用户名: 密码: 验证码:
海岛棉枯萎病抗性相关基因的克隆及功能验证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新疆是中国唯一的海岛棉种植基地。海岛棉比起陆地棉有着纤维长度、比强度、细度等方面优异的特性,是纺高支纱必不可缺少的原料,在国民经济中具有举足轻重的地位。然而海岛棉枯萎病的蔓延严重制约着其生产,影响了棉农种植海岛棉的积极性,使新疆海岛棉种植面积及产量都大幅度下降。棉花抗病新品种的选育和种植是解决这个难题的有效途径之一。培育抗病棉花新品种的关键是要研究海岛棉抗枯萎病的机理机抗病相关基因的作用,从而在分子水平上对海岛棉加以改良,获得具有高抗特性的棉花新品种。
     本研究首先以定位到的与海岛棉枯萎病抗性基因紧密连锁的分子标记为基础,通过对功能标记位点的克隆,获得抗性相关基因的全序列;利用RT-PCR研究该基因的表达特性,并通过转化烟草进一步揭示该基因在枯萎病抗性中的作用,结果如下:
     1.根据GenBank数据库上公布的抗病基因序列,设计出107对RGA引物,利用高抗枯萎病的海岛棉品系“06-146”、高感枯萎病的海岛棉品种新海14号及以杂交F_2群体中随机选取的180个单株为实验材料,利用RGA引物在亲本间筛选出来的12对引物在抗、感基因池中进行筛选,初步确定Gbrga14是与海岛棉枯萎病紧密连锁的分子标记,该分子标记与海岛棉枯萎病抗性的交换值为15.5%,与海岛棉抗枯萎病基因的遗传距离为15.92cM。查找连锁标记的来源发现,根据拟南芥RPP5基因设计的引物最多,有4对(占33.33%)。这12对具有多态性的RGA标记主要由3类组成,其中TIR-NBS-LRR类6对,占50%;NBS-LRR类5对,占41.67%; NBS类1对,占8.33%。
     2.通过对Gbrga14在两亲本间扩增出来的位点进行回收测序,以该测序片段为探针,通过同源克隆的方法,分别克隆到两条抗性相关基因,命名为RGBCH和SGBCH。BLAST比对分析显示,RGBCH、SGBCH基因具有较高的基因多态性。生物信息学分析表明,α-螺旋均是两个蛋白二级结构的主要部分。ProtFun预测RGBCH蛋白的主要功能是参与能量代谢和生物合成辅助因子;SGBCH蛋白的主要功能是参与蛋白质翻译过程中的能量转换。
     3.选取5份不同的海岛棉及陆地棉材料,经枯萎病诱导后,取不同的组织器官分别进行荧光定量PCR检测。利用特异性引物GBCH–Q对材料的荧光定量PCR分析可知:品系“06-146”目的基因在不同组织器官的表达量在4d达到峰值;新海14号目的基因在6d时出现一个最高值,随后降低到最初水平;中棉所35号、军棉1号和TM-1在诱导前和诱导后表达量均很微弱或者比较一致,基本维持在低水平表达;利用引物StVe-Q对材料的荧光定量PCR分析可知:品系“06-146”、新海14号、中棉所35号、军棉1号和TM-1的目的基因在病菌诱导条件下,没有随着诱导时间的变化而呈现表达变化状态。说明已克隆的RGBCH和SGBCH只在海岛棉材料中表达,是与枯萎病抗性相关的两个基因。
     4.将RGBCH、SGBCH基因重组到pCAMBIA1301植物表达载体上,构建了海岛棉pCAMBIA1301-RGBCH、pCAMBIA1301-SGBCH的植物表达载体,同时利用农杆菌介导的方法将RGBCH、SGBCH基因整合到烟草基因组中,并获得T1代种子。对T1代转基因及非转基因烟草采用菌液浇根法(每种材料种植30株),转RGBCH基因植株的存活率为78%,叶片呈显黄化状态,,而转SGBCH基因大部分的叶片干枯直至死亡,植株的存活率为24%,非转基因植株几乎全部死亡。研究表明转RGBCH基因的转入提高了烟草的抗枯萎病病菌的能力。
Cotton is the main cash crops,which has a pivotal position in the national economy.Xinjiangcotton district,as the main raw cotton production base,which has an important role in the wholecountry.Fusarium Wilt is one of the main diseases of serious harm to the cotton production,breeding and planting new disease-resistant varieties of cotton is the most cost-effective only wayto solve this problem.Using traditional breeding methods to cultivate the new varieties needs toolong cycle,and it is unable to meet the urgent need of the production,so cloning of resistance geneand studying of the gene expression have great significance in breeding for disease resistance.
     In this study,resistance to Fusarium wilt resistance to sea-island cotton tightly linkedmolecular markers sites,obtaining the sequence of resistance related genes;And then using theprocess of Fusarium Wilt pathogen infection of cotton resulting in the onset,in order to clear theabove gene expression level,further to explain the role of this gene in resistance to Fusarium Wilt.The results are as follows:
     1. Resistance gene sequence published in the GenBank database,designed107pairs the RGAprimers,the use of high resistance to Fusarium wilt Island Cotton “06-146”highly susceptible toFusarium wilt Island Cotton Xinhai14andmiscellaneous home F2groups randomly select180plant materials,use of RGA primer material between parent screening out12pairs of primersmatter screening anti,sense gene pool, preliminary to determine Gbrga14island cotton wilt diseaseclosely linked to themolecular markers,molecular markers and the Sea Island cotton wilt diseaseresistance exchange values were15.5%, and Sea Island cotton resistance to Fusarium wilt genegenetic distance to15.92cm.Finding the source of the linked markers found,according to theprimers of the Arabidopsis thaliana the RPP5gene design,4(33.33%). This12pairs ofpolymorphic RGA markers mainly composed of three classes, which TIR-NBS-LRR class of sixpairs, accounting for50%; NBS-LRR class of five pairs, accounting for41.67%; NBS class1pair,accounting for8.33%.
     2. The through on for recycling Gbrga14loci amplification between the two parentalsequencing,the sequencing fragment as a probe,by means of silico cloning method,obtaining twodisease-resistant gene, named into RGBCH and SGBCH,BLAST alignment analysis showed thatRGBCH、SGBCH possess a high genetic polymorphism.Bioinformatics analysis showed that theα-helix is the main part of the secondary structure of the two proteins.ProtFun forecasted the mainfunction of the RGBCH protein is participating energy metabolism and biosynthesizingcofactors;The main function of the SGBCH protein is participating energy conversion in theprocess of protein translation.
     3. Induced by Fusarium oxysporum five different materials in different tissues and fluorescence quantitative PCR using two primers,respectively,the results show, the use of thespecific primers GBCH-Q material quantitative PCR analysis shows:“06-146”strainsthe targetgene expression in different tissues4d peak;Xinhai14target genes in6d there is a maximumvalue, and then decreased to the original level;Zhongmiansuo35,Junmian1cotton and TM-1inthe induction ofbefore and after the induction of expression of the volume is very weak orrelatively consistent,remaining at a low level of expression, quantitative PCR analysis of thematerial shows through the use of primers StVe-Q:lines “06-146”,Xinhai14,Zhongmiansuo35,Junmian1cotton and TM-1target gene in the bacteria-induced conditions,there is no change withthe induction time showing expression status.Description the cloned RGBCH、SGBCH onlyexpressed in Sea Island cotton material,two genes associated with resistance to Fusarium wilt.
     4. RGBCH and SGBCH recombinating into pCAMBIA1301plant expression vector,constructing plant expression vector pCAMBIA1301-RGBCH and pCAMBIA1301-SGBCH,RGBCH and SGBCH gene integrated into the tobacco genome using of agrobacterium-mediatedmethod,obtaining T1generation seeds.T1transgenic and non-transgenic tobacco broth poured rootmethod(Each material of30planting),Turn RGBCH gene most of the leaves were yellowing, plantsurvival rate was78%,while the survival rate of to turn SGBCH transgenic plants to24%,most ofthe leaves dry death,non-transgenic plants almost all died.These results suggest that the genetransferred RGBCH tobacco resistance to Fusarium wilt bacteria.
引文
[1]冯肇传.美棉枯萎病之诊断及其防除方法[M].北京:天津棉鉴,1931,2:53-54.
    [2]孔庆平.我国海岛棉生产概况及比较优势分析[J].中国棉花,2002,29(12):19-22.
    [3] Flor.Current status of the gene-for-gene concept[J].Annual Review Phytopathology,1971,9:275-296.
    [4]王关林,方宏筠.植物基因工程[M].北京:科学出版社,2002.
    [5]王金生.分子植物病理学[M].中国农业出版社,1999.
    [6] Yu Y G,Buss G R,Saghai Maroof M A.Isolation of a superfamily of candidate disease-resistancegenes in soybean based on a conserved nucleotide-binding site[J]. Proceedings of the NationalAcademy of Sciences,1996,93:11751-11756.
    [7] Kanazin,MarekL,Shoemaker.Resistance gene analogs are conserved and clustered in soybean[J].Proceedings of the National Academy of Sciences,1996,93:11746-11750.
    [8] Leister D,Ballvora A,Salamini F.A PCR-based approach for isolating pathogen resistance genefrom potato with potential for wide application in plant[J].Nature Genetics,1996,13:421-429.
    [9]王石平,刘克德,王江等.用同源序列的染色体定位寻找水稻抗病基因DNA片段[J].植物学报,1998,40:42-50.
    [10]薛勇彪,唐定中,张燕生等.水稻基因组中R类抗病基因同源序列区的分离[J].科学通报,1998,43:277-281.
    [11] Speculman,Bouchez,Holub,et al.Diseaes resistance geng homologs correlate with diseaseresistance loci of Arabidopsis thaliana[J].The Piant Journal,1998,14:467-474.
    [12] Seah S,Sivasithamparam K,Karakousis A,et al.Cloning and characterization of a family ofdisease resistance gene analogs from wheat and barley[J].Theoretical&Applied Genetics,1998,97:937-945.
    [13] Mago R,Nair S,Mohan M.Resistance gene analogues from rice:cloning swquence andmapping[J].Theoretical&Applied Genetics,1999,99:50-57.
    [14] Leister D,Kurth J,Schulze P,et al.RFLP and physical maping of resistance homologues inrice(Q.sative) and Barley(H.vulgare)[J].Theoretical&Applied Genetics,1999,98:509-520.
    [15]李子银,陈受宜.水稻抗病基因同源序列的克隆、定位及表达[J].科学通报,1999,44(7):727-733.
    [16]郑先武,翟文学,李晓兵等.水稻NBS-LRR类R基因同源序[J].中国科学(C辑),2001,31(1):43-50.
    [17]贺超英,张志永,陈受宜.大豆中NBS类抗病基因同源序列的分离与鉴定[J].科学通报,2001,46(12):1017-1021.
    [18].王邦俊,张志刚,李学刚等.大豆抗病基因同源序列的克隆与分析[J].植物学报,2003,45(7):846-870.
    [19] Lee S Y,Seo J D,et al.Comparative analysis of superfamilies of NBS-encoding disease resistancegene analogs in cultivated and wild apple species[J].Molecular Genetics&Genomics,2003,269:101-108.
    [20]涂礼莉,张献龙,朱龙付等.海岛棉NBS类型抗病基因类似物的起源、多样性及进化[J].遗传学报,2003,30(11):1071-1077.
    [21]张增艳,许景升,刘耀光等.利用中间堰麦抗病基因同源序列分离黄矮病抗性候选基因克隆[J].作物学报,2004,30(3):189-195.
    [22] Martinez Zamora M G,Gastagnaro J C.Isolation and diversity analysis of resistance geneanalogues(RGA) from cultivated and wild strawberries[J].Molecular Genetics&Genomics,2004,272:480-487.
    [23] Irigoyen M L,Loarce Y.Isolation and mapping of resistance gene analogs from the Avena strigosagenome[J].Theoretical&Applied Genetics,2004,109:713-724.
    [24] Hinchliffe D J,Lu Y Z.Resistance gene analogue marker are mapped to homeologouschromosomes in cultibated tetraploid cotton[J].Theoretical&Applied Genetics,2005,110:1074-1085.
    [25] Bayran Yuksel,James C.Estill.Orgaization and evolution of resistance gene analogs in peanut[J].Molelar Genetics&Genomics,2005,274:248-263.
    [26] Xu Q,Wen X P,Deng X X.Isolation of TIR and nonTIR NBS-LRR resistance gene analogues andidentification of molecular marker linked to a powdery mildew resistance locus in chestnutrose(Rosa roxburghii Tratt)[J].Theoretical&Applied Genetics,2005,111:819-830.
    [27] Fenillet C.Molecular cloning of a new receptor-link kinase gene encoded at the Lr10diseaseresistance locus of wheat[J].The Plant Jouranl,1997,11:45-52.
    [28] Bendahmane A,Querci M,Kanyuka K,et al.Agrobacterium transient expression system as a toolfor isolation of disease resistance gene:application to the Rx2locus in potato[J].The PlantJouranl,2000,21:73-81.
    [29]王俊美,孙燕飞,刘红彦,等.白粉菌诱导的小麦类萌发素蛋白的克隆、定位及表达分析[J].中国农业科学,2009,42(9):3104-3111.
    [30]张龙雨,李红霞,张改生,等.黏类小麦细胞质雄性不育相关基因cMDH的克隆与表达分析[J].作物学报,2009,35(9):1620-1627.
    [31]张毅,张岗,董艳玲,等.条锈菌诱导的小麦MBF1转录辅激活因子基因的克隆及其特征分析[J].作物学报,2009,35(1):11-17.
    [32]段迎辉,郭军,王淑娟,等.小麦丙氨酸氨基转移酶基因TaAlaAT1的克隆及表达特征分析[J].植物病理学报,2009,39(2):139-146.
    [33]易乐飞,王萍,周向红,等.条斑紫菜半胱氨酸合成酶基因的电子克隆与分析[J].中国水产科学,2009,16(4):518-524.
    [34]张锋,崔百明,黎娟华.棉花生长素应答因子克隆和序列分析[J].生物技术通报,2007,5:160-162.
    [35]于海川,吴娇,崔百明,等.棉花中两个新的F-box蛋白基因的克隆与表达分析[J].棉花学报,2008,20(2):99-104.
    [36]孙涌栋,张传来,罗未蓉,等.黄瓜CsEXP10基因的电子克隆及生物信息学分析[J].生物信息学,2008,03:113-116.
    [37]蒋圣娟,孙玉军,张强,等.花生致敏蛋白Ara h1的电子克隆及生物信息学分析[J].安徽科技学院学报,2009,23(2):31-37.
    [38]胡守景,张治礼.一个新的玉米WRKY基因识别及其生物信息学分析[J].江西农业学报,2008,20(6):23-26.
    [39]杜金昆,姚颖垠,倪中福,等.一个玉米(Zea. MaysL.)杂交种增强表达的GA20氧化酶新基因(ZMGA20)的克隆和鉴定[J].自然科学进展,2008,18(8):874-882.
    [40]边鸣镝,吴忠义,张秀海,等.玉米蛋白激酶基因ZmPti1-1的cDNA克隆及其表达特性[J].华北农学报,2008,23(6):36-40.
    [41]边鸣镝,邓川,白忠义.玉米类受体蛋白激酶基因ZmLRRPK1的cDNA克隆与表达分析[J].中国生物工程杂志,2009,29(7):33-36.
    [42]马小龙,刘颖慧,袁祖丽,等.玉米蔗糖转运蛋白基因ZmERD6cDNA的克隆与逆境条件下的表达[J].作物学报,2009,35(8):1410-1417.
    [43]易乐飞,王萍,周向红.向日葵BADH基因部分序列的克隆与分析[J].安徽农业科学,2008,36(32):143-144.
    [44]易乐飞,王萍,孟鹏.向日葵甜菜碱醛脱氢酶的电子克隆与分析[J].作物杂志,2007,6:54-64.
    [45]化文平,王结之.向日葵异戊烯焦磷酸异构酶基因(ipi)的电子克隆和生物信息学分析[J].植物生理学通讯,2008,44(1):81-86.
    [46]崇保强,谭小力,周佳,等.油菜长链酰基辅酶A合成酶基因(LACS4)的电子克隆和表达分析[J].江苏农业科学,2009,25(1):38-43.
    [47]李雅轩,李蕊,孟凡臣,等.大豆吡哆醛激酶基因的克隆与表达分析[J].华北农学报,2009,24(3):23-27.
    [48]李蕊,孟宪萍,胡英考,等.大豆吡哆醇生物合成蛋白基因(PDX)的电子克隆和进化分析[J].华北农学报,2007,22(1):64-68.
    [49]李晓晓,李蕊,李雅轩,等.大豆脱氢抗坏血酸还原酶基因的电子克隆及进化分析[J].大豆科学,2007,26(1):45-50.
    [50] ZHANG C,YU Y,ZHANG S,et al.Characterization,chromosomal assignment,and tissueexpression of a novel humangene belonging to the ARF GAP family[J].Genomics,2000,63(3):400-408.
    [51] WEI M H,KARAVANOVA I,IVANOV S V,et al.In silicoinitiated cloning and molecularcharacterization of a novel human member of the L1gene family of neural cell adhesionmolecules[J].Human Genetics,1998,103(3):355-364.
    [52] HOSOI T,KOGUCHI Y,SUGIKAWA E,et al.Identification of a novel human eicosanoidreceptor coupled to G(i/o)[J].The Journal of Biological Chemistry,2002,277(35):31459-31465.
    [53]何旭平,潘光照,张敏建,等.国外棉花枯萎病研究进展[J].中国棉花,1999,26(5):4-5.
    [54]黄芳仁.棉作枯萎病的初步观察报告[R].北京:中华农学会报,1934,125:85-97.
    [55]沈其益.中国棉作病害[M].北京:中央棉产改进所丛刊第一号,1936:41-49.
    [56]陈其瑛,孙文姬.棉枯萎镰刀菌的致病性和种的鉴定[J].植物病理学报,1986,16(4):204-208.
    [57]陈吉棣.棉花萎蔫病抗病机制研究概况[J].植物保护,1964,2(2):76-82.
    [58]冯洁,陈其煐,石磊岩.棉花幼苗根系分泌物与枯萎病关系的研究[J].棉花学报,1991,3(1):89-96.
    [59]宋晓轩,朱荷琴.苗床病圃法鉴定棉花品种资源抗枯萎病性研究[J].江西棉花,1994,26(2):57-61.
    [60]王纯利,王冬梅,黄炜,等.西瓜枯萎病菌致病力与镰刀菌酸和β-1,4葡萄糖苷酶活性的关系研究[J].新疆农业大学学报,2000,23(1):126.
    [61]王贺祥,徐孝华.棉花枯萎病菌镰刀菌酸的产生和致病力的关系[J].植物病理学报,1988,18(2):37-40.
    [62]仇元,吕金殿.棉花黄萎病菌培养滤液及其应用的初步研究[J].西北农林科技大学学报(自然科学版),1978,1:1-11.
    [63]吕金殿,甘莉.棉花黄萎病菌毒素的纯化与特性研究[J].植物病理学报,1991,21(2):129-133.
    [64]李琼芳,江怀仲,文巧.棉花凝集素在种子形成过程中的消长规律[J].种子,1990,4:18-20.
    [65] Smith A L,Dick J B.Inheritance of resistance to Fusarium wilt in upland and sea island cottons ascomplicated by nematodes under field conditions[J].Phytopath,1960,50:44-48.
    [66] Jone J E.Inheritance of resistance to Fusarium wilt in upland cotton[J].Disa Abs,1961,22:34-35.
    [67] Kappelman A J.Inheritance of resistance to Fusarium wilt in cotton[J].Crop Sci,1971,11:672-674.
    [68] Netzer D.Resistance of inyerspecifiic cotton hybrids to Fusarium wilt[J].Plant Dis,1985,69:712-713.
    [69]沈其益.棉花病害基础研究与防治[M].北京:科学出版社,1992,116-118.
    [70]王远.对棉花抗枯、黄萎病品种选育的几点认识[J].作物学报,1980,6(1):27-34.
    [71]张金发.陆地棉枯萎病抗性基因的等位性测定及连锁分析[J].遗传,1998,20(1):33-36.
    [72]张凤鑫.陆地棉产量组分的遗传与丰产选择[J].中国棉花,1983,5:16-20.
    [73]任爱霞.棉花枯黄萎病抗性遗传及生化机理研究[D].杭州:浙江大学,2002,65-66.
    [74]王振山,马峙英,曲健木.棉花枯黄萎病的抗性基因效应分析[J].河北农业大学学报,1989,12(2):21-25.
    [75] Kanazin V,Frederick M L,Shoemaker R C.Resistance gene analogs are conserved and clusteredin soybean[J].Proceedings of the National Academy of Sciences of the United States ofAmerica,1996,93(21):11746-11750.
    [76] Yu Y G,Buss G R,Saghai Maroof M A.Isolation of a superfamily of candidate disease-resistancegenes in soybean based on a conserved nucleotide-binding site[J].Proc.Natl.Acad.Sci.USA,1996,93:11751-11756.
    [77] Meyers,Kozik,Griego,et al. Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis[J]. Plant Cell,2003,15:809-834.
    [78] Meyers,Chin,Shen,et al. The major resistance gene cluster in lettuce is highly duplicated andspans several megabases[J].Plant Cell,1998,10:1817-1832.
    [79] Collins,Webb,Seah,et al.The isolation and mapping of disease resistance gene analogs in maize[J].Molecular Plant-Microbe Interactions,1998,11(10):968-978.
    [80] Collins,Drake,Ayliffe,et al.Molecular characterization of the maize RpI-D rust resistancehaplotype and its mutants[J].Plant Cell,1999,11(7):1365-1376.
    [81] Chen,Line,Leung.Genome scanning for resistance gene analogs in rice,barley and wheat by highresolution elctrophoresis[J].Theor AppI Genet,1998,97(3):345-355.
    [82] Shi Z X,Chen X M,Line R F,et al.Develop-ment of resistance gene analog polymorphismmarkers for the Yr9gene resistance to wheat stripe rust[J].Genome,2001,44(4):509-516.
    [83] Fourmann,Florence Charlot,et al.Expression mapping and genetic variability of Brassica napusdisease resistance gene analogues[J].Genome,2001,44:1083-1099.
    [84] Graham,Marek,Lohnes,et al.Expression and genome organization of resistance gene analogs insoybean[J].Genome,2000,43(1):86-93.
    [85] Quint M,Mihaljevic R,Dussle CM,et al.Development of RGA-CAPS markers and geneticmapping of candidate genes for sugarcane mosaic virus resistance in maize[J].Theor Appl Genet,2002,105(2-3):355-363.
    [86] Madsen,Collins,Rakwalska,et al.Barley disease resistance gene analogs of the NBS-LRR class:identification and mapping [J].Mol Genet Genomics,2003,269(1):150-161.
    [87] Di Gaspero,Gcipriani G.Resistance gene analogs are candidate markers for disease-resistancegenes in grape(Vitis spp.)[J].Theor APPI Genet,2002,106(l):163-72.
    [88] Donald T M,Adam Blondon A F,Thomas M R,et al.Indentification of resistance gene analogouslinked to a powdery mildew resostance locus in grapevine[J].Theor Appl Genet,2002,104:610-618.
    [89] Mohler V,Klahr A,Wenzel G,et al.Aresistance gene analog useful for targeting disezse resistancegenes against different pathogens on group IS chromosomes of barley,wheat and rye[J].Theoretical and Applied Genetics,2002,105:364-368.
    [90] Hunger,Gaspero,Mohring,et al.Isolation and linkage analysis of expressed (Beta rulgaris)[J].Genome,2003,46(1):70-82.
    [91] Radwan,Bouzidi,Vear,et al.Identification of non-TIR-NBS-LRR markers linked to the Pl5/Pl8locus for resistance to downy mildew in sunflower[J].Theor Appl Genet,2003,106:1348-1446.
    [92] Byme,McMullen,Snook,et al.Quantitative trait loci and metabolic pathways: genetic control ofthe concentration of maysin,a corn earworm resistance factor in maize silks[J].Proc Natl AcadScience,1996,93(17):8820-8825.
    [93] Geffory,Sevignac,De Oliveira,et al.Inheritance of partial resistance against Colletotrichumlindemuthianum in Phaseolus vulgaris and w-localization of quantitative trait loci with genesinvolved in specific resistance[J].Plant Microbe Interact,2000,13(3):287-296.
    [94] Zhang D P,Rossel G,Kriegner A,et al.AFLP assessment of diversity in sweetpotato from LatinAmerica and the Pacific region:Its implication on the dispersal of the crop[J].Genet Resour CropEvol,2004,51:115-120.
    [95] Flandez-Galvez,Ford,Pang,et al.An intraspecific linkage map of the chickpea(Cicer arietinamL.)genome based on sequence tagged microsate llite site and resistance gene analog makers[J].Theor Appl Genet,2003,106(8):1447-1456.
    [96] RamalingamJ,Vera Cruz C M,Kukreja K,et al.Candidate defense genes from rice,barley,andmaize and their association with qualitative and qualitative resistance in rice[J].Molecular plant-microbe interaction,2003,16:14-24.
    [97] Tatineni V,Cantrell RG,Davis DD.Genetic diversity in elite cotton germplasm determined bymorphological characteristics and RAPDs[J].Crop Sci,1996,36:186-192.
    [98]孙涛,卢美光,简桂良,等.棉花NBS类抗病基因类似物的生物信息学分析[J].棉花学报,2005,17(3):182-183.
    [99]吴征彬,刘国权,郭介华,等.棉花抗枯萎病鉴定技术及抗性指标研究[J].湖北农业科学,1999(1):19-20.
    [100]丁国华,池春玉,王桂玲,等.植物抗病基因同源序列研究进展[J].中国农学通报,2006,22(1):38-41.
    [101] Michelmore.Identification of markers linked to disease resistance genes by bulked segregantanalysis: A rapid method to detect markers in specific genomic regions by using segregatingpopulations[J]. Genetics,2008,88:9828-9832.
    [102] Kosambi.The estimation of map distances from recombination values [J].Ann Eigen,1994,12:172-175.
    [103]兰彩霞.普通小麦条锈病和白粉病成株抗性QTL定位[D].中国农业科学院博士学位论文,2010.
    [104] Devos K M,Gale M D.Comparative genetics in the grasses[J].Plant Mol Biol,1997,35:3-15.
    [105] Leister D,Kurth J,Laurice D.RFLP-and physical mapping of resistance genehomologues in rice (O.sativa) and barley (H.vulgare)[J].TheorAppl Genet,1999,98:509-520.
    [106] Dixon M S,Jones D A,Keddie J S,et al.The tomato cf-2disease locus comprises two functionalgenes encoding leucine-rich repeat proteins[J].Cell,1996,84(3):451-459.
    [107]简桂良,赵磊,张文蔚,等.黄萎病不同抗性陆地棉品种抗病基因同源序列生物信息学分析[J].棉花学报,2011,23(6):490-499.
    [108]曹承忠.陆地棉抗黄萎病AFLP和RGA分子标记研究[D].河南农业大学硕士论文,2005.
    [109]雷江荣,王冬梅,李晓荣,等.转SNC1基因棉花抗枯萎病防御酶活性分析[J].华北农学报,2010,25(B12):9-13.
    [110]雷江荣,王冬梅,李建平,等.转SNC1基因抗枯萎病棉花后代组织结构抗性分析[J].新疆农业科学,2010,47(12):2371-2375.
    [111]雷江荣,王冬梅,邵林,等.农杆菌法转化茎尖获得转SNC1基因棉花及其T1植株对棉花枯萎病的抗性[J].分子植物育种,2010,8(2):252-258.
    [112] Cao H,Glazebrook J,Clarke JD,et al.The Arabidopsis NPR1gene that controls systemic acquiredresistance encodes a novel protein containing ankyrin repeats[J]. Cell,1997,88(1):57-63.
    [113] Spoel S H,Koomneef A,Claessens S M C,et al.NPR1modulates cross-talk between salicylate andjasmonate-dependent defense pathways through a novel function in the cytosol[J].Plant Cell,2003,15:760-770.
    [114] Ekengren,Liu Y,Schiff M,et al.Two MAPK cascades,NPR1,and TGA transcription factors play arole in Pto-mediated disease resistance in tomato[J].The Plant Journal,2003,36:905-917.
    [115] Johnson C,Boden E,Arias J.Salicylic acid and NPR1induce the recruitment of trns-activationgTGA factors to a defense gene promoter in Arabidopsis[J].Plant Cell,2003,15:1846-1858.
    [116] Liu G,Holub E B,Alonso J M,et al.An Arabidopsis NPR1-like gene,NPR4,is required for diseaseresistance[J].The Plant Journal,2005,41:304-318.
    [117]王旭静,窦道龙,王志兴,等.海岛棉GbNPR1基因全长cDNA的克隆及其在烟草中的表达[J].中国农业科学,2006,39(5):886-894.
    [118]张红志,蔡新忠.病程相关基因非表达子1(NPR1):植物抗病信号网络中的关键节点[J].生物工程学报,2005,21(4):511-515
    [119]唐益苗.小麦及其近缘植物NPR1类似基因和反转录转座子基因片段的分离和特性分析[D].中国农业科学院博士学位论文,2006.
    [120] Shao, Trimmer.A nest of LTR retrotransposons adjacent the disease resistance-priming gene NPR1in Beta vulgaris L [J].Plant Genomics,2009,20:576-742
    [121] Andersen,Lbberstedt.Functional marker in plants[J].Trends Plant Sci,2003,18(11):554-560.
    [122] Bradury L M T,Robert J H,Jin Q H,et al.A prefect marker for fragrance genotyping in rice[J].MolBreeding,2005,16:279-283.
    [123]杨永存,杨冬燕,王学林,等.植物DNA混合物中物种成分实时荧光PCR定量分析[J].中国卫生检验杂志,2009,19(6):1206-1209.
    [124]陈颖,徐宝梁,苏宁,等.实时荧光定量PCR技术在转基因玉米检测中的应用研究[J].作物学报,2004,30(6):602-607.
    [125]王小花,李建祥,王国卿,等.SYBR Green实时荧光定量PCR检测大豆转基因成分[J].食品科学,2009,30(8):171-176.
    [126]黄东东,翁少萍,吕玲,等.TaqMan MGB实时荧光PCR对转基因大豆定量检测的研究[J].中山大学学报(自然科学版),2008,47(3):140-142.
    [127]简桂良,孙文姬,马存.棉花黄萎病抗性鉴定新方法—无底塑钵菌液浇根法[J].棉花学报,2001,13(2):67-69.
    [128] Bejarano-Alacacar J,Melero-Vara J M,Blanco M A,et al.Influence of inoculum density ofdefoliating and nondefoliating pathltypes of Verticillium dahliae on epidemics of Verticilliumwilt of cotton in southern Spain[J].Phytopathology,1995,85:1474-1481.
    [129] Anderson JP,Badruzsaufari E,Schenk PM,et al.Antagonistic interaction between abscisic acid andjasmonate-ethylene signaling pathways modulates defense gene expression and diseaseresistance in Arabidopsis[J].Plant Cell,2004,16:3460-3479.
    [130] Lorenzo O,Chico JM,Sánchez-Serrano JJ,et al. Jasmonate-insensitive1encodes a MYCtranscription factor essential to discriminate between different jasmonate-regulated defenseresponses in Arabidopsis[J].Plant Cell,2004,16:1938-1950.
    [131] McGrath KC,Dombrecht B,Manners JM,et al.Repressor-and activator-type ethylene responsefactors functioning in jasmonate signaling and disease resistance identified via a genome-widescreen of Arabidopsis transcription factor gene expression[J].Plant Physiol,2005,139(2):949-959.
    [132] Yuan-Li Li,Jie Sun,Gui-Xia Xia.Cloning and characterization of a gene for an LRR receptor-likeprotein kinase associated with cotton fiber development[J].Mol Gen Genomics,2005,273:217-224.
    [133] Paxton Payton,Randy D Allen,Norma Trolinder,et al.Over-expression of hloroplast-targeted Mnsuoeroxide dismutase in cotton does not alter the reduction of photosynthesis after shortexposures to low temperature and lightintensity[J]. Photosynthesis Research,1997,52:233-244.
    [134] Caitriona Dowd,Iain,Helen McFadden.Gene Expression Profile Changes in Cotton Root andHypocotyl Tissues in Response to Infection with Fusarium oxysporum f. sp. Vasinfectum[J].The American Phytopathological Society,2004,17(6):654-667.
    [135]王关林,方宏筠.植物基因工程原理与技术(第二版)[M].北京:科学出版社,2002:123-125.
    [136]张翠芳.棉花抗黄萎病性鉴定体系的优化和抗性机制的研究[D].新疆农业大学硕士学位论文,2010.
    [137] Yuan H Y,Yao L L,Jia Z Q,et al.Verticillium dahlia toxin iduced alterations of cytoskeletons andnucleoli in Arabidopsis thaliana suspension cells[J].Protoplasma,2006,229:75-82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700