological theories, the contribution of molecular techniques and the impact of transgenic plants and transgenic microorganisms [J]. Biol Fertil Soils,2004,40:363-385.
    [45]Lynch, J. The rhizosphere[M]. London, Wiley,1990:458.
    [46]Maarit-Niemi R, Heiskanen I, Wallenius K, et al. Extraction and purification of DNA in rhizosphere soil samples for PCR-DGGE analysis of bacte rial consorti a. J. Microbiol [J]. Methods.2001,45:155-165.
    [47]MacNaughton SJ, Stephen JR, Venosa, AD, et al. Microbial population changes during bioremediation of an experimental oil spill [J]. Appl. Environ. Microbiol. 1999,65:3566-3574.
    [48]Marschner H. Mineral Nutrition of Higher Plants (2nd) [M]. London:Academic Press,1995.
    [49]Miller KM, Ming, TJ, Schulze, AD, et al. Denaturing Gradient Gel Electrophoresis (DGGE):a rapid and sensitive technique to screen nucleotide sequence variation in populations[J]. BioTechniques 1999,27:1016-1030.
    [50]Morgan JAW, Bending GD, White PJ. Biological costs and benefits to plant-microbe interactions in the rhizosphere [J]. Exper Botany,2005,56: 417-423.
    [51]Muller AK, Westergaard K, Christensen S, et al. The diversity and function of soil microbe communities exposed to different disturbances [J]. Microbiol Ecology, 2002,44:49-58.
    [52]Muyzer G. DGGE/TGGE a method for identifying genes from natural ecosystems [J]. Curr. Opin. Microbiol.1999,2:317-322.
    [53]Muyzer G, Smalla K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis in microbial ecology [J]. Antonie van Leeuwenhock.1999,73:127-141.
    [54]Nakatsuch C H. Soil microbial community analysis using denaturing gradient gel electrophoresis [J]. Soil Sci Soc Am J,2007,71:562-571.
    [55]O'Donnell AG, Seasman M, Macrae A, et al. Plants and fertilisers as drivers of change in microbial community structure and function in soils [J]. Plant Soil,2001, 232:135-145.
    [56]Osborn AM, Moore ERB, Timmis KN. An evaluation of terminal-restriction fra gment length polymorphisms (T-RFLP) analysis for the study of microbial community structure and dynamics. Environ. Microbiol.2000,2:39-50.
    [57]Pace NR. A molecular view of microbial diversity and the biosphere [J]. Science, 1997,276:734-740.
    [58]Peters S, Koschinsky S, Schwieger F, et al. Succession of microbial communities during hot composting as detected by PCR-single-strand-conformation-polymo rphism-based genetic profiles of small-subunit rRNA genes:Appl. En-viron, Microbiol.2000,66:930-936.
    [59]Raaijmakers JM, Paulitz TC, Steinberg C, et al. The rhizosphere:a playground and battlefield for soilborne pathogens and beneficial microorganisms [J]. Plant Soil, 2009,321:341-361.
    [60]Regupathy TV, Sun HL, Young JY,等. Analysis of Bacterial Community in the Ginseng Soil Using Denaturing Gradient Gel Electrophoresis (DGGE) [J]. Indian Journal of Microbiology,2012,52(2):286-288.
    [61]Roling WFM, van-Breukelen BM, Braster, M, et al. Analysis of microbial communities in a landfill le achate polluted aquifer using a new method for anaerobic physiological profiling and 16S rDNA based fingerprinti ng. Microb. Ecol.2000,40:177-188.
    [62]Rovira AD. Plant root excretions in relation to the rhizosphere effect [J]. Plant Soil, 1956,36(2):178-194.
    [63]Schutter M, Dick R. Shift in substrate utilization potential and structure of soil microbial communities in response to carbon substrates [J]. Soil Biol Biochem, 2001,33:1481-1491.
    [64]Schwieger F, Tebbe C. A new approach to utilize PCR-single-strand-conformation-polymorphism for 16S rRNA gene-based microbial community analysis [J]. Appl. Environ Microbiol.1998,64:4870-4876.
    [65]Shi JY, Yuan XF, Lin HR, et al. Differences in soil properties and bacterial communities between the rhizosphere and bulk soil and among different production areas of the medicinal plant Fritillaria thunbergii [J]. International J Molecular Sciences,2011,12:3770-3785.
    [66]Smalla K, Wieland G, Buchner A, et al. Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis:plant-dependent enrichment and seasonal shifts revealed[J]. Appl. Environ. Microbiol.2001,67: 4742-4751.
    [67]Smith KP, Goodman RM. Host variation for interactions with beneficial plant-associated microbes [J]. Annu Rev Phytopathol,1999,37:473-491.
    [68]Stach JEM, Bathe S, Clapp, JP, et al. PCR-SSCP comparison of 16S rDNA sequence diversity in soil DNA obtained using different isolation and purification methods [J].FEMS Microbiol. Ecol.2001.36:139-151.
    [69]Tam L, Derry AM, Kevan PG, et al. Functional diversity and community structure of microorganisms in rhizosphere and non-rhizosphere Canadian arctic soils [J]. Biodiversity & Conservation,2001,10(11):1933-1947.
    [70]Tejera N, Lluch C, Martinez-Toledo MV, et al. Isolation and characterization of Azotobacter and Azospirillum strains from the sugarcane rhizosphere [J]. Plant Soil,2005,270:223-232.
    [71]Tiedje JM, Asuming-Brempong, S, Nusslein, K, et al. Opening the black box of soil microbial diversity [J]. Appl. Soil Ecol.1999,13:109-122.
    [72]Theron J, Cloete TE. Molecular techniques for determin-ing microbial diversity and community structure in natural envi-ronments[J]. Crit. Rev. Microbiol.2000, 26:37-57.
    [73]Timonen, S., Finlay, R.D., Olsson, S., et al. Dy-namics of phosphorous translocation in intact ectomycorrhizalsystems:non-destructive monitoring using a B-scanner[J]. FEMS Microbiol. Ecol.1996,19:171-180.
    [74]Torsvik V, Goksoyr J, Daae FL. High diversity in DNA of soil bacteria [J]. Appl Environ Microbiol,1990,56:782-787.
    [75]Trevors JT. Molecular evolution in bacteria:cell division [J]. Rev Microbiol,1998, 29:237-245.
    [76]van Elsas, J.D., Wolters, A.,1995. Polymerase chain reaction(PCR) analysis of soil microbial DNA. In:Akkermans, A.D.L.,van-Elsas, J.D., de-Bruijn, F.J. (Eds.), Molecular Micro-bial Ecology Manual. Kluwer Academic Publishing, Boston,pp. 2.7.21-2.7.210.
    [77]Verpoorte R, van der Heijiden R, ten Hoopen HJG, et al. Metabolic engineering of plant secondary metabolite pathway for the production of fine chemicals [J]. Biotechol. Lett.21:467-479.
    [78]Vos P, Hogers R, Bleeker M, et al. AFLP:A new technique for DNA fingerprinting [J]. Nucl Acids Res,1995,23(21):4407-4414.
    [79]Walker TS, Bais HP, Grotewold E, et al. Root exudation and rhizosphere biology [J]. Plant Physiology,2003,132:44-51.
    [80]Wall DH, Virginia RA. Controls on soil biodiversity:insights from extreme environments [J]. Appl Soil Ecol,1999,13:137-150.
    [81]Wang JL, Xin R, Chen CL. General review in the study of barrier mechanism caused by continuous soybean cropping [J]. Soybean Sci,2000,19(4):367-371.
    [82]Wright SF, Upadhyaya A. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi [J]. Plant Soil, 1998,198:97-107.
    [83]Xuan TD, Chung IM, Khanh TD, et al. Identification of phytotoxic substances from early growth of barnyard grass (Echinochloa crusgalli) rott exudates[J].J Chem Ecol,2006,32:895-906.
    [84]Yang CH, Crowley DE. Rhizosphere microbial community structure in relation to root location and plant iron nutritional status [J]. Appl Environ Microb,2000, 66(1):345-351.
    [85]Yao, H., He, Z., Wilson, M.J.,等. Microbial biomass and community structure in a sequence of soils with increasing fertility and changing land use[J]. Microb. Ecol, 2000,40:223-237.
    [86]Yao HY, Jiao XD, Wu FZ. Effects of continuous cucumber cropping and alternative rotations under protected cultivation on soil microbial community diversity [J]. Plant and Soil,2006,284:195-203.
    [87]Ye SF, Yu JQ, Peng YH, et al Incidence of Fusarium wilt in Cucumis sativus L. is promoted by cinnamic acid, an autotoxin in root exudates [J]. Plant Soil,2004,263: 143-150.
    [88]Yu JQ, Shou SY, Qian YR, et al Autotoxic potential of cucurbit crops [J]. Plant Soil,2000,223(1-2):147-151.
    [89]Zabinski CA, Gannon JE. Efects ofrecreational impacts on soil microbial communities [J]. Environmental Management,1997,21(2):133-238.
    [90]Zak JC, Willig MR, Moorhead DL, et al. Functional diversity of microbial communities:A quantitative approach. Soil Biol Biochem [J].1994,26:1101-1108.
    [91]Zhang L, Xu ZH. Assessing bacterial diversity in soil.[J]. J Soils Sediments,2008, 8:379-388.
    [92]Zhang Y, Du BH, Jin ZG, et al. Analysis of bacterial communities in rhizosphere soil of healthy and diseased cotton (Gossypium sp.) at different plant growth stages [J]. Plant Soil,2011,339:447-455.
    [93]安韶山,李国辉,陈利顶.宁南山区典型植物根际与非根际土壤微生物功能多样性[J].生态学报,2011,31(18):5225-5234.
    [94]毕武,杨家学,高微微.有机添加物对老参地土壤真菌及重茬西洋参的影响[J].中药材,2008,31(7):951-954.
    [95]柴强,黄高宝.植物化感作用的机理、影响因素及应用潜力[J].西北植物学报,2003,23(3):509-515.
    [96]陈义群,董元华,王辉,等.不同农业措施对草莓连作土壤微生物群落特征的影响[J].安徽农业科学,2011,39(25):15286-15289,15294.
    [97]陈英,柴强.小麦的根系分泌物及典型分泌物间甲酚的化感作用研究[J].兰州大学学报(自然科学版),2005,41(2):26-29.
    [98]陈长宝,刘继勇,王艳艳,等.人参根际化感作用及其对种子萌发的影响[J].吉林农业大学学报,2006a,28(5):534-537,5411.
    [99]陈长宝,许世泉,刘继勇,等.人参化感物质对人参愈伤组织生长的影响[J].同济大学学报,2006b,27(5):37-38,451.
    [100]单润中.长白山地区人参用地对土壤性质影响研究-以抚松县为例[D].吉林,硕士学位论文,东北师范大学,2009.
    [101]窦森,张晋京,江源,等.栽参对土壤化学性质的影响[J].吉林农业大学学报,1996,18(3):67-73.
    [102]方斯文.人参化感物质对土壤酶、微生物多样性的影响及其在土壤中的迁移研究[D].吉林,硕士学位论文,吉林农业大学,2012.
    [103]顾美英,徐万里,茆军,等.新疆绿洲农田不同连作年限棉花根际土壤微生物群落多样性[J].2012,32(10):3031-3040.
    [104]郭兰萍,黄璐琦,蒋有绪,等.苍术根茎及根际土水提物生物活性研究及化感物质的鉴定[J].生态学报,2006,26(2):528-535.
    [105]郭利,王学龙,陈永德,等.烟草连作队烟田土壤微生物的影响[J].湖北农业科学,2009,48(10):2443-2445.
    [106]韩剑,张静文,徐文修,等.新疆连作、轮作棉田可培养的土壤微生物区系及活性分析[J].棉花学报,2011,01,31-39.
    [107]何海斌,何华勤,林文雄.不同化感水稻品种根系分泌物中萜类化合物的差异分析[J].应用生态学报,2005,16(4):732-736.
    [108]何永明.人参本草史考证[J].中成药,2001,23(5):384-386.
    [109]胡元森,吴坤,李翠香,等.黄瓜连作对土壤微生物区系影响Ⅱ——基于DGGE方法对微生物种群的变化分析[J].中国农业科学,2007,40(10):2267-2271.
    [110]华菊玲,刘光荣,黄劲松.连作对芝麻根际土壤微生物群落的影响[J].生态学报,2012,32(9):2936-2942.
    [111]黄小芳,李勇,丁万隆.人参根系分泌物对种子萌发的自毒效应[J].种子,2009,28(10):4-7.
    [112]黄小芳,李勇,刘时轮,等.五种化感物质对人参幼根皂苷含量的影响[J].世界科学技术—中医药现代化,2009,11(1):71-74.
    [113]黄小芳,李勇,易茜茜,等.五种化感物质对人参根系酶活性的影响[J].中草药,2010,41(1):117-121.
    [114]简在友,王文全,孟丽,等.人参连作土壤元素含量分析[J].土壤通报,2011,42(2):369-371.
    [115]简在友,王文全,孟丽.人参属药用植物连作障碍研究进展[J].中国现代中药,2008,10(6):3-5.
    [116]焦晓丹,吴凤芝,高海军.土壤微生物RAPD分析体系的优化研究[J].生态学杂志,2005,24(8):921-924.
    [117]李春格,李晓鸣,王敬国.大豆连作对土体和根际微生物群落功能的影响[J].生态学报,2006,26(4):1144-1150.
    [118]李刚,蒋小莉.人参根际微生态研究进展[J].人参研究,2001,4:49-52.
    [119]李莉,李东升,赵晓松.吉林省东部山区人参栽培基地土壤中微生物的生态分布[J].安徽农业科学,2008,36(31):13729-13730,13747.
    [120]李敏娜.人参根系分泌物对根际土壤微生态的影响[D].吉林:硕士学位论文,吉林农业大学,2008.
    [121]李熙英,金海强,贾斌.不同生长年限人参地土壤微生物多样性研究初报[J].延边大学农学学报,2011,33(2):1 33-136.
    [122]李晓明,赵日丰,张亚玉.老参地栽参问题的研究进展[J].特产研究,1997,2:31-33.
    [123]李勇,刘时轮,易茜茜,等.不同栽培年限人参根区土壤微生物区系变化[J]. 安徽农业科学,2010,38(2):740-741.
    [124]李振高,潘映华,李良谟.不同基因型小麦根际细菌及酶活性的动态研究[J].土壤学报,1993,30(1):1-8.
    [125]李智卫,王超,陈伟,等.不同树龄苹果园土壤微生物生态特征研究[J].土壤通报,2011,42(2):302-306.
    [126]林娟,殷全玉,杨丙钊,等.植物化感作用研究进展[J].中国农学通报,2007,23(1):68-72.
    [127]林生,庄家强,陈婷,等.不同年限茶树根际土壤微生物群落PLFA生物标记多样性分析[J].生态学杂志,2013,32(1):64-71.
    [128]林文雄,熊君,周军建,等.化感植物根际生物学特性研究现状与展望[J].中国生态农业学报,2007,15(4):74-81.
    [129]刘红彦,王飞,王永平,等.地黄连作障碍因素及解除措施研究[J].华北农学报,2006,21(4):131-132.
    [130]刘素慧,刘世琦,张自坤.大蒜连作对其根际土壤微生物和酶活性的影响[J].中国农业科学,2010,43(5):1000-1006.
    [131]泷岛.防治连作障碍的措施[J].日本土壤肥料学杂志,1983,2:170-178.
    [132]乜春兰,冯振中,周镇.苯甲酸和对-羟基苯甲酸对西瓜种子发芽及幼苗生长的影响[J].中国农学通报,2007,23(1):237-239.
    [133]任跃英,陈红梅,王秀全,等.人参种植业的若干问题分析[J].中药材,2001,24(10):753-755.
    [134]松本满夫,等.不同地区连作水稻根面丝状真菌的研究[J].日本土壤肥料学杂志,1978,49:443-447.
    [135]宋亮,潘开文,王进闯,等.酚酸类物质对苜蓿种子萌发及抗氧化物酶活性的影响[J].生态学报,2006,26(10):3393-3403.
    [136]宋晓霞.人参土壤微生物群落结构变化[D].北京,硕士学位论文,中国农业科学院,2009.
    [137]王筠默.人参药理研究的进展[J].人参研究,2001,13(3):2-9.
    [138]王倩,孙会军,孙令强.化感物质及作用机理[J].中国蔬菜,2005,(增刊):70-74.
    [139]王雪山,杜秉海,姚良同,等.种植年限对牡丹根际土壤微生物群落结构的影响[J].山东农业大学学报,2012,43(4):508-516.
    [140]王雪山.种植年限对牡丹根际土壤微生物群落结构的影响[D].山东,硕士学位论文,山东农业大学,2012.
    [141]王玉萍,赵杨景,邵迪,等.西洋参根系分泌物的初步研究[J].中国中药杂志,2005,30(3):229-231.
    [142]吴凤芝,王学征.设施黄瓜连作和轮作中土壤微生物种群多样性的变化及其 与产量品质的关系[J].中国农业科学,2007,40(10):2274-2281.
    [143]吴文祥.烟草自毒物质及其对根际土壤微生物的影响[D].福建,硕士学位论文,福建农林大学,2010.
    [144]谢忠凯,肖桂秀,杨振玲,等.长白山区新林地人参栽培土壤养分动态变化研究[J].人参研究,2006,1:10-12.
    [145]许艳丽.重迎茬大豆土壤微生物生态分布特征研究[A].见:许艳丽,韩晓增.大豆重迎茬研究[M].哈尔滨:哈尔滨工程大学出版社,1995,12-16.
    [146]杨利民,陈长宝,王秀全,等.长白山区参后地生态恢复与再利用模式及其存在的问题[J].吉林农业大学学报,2004,5:546-549,553.
    [147]易思荣,黄娅,肖波,等,濒危植物银杉根际微生物群落动态变化研究[J].西南大学学报,2012,34(12):48-53.
    [148]于德荣,王韵秋,孟繁莹,等.新林土和老参地土壤微量元素的测定[J].土壤通报,1983,4:44-45.
    [149]袁光林,马瑞霞,刘秀芬,等.化感物质对土壤脲酶活性的影响[J].环境科学,1998,19(2):55-57.
    [150]袁龙刚,张军林,张朝阳.连作对辣椒根际土壤微生物区系影响的初步研究[J].陕西农业科学,2006,2:49-50.
    [151]岳冰冰.烤烟连作改变了根际土壤微生物的多样性[D].吉林,硕士学位论文,东北林业大学,2012.
    [152]湛方栋,陆引罡,关国经,等.烤烟根际微生物群落结构及其动态变化的研究[J].土壤学报,2005,42(3):488-494.
    [153]张连学,陈长宝,王英平,等.人参忌连作研究及其解决途径[J].吉林农业大学学报,2008,30(4):481-485,491.
    [154]张梦昌,金裕姬,马晶,等.老参地改良后微生物生态类群的变化[J].吉林农业大学学报,1990,12(4):42-46.
    [155]张瑞福,曹慧,崔中利,等.土壤微生物总DNA的提取和纯化[J].微生物学报,2003,43(2):276-282.
    [156]张向东,何伟.不同种植年限黄芩田土壤微生物数量特征研究[J].山西农业科学,2011(4):3-5.
    [157]张亚玉,孙海,宋晓霞,等.农田栽参根区土壤微生物结构特征的研究[J].吉林农业科学,2010,35(6):32-36.
    [158]张亚玉,孙海,宋晓霞.林下参根区土壤微生物群落结构的研究[J].水土保持研究,2011,18(2):169-173.
    [159]张重义,林文雄.药用植物的化感自毒作用与连作障碍[J].中国生态农业学报,2009,17(1):189-196.
    [160]赵青云,王辉,王华,等.种植年限对香草兰生理状况及根际土壤微生物区系的影响[J].热带作物学报,2012,33(9):1562-1567.
    [161]赵曰日丰,李晓明.土壤中A13+对人参的危害[J].特产研究,1998,3:38-42.
    [162]甄文超,王晓燕,孔俊英,等.草莓根系分泌物和腐解物中的酚酸类物质及其化感作用[J].河北农业大学学报,2004,27(4):74-78.
    [163]周宝利,孙传齐,韩琳,等.邻苯二甲酸二丁酯对茄子根际土壤黄萎菌数量及土壤微生物组成的影响[J].华北农学报,2010,25(6):150-153.
    [164]周宝利,韩琳,尹玉玲,等.化感物质棕榈酸对茄子根际土壤微生物组成及微生物量的影响[J].沈阳农业大学学报,2010,41(3):275-278.
    [165]朱广军,王明道,吴宗伟,等.地黄根区土壤潜在化感物质的GC-MS分析[J].河南科学,2007,25(2):255-257.
    [166]庄岩,吴凤芝,杨阳,等.轮套作对黄瓜土壤微生物多样性及产量的影响[J].中国农业科学,2009,42(1):204-209.
    [167]邹丽芸.西瓜根系分泌物对西瓜植株生长的化感作用[J].福建农业科技,2005,4:30-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700