用户名: 密码: 验证码:
脂肪因子Sfrp5与肥胖及其相关代谢紊乱的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的:
     随着经济发展和人们生活水平的提高,肥胖已成为现代社会中最常见的营养障碍性疾病。肥胖是代谢性疾病如2型糖尿病的易感因素,经常与脂肪组织的低炎症状态相关。脂肪组织作为内分泌器官在这种“炎症”状态中发挥的作用也引起了高度关注(4)。脂肪组织中促炎细胞因子和抗炎细胞因子的分泌失调是造成人体肥胖的重要原因。
     分泌型卷曲相关蛋白-5(Sfrp5)是一种新鉴定的抗炎脂肪因子,是分泌卷曲相关蛋白(secreted Frizzled-related protein,SFRP)家族中的一员,它可以抑制慢性炎症状态,最终增加胰岛素敏感性,在肥胖以及糖尿病小鼠模型中表达下调。研究表明这些蛋白的一个共同特征为拥有一个富含半胱氨酸的区域(cysteine-rich domain,CRD),该区域与Wnt受体Frizzled蛋白的CRD具有高度同源性。因此,SFRP蛋白家族可与Frizzled蛋白受体竞争结合Wnt配体,从而对Wnt通路发挥负调控作用。Sfrp5的抗炎作用是通过与脂肪组织表达的Wnt5a结合,抑制Wnt非经典通路的下游靶点JNK的活化,进而减少炎症因子的分泌,并拮抗胰岛素受体底物-1(IRS-1)丝氨酸307磷酸化而实现(3,6)。脂肪细胞分化与糖及脂肪代谢、胰岛素抵抗、2型糖尿病、高脂血症等有非常密切的关系(7)。
     本研究的目的是以3T3-L1前脂肪细胞为研究对象,观察3T3-L1前脂肪细胞诱导分化过程中Sfrp5表达和分泌的变化趋势。并建立胰岛素抵抗细胞模型,检测建模及罗格列酮、二甲双胍药物干预后Sfrp5mRNA表达和蛋白分泌的变化。并探讨非糖尿病个体血清中脂肪因子SFRP5水平与肥胖、胰岛素抵抗的相关性。
     方法:
     体外培养3T3-L1脂肪前体细胞,应用1-甲基-3-异丁基黄嘌呤(IBMX)、地塞米松、胰岛素诱导其分化,予以1μM地塞米松、100nM胰岛素及10ng/l TNF-a、10μM罗格列酮及1mM二甲双胍干预分化第6天的3T3-L1细胞过夜(24小时)。采用RT-PCR、ELISA技术检测不同分化时间、调节因素下脂肪细胞Sfrp5mRNA表达以及上清中蛋白分泌水平。
     将244例受试者按体重指数(BMI)分为对照组(77例,BMI<24kg/m2)和超重及肥胖组(170例,BMI≥24kg/m2)。ELISA法测定血清SFRP5水平。数据分析采用SPSS17.0版本,描述性结果采用均值±标准差,两组间比较采用T检验;两变量相关分析运用Pearson相关;多元逐步线性回归用于调整协变量的影响和检验独立因素。在所有分析结果中P<0.05被认为有显著统计学意义。
     结果:
     (1) Sfrp5在3T3-L1前脂肪细胞无表达,随着前脂肪细胞分化成熟,该基因转录、蛋白分泌水平逐渐上调, mRNA转录水平在第9天达到高峰(45±6倍, P <0.001)),上清中蛋白的分泌延迟于mRNA表达,在分化第5-6天可以检测到。
     (2)1μM地塞米松、100nM胰岛素及10ng/l TNF-a分别使成熟脂肪细胞的Sfrp5mRNA表达水平减少25%(P<0.01)、43%(P<0.01)、58%(P<0.01),上清中蛋白分泌水平减少10%(P<0.05)、28%(P<0.01)、40%(P<0.01)、57%(P<0.01);
     (3)10μM罗格列酮、1mM二甲双胍分别使成熟脂肪细胞的Sfrp5mRNA表达量增加25%(P<0.01)、28%(P<0.01),上清中蛋白分泌量增加20%(P<0.01)、28%(P<0.01)。
     (4)在总体受试者中,肥胖组血清中Sfrp5的水平显著低于对照组(4.46±0.72vs4.69±0.64ng/ml,P<0.05)。
     (5)血清Sfrp5水平与年龄、BMI、收缩压、舒张压、平均压、尿酸无明显相关性(P>0.05),血清Sfrp5水平与女/男性别比、腰臀比、总胆固醇、甘油三酯、低密度脂蛋白胆固醇、空腹血糖、FINS、HOMA2-%B、HOMA2-IR之间存在显著负相关(r值分别为-0.168,-0.134,-0.132,-0.154,-0.146,-0.161,-0.312,-0.228,-0.281,P<0.05)。血清Sfrp5与高密度脂蛋白胆固醇之间存在显著正相关(r值为0.171,P <0.05)。
     (6)经过年龄、性别、BMI、腰臀比校正,Sfrp5仍可作为一个独立的变量与胰岛素抵抗呈显著负相关(β=-0.425,P<0.001)。
     结论:
     (1) Sfrp5在促进前脂肪细胞的分化过程中可能起着重要作用。
     (:2) Sfrp5的表达和分泌的下调与胰岛素抵抗的发生密切相关。
     (3)罗格列酮、二甲双胍抑制组织慢性炎症状态、改善胰岛素抵抗部分是通过增加成熟脂肪细胞中Sfrp5的生成和分泌来实现的。
     (4)血清Sfrp5水平与HOMA2-IR呈显著负相关,提示这种新的脂肪因子可能在肥胖、胰岛素抵抗的病理生理机制中发挥作用。
Background and objective:
     Increased incidences of obesity have unfortunately become concurrent with rapideconomic development and improved living standards in the modern society. Obesity, acommon disease of nutritional disturbance, leads to metabolic diseases such as type2diabetes mellitus(1). Obesity is also related to impairments in the endocrine functions ofadipose tissues, such as low inflammatory conditions(2-4).The main cause of human obesityis the secretion imbalance of pro-and anti-inflammatory cytokines in adipose tissues(5).
     Secreted frizzled-related protein (SFRP)-5(Sfrp5), a newly identifiedanti-inflammatory adipokine, can inhibit chronic inflammation and consequently improveinsulin sensitivity. Sfrp5expression is abundant in mouse adipocytes, but is decreased invarious rodent models, such as obesity and type2diabetes(6). Studies show that one of thecommon features of SFRPs is a cysteine-rich domain (CRD), which has a high homologywith the CRD of the wingless-type (Wnt) receptor frizzled protein. Therefore, SFRPs couldcompete with the frizzled protein receptor in combining with the Wnt ligand, and Sfrp5plays a negative regulatory role in the Wnt pathway(7,8). The anti-inflammatory function ofSfrp5is enabled by its combination with Wnt5a expressed in adipose tissues, therebyinhibiting the activation of the downstream target c-Jun N-terminal kinase (JNK) ofnon-canonical Wnt signaling. Consequently, the secretion of pro-inflammatory cytokines islimited, and the insulin receptor substrate-1serine307phosphorylation is antagonized(6,9).Adipocyte differentiation is closely related to glucose and lipid metabolism, insulinresistance (IR), type2diabetes mellitus, hyperlipoidemia, etc(10). Therefore, changes inSfrp5expression and secretion during the dynamic process of adipocyte differentiation needto be evaluated.
     The present study aimed to investigate the expression of Sfrp5mRNA and changes inthe protein secretion during the dynamic process of adipocyte differentiation. Another aimwas to examine the influence of pathophysiological conditions related to insulin resistance on the expression and secretion of adipocyte Sfrp5. The regulation of Sfrp5expression byrosiglitazone and metformin was also assessed. To investigate the relationship of serumSfrp5with obesity and insulin resistance in non-diabetic individuals.
     Methods:
     (1) Cells of3T3-L1pre-adipocytes were cultivated via differentiation induced by1-methyl-3-isobutyl xanthenes, dexamethasone, and insulin.
     (2) To interfere with the differentiation of6d-old3T3-L1cells,1μM dexamethasone,100nM insulin,10ng/l TNF-a,10μM rosiglitazone, and1mM metformin were applied for24h.
     (3)Reverse-transcriptase polymerase chain reaction and enzyme-linked immunosorbentassay were performed to examine the expression and protein secretion level of Sfrp5mRNAadipocytes under different differentiation periods and regulated culture component.
     (4) On the basis of body mass index (BMI),244subjects were divided withnon-obese group(77cases,BMI<24kg/m2),obese group(170cases,BMI≥24kg/m2).
     (5) Serum Sfrp5was detected by ELISA.
     (6) Experimental data were analyzed by SPSS17.0. The differences between groupswere tested using T-tset. The correlation of variables was determined by Pearson’scorrelation and multiple linear regression was used to correct the effects of the covariatesand test independent factors. P <0.05was considered statistically significant for allanalysis.
     Result:
     (1) Sfrp5was not expressed in3T3-L1pre-adipocytes. With the differentiation andmaturity of pre-adipocytes, the gene transcription level and Sfrp5protein secretiongradually became more highly regulated. mRNA expression peaked on the9th day (about45±6times, P <0.001). Protein secretion in the supernatant had a delayed expressioncompared with that of mRNA, and was observable on the2nd and3rd day of differentiation.
     (2) mRNA expression in mature adipocytes decreased by20%(P <0.01),22%(P <0.01), and32%(P <0.01) using1μM dexamethasone,100nM insulin, and10ng/l TNF,respectively. The corresponding values for protein secretion levels in the supernatant were15%(P <0.01),17%(P <0.01), and30%(P <0.01),,respectively.
     (3) Sfrp5mRNA expression in mature adipose increased by34%(P <0.01) and19% (P <0.01) using10μM rosiglitazone and1mM metformin, respectively. The correspondingvalues for protein secretion quantity in the supernatant increased by10%(P <0.01) and6%(P <0.05), respectively.
     (4) In investigated subjects, serum Sfrp5levels were lower in obese group than innon-obese group.
     (5)Serum Sfrp5levels did not exhibit evident correlation with age,BMI, systolic bloodpressure, diastolic pressure, mean arterial pressure, uric acid(P>0.05). Serum SFRP5levelswere negatively correlated with gender,waist-hip ratio, total cholesterol, triglycerides, lowdensity lipoprotein cholesterol,fasting plasma glucose, FINS, HOMA2-%B, HOMA2-IR(r=-0.168,-0.134,-0.132,-0.154,-0.146,-0.161,-0.312,-0.228,-0.281,P<0.05). Serum Sfrp5levels were positively correlated with high density lipoprotein cholesterol(r=0.171,P<0.05).
     (6)After adjustment for age, gender, BMI, WHR, Serum Sfrp5levels was stillnegatively correlated with HOMA2-IR,(β=-0.425,P<0.001).
     Conclusion:
     (1) Sfrp5plays an important role in the differentiation of pre-adipocytes.
     (2) The dysregulation of Sfrp5expression and secretion directly correlates with insulinresistance.
     (3) Rosiglitazone-and metformin-induced resistances to organ inflammation andinsulin sensitivity are improved by enhancing Sfrp5mRNA expression and protein secretionin mature adipocytes.
     (4) Serum Sfrp5levels was negatively correlated with HOMA2-IR,which showed thatthis novel adipokine may play a role in the pathophysiology of obesity and insulinresistance.
引文
1. Hirosumi J, Tuncman G, Chang L, G rgün CZ, Uysal KT, et al., A central role for JNKin obesity and insulin resistance. Nature2002,420(6913):333-6.
    2. Miner JL,The adipocyte as an endocrine cell. J Anim Sci,2004,82:935-941
    3. Ouchi N, S. Kihara, T. Funahashi, Y. Matsuzawa, K.Walsh, Obesity, adiponectin andvascular inflammatory disease. Curr Opin Lipidol2003,14(6):561-6.
    4. Shibata R, Sato K, Pimentel DR, Takemura Y, Kihara S, et al., Adiponectin protectsagainst myocardial ischemia-reperfusion injury through AMPK-and COX-2–dependentmechanisms.Nat Med.2005,11(10),1096-103.
    5. Hotamisligil GS,Shargill NS,Spiegelman BM.Adipose expression of tumor necrosisfactor-alpha:direct role in obesity-linked insulin resistance. Science1993,259:87-91
    6. Sartipy P, Loskutoff DJ. Monocyte chemoattractant protein1in obesity a insulinresistance.Proc Natl Acad Sci.USA.2003,100:7265-7270
    7. Suzuki H,Watkins DN,Jair KW, et al. Epigenetic inactivation of SFRP genes allowsconstitutive WNT signaling in colorectal cancer. NatGenet2004,36(4):417-422.
    8. He B,Lee AY,Dadfarmay S,et al.Secreted frizzled-related protein4is silenced byhypermethylation and induces apoptosis in β-catenin-deficient human mesotheliomacells. Cancer Res2005,65(3):743-748.
    9. Bovolenta P, Esteve P, M J,Ruiz, et al., Beyond Wnt inhibition: new functions ofsecreted Frizzled-related proteins in development and disease. J. Cell Sci.2008121,737-746
    10. Kawano Y, Kypta R. Secreted antagonists of the Wnt signalling pathway. J Cell Sci2003,116(Pt13):2627-34
    11. Hotamisligil G. S. Inflammation and metabolic disease Nature2006,444:860-867.
    12. Noriyuki Ouchi, Akiko Higuchi, et al. Sfrp5Is an Anti-Inflammatory Adipokine ThatModulates Metabolic Dysfunction in Obesity. Science,2010,329:454-457.
    13. Grundy SM, Brewer HB Jr, Cleeman JI, et al. Definition of metabolic syndrome: Reportof the National Heart,Lung, and Blood Institute/American Heart Association conferenceon scientific issues related to definition. Circulation2004,109(3):433-438
    14. Cho HJ, Park J, Lee HW, et al. Regulation of adipocyte differentiation and insulin actionwith rapamycin. Biochem Biophys Res Commun.2004,321(4):942-948
    15. Kajimoto K., Terada H., Baba Y., Shinohara Y. Essential role of citrate export frommitochondria at early differentiation stage of3T3-L1cells for their effectivedifferentiation into fat cells, as revealed by studies using specific inhibitors ofmitochondrial di-and tricarboxylate carriers.Mol. Genet. Metab.2005,85(1):46-53.
    16. Ailhaud G, Grimaldi P, Negrel R. Cellular and molecular aspects of adipose tissuedevelopment. J Annu. Rev. Nutr.1992,12:207–233.
    17. Prusty D, Park B H, Davis K E, et al. Activation ofMEK/ERK signaling promotesadipogenesis by enhancing peroxisome proliferator-activated receptor gamma (PPARgamma) and C/EBP alpha gene expression during the differentiation of3T3-L1preadipocytes.J Biol Chem.2002,277(46):226-32.
    18. Gustafson B, Smith U.Cytokines promote Wnt signaling and inflammation and impairthe normal differentiation and lipid accumulation in3T3-L1preadipocytes, J Biol Chem.2006,281(14):9507–16
    19. Kern PA, Ranganathan S, Li C, Wood L, Ranganathan G. Adipose tissue tumor necrosisfactor and interleukin-6expression in human obesity and insulin resistance. AM JPhysiol Endocrinol Metab.2001,280(5):E745-51
    20. Maury E, Noel L, Detry R, Brichard SM In vitro hyper-responsiveness to TNF-alphacontributes to adipokine dysregulation in omental adipocytes of obese subjects. J ClinEndocrinol Metab.2009;94(4):1393-400
    21. Gregoire FM. Adipocyte di erentiation: from fibroblast to endocrine cell.Exp. Biol.Med.(Maywood).2001;226(11):997–1002.
    22. Boden G, Cheung P, Mozzoli M, Fried SK. Effect of thiazolidinediones on glucose andfatty acid metabolism in patients with type2diabetes. Metabolism.2003;52:753–759.
    23. Waqstaff AJ,Coa KL. Rosiglitazone:a review of it s use in the management of type2diabetes mellitus. J Drugs.2002;62(12):1805-1837
    24. Boden G, Cheung P, Mozzoli M, Fried SK. Effect of thiazolidinediones on glucose andfatty acid metabolism in patients with type2diabetes. Metabolism.2003;52:753–759.
    25. Shadid S, Jensen MD. Effects of pioglitazone versus diet and exercise on metabolichealth and fat distribution in upper body obesity. Diabetes Care2003;26:3148–3152.
    26. Hammarstedt A, Isakson P, Gustafson B, Smith U. Wnt-signaling is maintained andadipogenesis inhibited by TNFalpha but not MCP-1and resistin. Biocheml BiophyslRes Commun.2007;357(3)700–706.
    27. He L, Sabet A, Djedjos S, et al. Metformin and insulin suppress hepatic gluconeogenesisthrough phosphorylation of CREB binding protein. Cell.2009;137(4):635–646.
    28. Yoshida T, Okuno A, Tanaka J, et al. Metformin primarily decreases plasma glucose notby gluconeogenesis suppression but by activating glucose utilization in a non-obese type2diabetes Goto-Kakizaki rats.Eur J Pharmacol.2009;623:141–147.
    29. Wang Y, Li XJ, Zhang M, et al. The effect of metformin on insulin receptor proteintyrosine kinase activity of HIT-T15cell exposed to high concentration glucose and freefatty acid. Sichuan Da Xue Xue Bao Yi Xue Ban.2007;38:819–821(Chinese).
    30. Anedda A, Rial E, Gonzalez-Barroso MM. Metformin induces oxidative stress in whiteadipocytes and raises uncoupling protein2levels. J Endocrinol.2008;199:33–40
    31. Musi N,Hirshman MF,Nygren J,et al.Mteformin increase AMP-activated proteinkinase activity in skeletal muscle of subjects with type2diabetes.Diabetes,2002,51:2074-2081
    32. Zou MH,Kirkpatrick SS,Davis BJ,et al.Activation of the AMP-activated protein kinaseby the anti-diabetic drug metformin in vivo.J BiolChem,2004,279(43):940-51.
    33. Zang MW,Zuccollo A,Hou XY,et al. AMP-activated protein kinase is required for thelipid-lowering effect of metfomin in insulin resistant human HepG2cells.J BiolChem,2004,279:47898-47905
    34. Hardie DG. Biochemistry. Balancing cellular energy. Science2007;315:1671–2.
    35. Hardie DG. AMP-activated/SNF1protein kinases: conserved guardians of cellularenergy. Nat Rev Mol Cell Biol.2007;8(10)774-85
    36. Tomoz T,Masa M,et al.AMP-activated protein kinase attenuates Wnt/β-catenin signalingin human ostesblastic Saos-2cells.Mol Cell Endocrinol.2011;339;114-119
    37. Hirosumi J, Tuncman G,Chanq L, et al. A central role for JNK in obesity and insulinresistance. Nature.2002;420;333-6.
    38. Solinas G, Vilcu C,Neels JG, et al. JNK1in hematopoietically derived cells contributesto diet-induced inflammation and insulin resistance without affecting obesity. CellMetab.2007;6(5):386-97.
    39. Vallerie SN, Furuhashi M, Fucho R, Hotamisligil GS. A predominant role forparenchymal c-Jun amino terminal kinase (JNK) in the regulation of systemic insulinsensitivity. PLoS One.2008;3(9), e3151.
    40. Tilg H, Moschen AR Inflammatory mechanism in the regulation of insulin resistance.Mol Med2008;14:222–231.
    41. Zhao L, Hu P, Zhou Y, Purohit JS, Hwang DH.NOD1activation inducesproinflammatory gene expression and insulin resistance in3T3-L1adipocytes. Am JPhysiol Endocrinol Metab2011;301: E587–98.
    42. Schertzer JD, Tamrakar AK, Magalha es JG, Pereira S, Bilan PJ, et al. NOD1ActivatorsLink Innate Immunity to Insulin Resistance. Diabetes2011;60:2206–15.
    43. Schultz O, Oberhauser F, Saech J, Rubbert-Roth A, Hahn M, et al. Effects of inhibitionof interleukin-6signalling on insulin sensitivity and lipoprotein (a) levels in humansubjects with rheumatoid diseases. PLoS One2010;5: e14328.
    44. Larsen CM, Faulenbach M, Vaag A, V lund A, Ehses JA, et al. Interleukin-1-receptorantagonist in type2diabetes mellitus. N Engl J Med2007;356:1517–26.
    45. Xu H, Sethi JK, Hotamisligil GS. Transmembrane tumor necrosis factor(TNF)-alphainhibits adipocyte differentiation by selectively activating TNF receptor1.Biol Chem1999;274:26287–26295.
    46. Sethi JK, Xu H, Uysal KT, Wiesbrock SM, Scheja L, et al. Characterisation ofreceptor-specific TNFalpha functions in adipocyte cell lines lacking type1and2TNFreceptors. FEBS Lett2000;469:77–82.
    47. Wang CP, Chung FM, Shin SJ, Lee YJ. Congenital and environmental factors associatedwith adipocyte dysregulation as defects of insulin resistance.Rev Diabet Stud.2007;4:77–84.
    48. Virtue S, Vidal-Puig A. Adipose tissue expandability, lipotoxicity and the MetabolicSyndrome-an allostatic perspective. Biochim Biophys Acta2010;1801:338–49.
    49. Rosenvinge A, Krogh-Madsen R, Baslund B, Pedersen BK. Insulin resistance inpatients with rheumatoid arthritis: effect of anti-TNFalpha therapy.Scand J Rheumatol2007;36:91–96.
    50. Dominguez H, Storgaard H, Rask-Madsen C, Steffen Hermann T, Ihlemann N, et al.Metabolic and vascular effects of tumor necrosis factor-alpha blockade with etanerceptin obese patients with type2diabetes. Vasc Res2005;42:517–525.
    51. Bilkovski R, Schulte DM, Oberhauser F, Gomolka M, Udelhoven M, et al. Role ofWNT-5a in the determination of human mesenchymal stem cells into preadipocytes.Biol Chem2010;285:6170–6178.
    52. Bilkovski R, Schulte DM, Oberhauser F, Mauer J, Hampel B, et al. Adipose tissuemacrophages inhibit adipogenesis of mesenchymal precursor cells via wnt-5a in humans.Int J Obes2011;35:1450–1454.
    53. Lagathu C, Christodoulides C, Virtue S, Cawthorn WP, Franzin C, et al. Dact1, anutritionally regulated preadipocyte gene, controls adipogenesis by coordinating theWnt/beta-catenin signaling network. Diabetes2009;58:609–169.
    54.程桦.肥胖症[M]//陆再英,钟南山.内科学.第7版.北京:人民卫生出版社,2008:807-813
    55. Grundy SM, Brewer HB Jr, Cleeman JI, et al. Definitionof metabolic syndrome: Reportof the National Heart,Lung, and Blood Institute/American Heart Association conferenceon scientific issues related to definition.Circulation2004;109(3):433-438
    56. Weisberg SP et al., Obesity is associated with macrophage accumulation in adiposetissue. Clinical. Investigation.2003112,1796.
    57. Xu H,Barnes GT, Yang Q,et al. Chronic inflammation in fat plays a crucial role in t hedevelopment of obesity-related insulin resistance. Clin Invest2003;112(12):1821-1830.
    58. Ross SE, Hemati N, Longo KA, Bennett CN, Lucas PC, et al. Inhibition of adipogenesisby Wnt signaling. Science2000;289:950–953.
    59. Laudes M. Role of WNT signalling in the determination of human mesenchymal stemcells into preadipocytes. Mol Endocrinol2011;46(2): R65–72.
    60. Lagathu C, Christodoulides C, Tan CY, Virtue S, Laudes M, et al. Secretedfrizzled-related protein1regulates adipose tissue expansion and is dysregulated insevere obesity. Int J Obes2010;34:1695–1705.
    61. Schinner S, Willenberg HS, Schott M, Scherbaum WA. Pathophysiological aspects ofWnt-signaling in endocrine disease. Eur J Endocrinol.2009;160(5):731-7.
    62. Kennell JA, MacDougald OA.Wnt signaling inhibits adipogenesis throughbeta-catenin-dependent and-independent mechanisms. Biol Chem2005;280:24004–10.
    63. Wright WS, Longo KA, Dolinsky VW, G erin I, Kang S, et al. Wnt10b inhibits obesityin ob/ob and agouti mice. Diabetes2007;56:295–303.
    64. Christodoulides C, Scarda A, Granzotto M, Milan G, Dalla Nora E, et al. WNT10Bmutations in human obesity. Diabetologia2006;49:678–684.
    65. Bilkovski R, Schulte DM, Oberhauser F, Mauer J, Hampel B, et al. Adipose tissuemacrophages inhibit adipogenesis of mesenchymal precursor cells via wnt-5a in humans.Int J Obes2011;35:1450–1454.
    66. Hideyuki S, Takehide O, Motonobu A, et al. Dexamethasone-Induced insulinresistance in3T3-L1adipocytes is due to inhibition of glucose transport rather thaninsulin signal transduction. Diabetes,2000;49(10):1700-08.
    67. Schulte DM,Müller N, Neumann K, Oberh user F, et.al. Pro-Inflammatory wnt5a andAnti-Inflammatory Sfrp5Are Differentially Regulated by Nutritional Factors in ObeseHuman Subjects.PLoS One.2012;7(2):e32437.
    1. Alberti KG, Zimmet P, Shaw J, et al.2005.The metabolic syndrome-a new worldwidedefinition. Lancet366,1059–1062.
    2. Zimmet P, Magliano D, Matsuzawa Y, et al.2005. The metabolic syndrome: a globalpublic health problem and a new definition. J. Atheroscler. Thromb.12,295–300.
    3. Dina C, Meyre D, Gallina S, et al.2007. Variation in FTO contributes to childhoodobesity and severe adult obesity. Nat. Genet.39,724–726.
    4. Frayling TM, Timpson NJ, Weedon MN, et al.2007. A common variant in the FTOgene is associated with body mass index and predisposes to childhood and adultobesity.Science316,889–894.
    5. Loos RJ, Lindgren CM, Li S, et al.2008. Common variants nearMC4R are associatedwith fat mass, weight and risk of obesity. Nat. Genet.40,768–775.
    6. Klein S, Allison DB, Heymsfield SB,et al.2007. Waist circumference and cardio-metabolic risk: a consensus statement from shaping America’s health: Association forWeight Management and Obesity Prevention;NAASO, theObesity Society; theAmerican Society forNutrition and the American Diabetes Association. Diabetes Care30,1647–1652.
    7. Hotamisligil GS, Shargill NS, Spiegelman BM,1993.Adipose expression of tumornecrosis factor-alpha: direct role in obesity-linked insulin resistance. Science259,87–91.
    8. Zhang Y, Proenca R, Maffei M, et al.1994. Positional cloning of the mouse obese geneand its human homologue. Nature372,425–432.
    9. Guerre-Millo M,2004. Adipose tissue and adipokines: for better orworse. DiabetesMetab.30,13–19.
    10. Tchkonia T, Giorgadze N, Pirtskhalava T, et al.2006. Fat depot-specific characteristicsare retained in strains derived fromsingle human preadipocytes. Diabetes55,2571–2578.
    11. Dandona P, Weinstock R, Thusu K, et al.1998.Tumor necrosis factor-alpha in sera ofobese patients: fall with weight loss. J. Clin. Endocrinol. Metab.83,2907–2910.
    12. Maury E, Noel L, Detry R, Brichard SM,2009. In vitro hyper-responsiveness toTNF-{alpha} contributes to adipokine dysregulation in omental adipocytes of obesesubjects. J. Clin. Endocrinol. Metab.
    13. Fain JN, Bahouth SW, Madan AK,2004. TNFalpha release by the nonfat cells ofhuman adipose tissue. Int. J. Obes. Relat. Metab. Disord.28,616–622.
    14. Cawthorn WP, Sethi JK,2008. TNF-alpha and adipocyte biology. FEBS Lett.582,117–131.
    15. Shoelson SE, Herrero L, Naaz A,2007. Obesity, inflammation, and insulin resistance.Gastroenterology132,2169–2180.
    16. Sabio G, Das M, Mora A, et al.2008. A stress signaling pathway in adipose tissueregulates hepatic insulin resistance. Science322,1539–1543.
    17. Plomgaard P, Bouzakri K, Krogh-Madsen R, et al.2005. Tumor necrosis factor-alphainduces skeletal muscle insulin resistance in healthy human subjects via inhibition ofAkt substrate160phos-phorylation. Diabetes54,2939–2945.
    18. Bernstein LE, Berry J, Kim S, et al.2006. Effects of etanercept in patients withthemetabolic syndrome. Arch. Intern.Med.166,902–908.
    19. Dominguez H, Storgaard H, Rask-Madsen C, et al.2005. Metabolic and vasculareffects of tumor necrosis factor-alpha blockade with etanercept in obese patients withtype2diabetes. J. Vasc. Res.42,517–525.
    20. Ofei F, Hurel S, Newkirk J, et al.1996. Effects of an engineered human anti-TNF-alphaantibody (CDP571) on insulin sensitivity and glycemic control in patients withNIDDM. Diabetes45,881–885.
    21. Paquot N, Castillo MJ, Lefebvre PJ, Scheen AJ,2000. No increased insulin sensitivityafter a single intravenous administration of a recombinant human tumor necrosis factorreceptor: Fc fusion protein in obese insulin-resistant patients. J. Clin. Endocrinol.Metab.85,1316–1319.
    22. Gonzalez-Gay MA, De Matias JM, Gonzalez-Juanatey C, et al.2006. Anti-tumornecrosis factor-alpha blockade improves insulin resistance in patientswith rheumatoidarthritis. Clin.Exp. Rheumatol.24,83–86.
    23. Kiortsis DN, Mavridis AK, Vasakos S, et al.2005. Effects of infliximab treatment oninsulin resistance in patientswith rheumatoid arthritis and ankylosing spondylitis. Ann.Rheum. Dis.64,765–766.
    24. Tam LS, Tomlinson B, Chu TT, et al.2007. Impact of TNF inhibition on insulinresistance and lipids levels in patients with rheumatoid arthritis. Clin. Rheumatol.26,1495–1498.
    25. Yazdani-Biuki B, Stelzl H, Brezinschek HP, et al.2004. Improvement of insulinsensitivity in insulin resistant subjects during prolonged treatmentwith theanti-TNF-alpha antibody infliximab. Eur. J. Clin. Invest.34,641–642.
    26. Prins JB, Niesler CU, Winterford CM, et al.1997. Tumor necrosis factor-alpha inducesapoptosis of human adipose cells. Diabetes46,1939–1944.
    27. Skoog T, Dichtl W, Boquist S, et al.2002. Plasma tumour necrosis factor-alpha andearly carotid atherosclerosis in healthy middle-aged men. Eur. Heart J.23,376–383.
    28. Ohta H, Wada H, Niwa T, et al.2005. Disruption of tumor necrosis factor-alpha genediminishes the development of atherosclerosis in ApoE-deficientmice. Atherosclerosis180,11–17.
    29. Wang B, Trayhurn P,2006.Acute and prolonged effects of TNF-alpha on theexpression and secretion of inflammation-related adipokines by human adipocytesdifferentiated in culture. Pflugers Arch.452,418–427.
    30. Bruun JM, Lihn AS, Verdich C, et al.2003. Regulation of adiponectin by adiposetissue-derived cytokines: in vivo and in vitro investigations in humans. Am. J. Physiol.Endocrinol. Metab.285, E527–E533.
    31. Ruan H, Hacohen N, Golub TR, et al.2002. Tumor necrosis factor-alpha suppressesadipocyte-specific genes and activates expression of preadipocyte genes in3T3-L1adipocytes: nuclear factor-kappaB activation by TNF-alpha is obligatory. Diabetes51,1319–1336.
    32. Bastard JP, Lagathu C, Caron M,Capeau J,2007.Point-counterpoint: interleukin-6does/does not have a beneficial role in insulin sensitivity and glucose homeostasis. J.Appl. Physiol.102,821–822.
    33. Fried SK, Bunkin DA, Greenberg AS,1998.Omental and subcutaneous adipose tissuesof obese subjects release interleukin-6: depot difference and regulation byglucocorticoid. J. Clin. Endocrinol. Metab.83,847–850.
    34. Sabio G, Das M, Mora A, et al.2008. A stress signaling pathway in adipose tissueregulates hepatic insulin resistance. Science322,1539–1543.
    35. Fontana L, Eagon JC, Trujillo ME, et al.2007. Visceral fat adipokine secretion isassociatedwith systemic inflammation in obese humans.Diabetes56,1010–1013.
    36. Pedersen BK, Fischer CP,2007. Physiological roles ofmuscle-derived interleukin-6inresponse to exercise. Curr. Opin. Clin. Nutr. Metab. Care10,265–271.
    37. Bruun JM, Lihn AS, Pedersen SB, Richelsen B,2005.Monocyte chemoattractantprotein-1release is higher in visceral than subcutaneous human adipose tissue(AT):implication of macrophages resident in the AT. J. Clin. Endocrinol. Metab.90,2282–2289.
    38. Kanda H, Tateya S, Tamori Y, et al.2006. MCP-1contributes to macrophage infiltrationinto adipose tissue, insulin resistance, and hepatic steatosis in obesity. J. Clin. Invest.116,1494–1505.
    39. Weisberg SP, Hunter D, Huber R, et al.2006.CCR2modulates inflammatoryandmetabolic effects of high-fat feeding. J. Clin. Invest.116,115–124.
    40. Sartipy P, Loskutoff DJ,2003.Monocyte chemoattractant protein1in obesity andinsulin resistance. Proc. Natl. Acad. Sci. U.S.A.100,7265–7270.
    41. Simeoni E,Hoffmann MM,Winkelmann BR, et al.2004. Association between theA-2518G polymorphism in the monocyte chemoattractant protein-1gene and insulinresistance and Type2diabetes mellitus. Diabetologia47,1574–1580.
    42. Martinovic I, Abegunewardene N, Seul M, et al.2005. Elevated monocytechemoattractant protein-1serum levels in patients at risk for coronary artery disease.Circ. J.69,1484–1489.
    43. Gu L, Okada Y, Clinton SK, et al.1998.Absence ofmonocyte chemoattractant protein-1reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol. Cell2,275–281.
    44. Zhang Y, Proenca R, Maffei M, et al.1994. Positional cloning of the mouse obese geneand its human homologue. Nature372,425–432.
    45. Ahima RS,2008. Revisiting leptin’s role in obesity and weight loss. J. Clin. Invest.118,2380–2383.
    46. Badman MK, Flier JS,2007. The adipocyte as an active participant in energy balanceand metabolism. Gastroenterology132,2103–2115.
    47. Kershaw EE, Flier JS,2004. Adipose tissue as an endocrine organ. J. Clin. Endocrinol.Metab.89,2548–2556.
    48. Becker DJ, Ongemba LN, Brichard V, et al.1995. Diet-and diabetes-induced changesof ob gene expression in rat adipose tissue. FEBS Lett.371,324–328.
    49. Montague CT, Prins JB, Sanders L, et al.1998. Depot-related gene expression inhuman subcutaneous and omental adipocytes. Diabetes47,1384–1391.
    50. Guo K, McMinn JE, Ludwig T, et al.2007. Disruption of peripheral leptin signaling inmice results in hyperleptinemia without associatedmetabolic abnormalities.Endocrinology148,3987–3997.
    51. Flier JS,1998. Clinical review94:What’s in a name? In search of leptin’s physiologicrole. J. Clin. Endocrinol. Metab.83,1407–1413.
    52. Morton GJ, Blevins JE, Williams DL, et al.2005. Leptin action in the forebrainregulates the hindbrain response to satiety signals. J. Clin. Invest.115,703–710.
    53. Ozcan L, Ergin AS, Lu A, et al.2009. Endoplasmic reticulumstress plays a central rolein development of leptin resistance. Cell Metab.9,35–51.
    54. Rosenbaum M, Sy M, Pavlovich K, et al.2008. Leptin reverses weight loss-inducedchanges in regional neural activity responses to visual food stimuli. J. Clin. Invest.118,2583–2591.
    55. Farooqi IS, Matarese G, Lord GM., et al.2002.Beneficial effects of leptin on obesity, Tcell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of humancongenital leptin deficiency. J. Clin. Invest110,1093–1103.
    56. Minokoshi Y, Kim YB, Peroni OD, et al.2002. Leptinstimulates fatty-acid oxidationbyactivatingAMP-activated protein kinase. Nature415,339–343.
    57. Muoio DM, Dohm GL, Fiedorek Jr FT, et al.1997. Leptin directly alters lipidpartitioning in skeletal muscle. Diabetes46,1360–1363.
    58. Haque MS, Minokoshi Y, Hamai M, et al.1999. Role of the sympathetic nervoussystem and insulin in enhancing glucose uptake in peripheral tissues afterintrahypothalamic injection of leptin in rats. Diabetes48,1706–1712.
    59. Kamohara S, Burcelin R, Halaas JL, et al.1997. Acute stimulation of glucosemetabolism in mice by leptin treatment. Nature389,374–377.
    60. Kahn BB, Alquier T, Carling D, Hardie DG,2005. AMP-activated proteinkinase:ancient energy gauge provides clues to modern understanding of metabolism.Cell Metab.1,15–25.
    61. Unger RH,2002. Lipotoxic diseases. Annu. Rev. Med.53,319–336.
    62. Buettner C,Muse ED, Cheng A, Chen L, et al.2008. Leptin controls adipose tissuelipogenesis via central, STAT3-independentmechanisms.Nat. Med.14,667–675.
    63. Oral EA, Simha V, Ruiz E, et al.2002. Leptin-replacement therapy for lipodystrophy.N. Engl. J. Med.346,570–578.
    64. Bluher S, Mantzoros CS,2009. Leptin in humans: lessons from translational research.Am. J. Clin. Nutr.89,991S–997S.
    65. Chan JL, Mantzoros CS,2005. Role of leptin in energy-deprivation states: normalhuman physiology and clinical implications for hypothalamic amenorrhoea andanorexia nervosa. Lancet366,74–85.
    66. Heymsfield SB, Greenberg AS, Fujioka K, et al.1999. Recombinant leptin for weightloss in obese and lean adults: a randomized, controlled, dose-escalation trial. JAMA282,1568–1575.
    67. Roth JD, Roland BL, Cole RL, et al.2008. Leptin responsiveness restored by amylinagonism in diet-induced obesity: evidence from nonclinical and clinical studies. Proc.Natl. Acad. Sci. U.S.A.105,7257–7262.
    68. Maeda K, Okubo K, Shimomura I, et al.1996. cDNA cloning and expression of a noveladipose specific collagen-like factor, apM1(AdiPoseMost abundant Gene transcript1).Biochem. Biophys. Res.Commun.221,286–289.
    69. Scherer PE,Williams S, FoglianoM, et al.1995. A novel serum protein similar to C1q,produced exclusively in adipocytes. J. Biol. Chem.270,26746–26749.
    70. Halleux CM, Takahashi M, Delporte ML, et al.2001. Secretion of adiponectin andregulation of apM1gene expression in human visceral adipose tissue. Biochem.Biophys. Res. Commun.288,1102–1107.
    71. Kadowaki T, Yamauchi T, Kubota N, et al.2006. Adiponectin and adiponectinreceptors in insulin resistance, diabetes, and the metabolic syndrome. J. Clin. Invest.116,1784–1792.
    72. Arita Y, Kihara S, Ouchi N, et al.1999. Paradoxical decrease of an adipose-specificprotein, adiponectin, in obesity. Biochem. Biophys. Res. Commun.257,79–83.
    73.73.Brichard SM, Delporte ML, Lambert M,2003. Adipocytokines in anorexianervosa: a review focusing on leptin and adiponectin. Horm. Metab Res.35,337–342.
    74. Ouchi N, Walsh K,2007. Adiponectin as an anti-inflammatory factor. Clin. Chim.Acta380,24–30.
    75. Delporte ML, Funahashi T, Takahashi M, et al.2002.Pre-and post-translational negativeeffect of beta-adrenoceptor agonists on adiponectin secretion: in vitro and in vivostudies. Biochem. J.367,677–685.
    76. Furukawa S, Fujita T, Shimabukuro M, et al.2004. Increased oxidative stress in obesityand its impact onmetabolic syndrome. J. Clin. Invest.114,1752–1761.
    77. Bruun JM, Lihn AS, Verdich C, et al.2003. Regulation of adiponectin by adiposetissue-derived cytokines: in vivoand in vitro investigations in humans. Am. J. Physiol.Endocrinol. Metab.285, E527–E533.
    78. Yamauchi T, Kamon J, Ito Y, et al.2003a Cloning of adiponectin receptors that mediateantidiabetic metabolic effects.Nature423,762–769.
    79. Capeau J,2007. The story of adiponectin and its receptorsAdipoR1andR2: to follow.J.Hepatol.47,736–738.
    80. Yamauchi T, Nio Y, Maki T, et al.2007. Targeted disruption of AdipoR1and AdipoR2causes abrogation of adiponectin binding and metabolic actions. Nat. Med.13,332–339.
    81. Bauche IB, El Mkadem SA, Pottier AM, et al.2007. Overexpression of adiponectintargeted to adipose tissue in transgenic mice: impaired adipocyte differentiation.Endocrinology148,1539–1549.
    82. Otabe S, Yuan X, Fukutani T, et al.2007. Overexpression of human adiponectin intransgenic mice results in suppression of fat accumulation and prevention of prematuredeath by high-calorie diet. Am. J. Physiol. Endocrinol. Metab.293, E210–E218.
    83. Qiao L, Zou C, van der Westhuyzen DR, Shao J,2008. Adiponectin reduces plasmatriglyceride by increasing VLDL triglyceride catabolism. Diabetes57,1824–1833.
    84. Dietze-Schroeder D, Sell H, Uhlig M, et al.2005. Autocrine action of adiponectin onhuman fat cells prevents the release of insulin resistance-inducing factors. Diabetes54,2003–2011.
    85. Lindsay RS, Funahashi T, Hanson RL, et al.2002. Adiponectin and development oftype2diabetes in the Pima Indian population. Lancet360,57–58.
    86. Spranger J, Kroke A, Mohlig M, et al.2003. Adiponectin and protection against type2diabetes mellitus. Lancet361,226–228.
    87. Heidemann C, Sun Q, van Dam RM, et al.2008. Total and high-molecular-weightadiponectin and resistin in relation to the risk for type2diabetes in women. Ann.Intern. Med.149,307–316.
    88. Lara-Castro C, Luo N, Wallace P, et al.2006. Adiponectin multimeric complexes andthe metabolic syndrome trait cluster. Diabetes55,249–259.
    89. Kubota N, Yano W, Kubota T, et al.2007. Adiponectin stimulates AMP-activatedprotein kinase in the hypothalamus and increases food intake. Cell Metab.6,55–68.
    90. Sattar N, Wannamethee G, Sarwar N, Tchernova J, et al.2006. Adiponectin andcoronary heart disease: a prospective study and meta-analysis. Circulation114,623–629.
    91. Yamauchi T, Kamon J, Waki H, et al.2003. Globular adiponectin protected ob/obmicefromdiabetes and ApoE-deficientmice fromatherosclerosis. J. Biol. Chem.278,2461–2468.
    92. Kubota N, Terauchi, Y., Yamauchi, T., Kubota, T., Moroi, M., Matsui, J., Eto,K.,Yamashita, T., Kamon, J., Satoh, H., Yano, W., Froguel, P., Nagai, R., Kimura,S.,Kadowaki, T., Noda, T.,2002. Disruption of adiponectin causes insulin resistanceand neointimal formation. J. Biol. Chem.277,25863–25866.
    93. Ouchi N, Kihara S, Arita Y, et al.1999. Novel modulator for endothelial adhesionmolecules: adipocyte-derived plasma protein adiponectin. Circulation100,2473–2476.
    94. Ouchi N, Kihara S, Arita Y, et al.2000. Adiponectin, an adipocyte-derivedplasmaprotein, inhibits endothelial NF-kappaB signaling through a cAMP-dependentpathway. Circulation102,1296–1301.
    95. Ouedraogo R, Gong Y, Berzins B, et al.2007. Adiponectin deficiency increasesleukocyte-endothelium interactions via upregulation of endothelial cell adhesionmolecules in vivo. J. Clin. Invest.117,1718–1726.
    96. Arita Y, Kihara S, Ouchi N, et al.2002. Adipocyte-derived plasma protein adiponectinacts as a platelet-derived growth factor-BB-binding protein and regulates growthfactor-induced common postreceptor signal in vascular smooth muscle cell.Circulation105,2893–2898.
    97. Ouchi N, Kihara S, Arita Y, et al.2001. Adipocyte-derived plasma protein, adiponectin,suppresses lipid accumulation and class A scavenger receptor expression inhumanmonocyte-derivedmacrophages. Circulation103,1057–1063.
    98. Wang ZV, Scherer PE,2008. Adiponectin, cardiovascular function, and hypertension.Hypertension51,8–14.
    99. Ohashi K, Kihara S, Ouchi N, et al.2006. Adiponectin replenishment amelioratesobesity-related hypertension. Hypertension47,1108–1116.
    100. Chow WS, Cheung BM, Tso AW, et al.2007. Hypoadiponectinemia as a predictor forthe development of hypertension: a5-year prospective study.Hypertension49,1455–1461.
    101. Iwashima Y, Katsuya T, Ishikawa K, Ouchi N, et al.2004. Hypoadiponectinemia is anindependent risk factor for hypertension. Hypertension43,1318–1323.
    102. Haugen F,Drevon CA,2007.Activation of nuclear factor-kappaB by highmolecularweight and globular adiponectin. Endocrinology148,5478–5486.
    103. Kobashi C, Urakaze M, Kishida M, et al.2005. Adiponectin inhibits endothelialsynthesis of interleukin-8. Circ. Res.97,1245–1252.
    104. Guerre-Millo M,2008. Adiponectin: an update. Diabetes Metab.34,12–18.
    105. Motoshima H, Wu X, Mahadev K, Goldstein BJ,2004. Adiponectin suppressesproliferation and superoxide generation and enhances eNOS activity in endothelialcells treated with oxidized LDL. Biochem. Biophys. Res. Commun.315,264–271
    106. Delaigle AM, Jonas JC, Bauche IB, et al.2004. Induction of adiponectin in skeletalmuscle by inflammatory cytokines: in vivo and in vitro studies. Endocrinology145,5589–5597.
    107.107.Delaigle AM, Senou M, Guiot Y, et al.2006. Induction of adiponectin in skeletalmuscle of type2diabetic mice: in vivo and in vitro studies. Diabetologia49,1311–1323.
    108. Hui JM, Hodge A, Farrell GC, et al.2004. Beyond insulin resistance in NASH:TNF-alpha or adiponectin? Hepatology40,46–54.
    109. Kamada Y, Takehara T, Hayashi N,2008. Adipocytokines and liver disease. J.Gastroenterol.43,811–822.
    110. Frezza E., Wachtel MS, Chiriva-Internati M,2006. Influence of obesity on the risk ofdeveloping colon cancer. Gut55,285–291.
    111. Hsing AW, Sakoda LC, Chua S, Jr,2007. Obesity, metabolic syndrome, and prostatecancer. Am. J. Clin. Nutr.86, s843–s857.
    112. Schaffler A, Scholmerich J, Buechler C,2007. Mechanisms of disease: adipokines andbreast cancer—endocrine and paracrine mechanisms that connect adiposity and breastcancer. Nat. Clin. Pract. Endocrinol. Metab.3,345–354.
    113. Barb D,Williams CJ, Neuwirth AK, Mantzoros CS,2007. Adiponectin in relation tomalignancies: a review of existing basic research and clinical evidence. Am. J. Clin.Nutr.86, s858–s866.
    114. Kelesidis I, Kelesid T, Mantzoros CS,2006.Adiponectin and cancer: a systematicreview. Br. J. Cancer94,1221–1225.
    115. Japp AG, Cruden NL, Amer DA, Li VK, et al.2008. Vascular effects of apelin in vivoin man. J. Am. Coll. Cardiol.52,908–913.
    116. Heinonen MV, Purhonen AK, Miettinen P, et al.2005. Apelin, orexin-A and leptinplasma levels in morbid obesity and effect of gastric banding. Regul. Pept.130,7–13.
    117. Castan-Laurell I, Vitkova M, Daviaud D, et al.2008. Effect of hypocaloric diet-inducedweight loss in obese women on plasma apelin and adipose tissue expression of apelinand APJ. Eur. J. Endocrinol.158,905–910.
    118. Dray C, Knauf C, Daviaud D, et al.2008. Apelin stimulates glucose utilization innormal and obese insulin-resistant mice. Cell Metab.8,437–445.
    119. Higuchi K, Masaki T, Gotoh K, et al.2007. Apelin, an APJ receptor ligand, regulatesbody adiposity and favors themessenger ribonucleic acid expression of uncouplingproteins inmice. Endocrinology148,2690–2697.
    120. Kuba K, Zhang L, Imai Y, et al.2007. Impaired heart contractility in Apelingene-deficientmice associatedwith aging and pressure overload. Circ. Res.101,e32–e42.
    121. Chun HJ, Ali ZA, Kojima Y, et al.2008. Apelin signaling antagonizes Ang II effectsinmouse models of atherosclerosis. J. Clin. Invest.118,3343–3354.
    122. Kunduzova O, Alet N, Delesque-Touchard N, et al.2008. Apelin/APJ signaling system:a potential link between adipose tissue and endothelial angiogenic processes. FASEB J.22,4146–4153.
    123. Samal B, Sun Y, Stearns,G, et al.1994. Cloning and characterization of the cDNAencoding a novel human pre-B-cell colony-enhancing factor. Mol. Cell Biol.14,1431–1437.
    124. Fukuhara A, Matsuda M, Nishizawa M, et al.2005. Visfatin: a protein secreted byvisceral fat that mimics the effects of insulin. Science307,426–430.
    125. Garten A, Petzold S, Korner A, et al.2009. Nampt: linking NAD biology, metabolismand cancer. Trends Endocrinol. Metab.20,130–138.
    126. Rasouli N, Kern PA,2008. Adipocytokines and the metabolic complications of obesity.J. Clin. Endocrinol. Metab.93, S64–S73.
    127. Imai S,2009. Nicotinamide phosphoribosyltransferase (Nampt): a link between NADbiology, metabolism, and diseases. Curr. Pharm. Des15,20–28.
    128. Revollo JR, Korner A, Mills KF, et al.2007.Nampt/PBEF/Visfatin regulates insulinsecretion in beta cells as a systemic NAD biosynthetic enzyme. Cell Metab.6,363–375.
    129. Suzuki H,Watkins DN,Jair KW, et al.Epigenetic inactivation of SFRP genes allowsconstitutive WNT signaling in colorectal cancer. NatGenet,2004,36(4):417-422.
    130. He B,Lee AY,Dadfarmay S,et al.Secreted frizzled2related protein4is silenced byhypermethylation and induces apoptosis inβ-catenin-deficient human meso-theliomacells. Cancer Res,2005,65(3):743-748.
    131.131.P. Bovolenta, P. Esteve, J. M. Ruiz,,et al., Beyond Wnt inhibition: new functionsof secreted Frizzled-related proteins in development and disease. J. Cell Sci.2008121,737-746
    132.132.Y. Kawano, R. Kypta, J Cell Sci116,2627(2003). Secreted antagonists of the Wntsignalling pathway.2003Jul1;116(Pt13):2627-34
    133.133.G. S. Hotamisligil, Inflammation and metabolic disease Nature2006,444,:860-867.
    134. Noriyuki Ouchi, Akiko Higuchi, et al. Sfrp5Is an Anti-Inflammatory Adipokine ThatModulates Metabolic Dysfunction in Obesity. Science,2010,329:454-457.
    135. Bourlier V, Zakaroff-Girard A, Miranville A, et al.2008. Remodeling phenotype ofhuman subcutaneous adipose tissuemacrophages. Circulation117,806–815.
    136. Henegar C, Tordjman J, Achard V, et al.2008. Adipose tissue transcriptomic signaturehighlights the pathological relevance of extracellular matrix in human obesity. GenomeBiol.9, R14.
    137. Maury E, Ehala-Aleksejev K, Guiot Y, et al.2007. Adipokines oversecreted by omentaladipose tissue in human obesity.Am. J. Physiol. Endocrinol. Metab.293, E656–E665.
    138. Spalding KL, Arner E,Westermark PO, et al.2008. Dynamics of fat cell turnover inhumans. Nature453,783–787.
    139. Freedman DS, Khan LK, Dietz WH, et al.2001. Relationship of childhood obesity tocoronary heart disease risk factors in adulthood: the Bogalusa Heart Study. Pediatrics108,712–718.
    140. Jernas M, Palming J, Sjoholm K, et al.2006. Separation of human adipocytes by size:hypertrophic fat cells display distinct gene expression. FASEB J.20,1540–1542.
    141. Skurk T, Alberti-Huber C, Herder C, Hauner H,2007. Relationship betweenadipocytesize and adipokine expression and secretion. J. Clin. Endocrinol. Metab.92,1023–1033.
    142. Lee YH, Nair S, Rousseau E, et al.2005. Microarray profiling of isolated abdominalsubcuta-neous adipocytes from obese vs non-obese Pima Indians: increased expressionof inflammation-related genes. Diabetologia48,1776–1783.
    143. Weisberg SP, McCann D, Desai M, et al.2003. Obesity is associated with macrophageaccumulation in adipose tissue. J. Clin. Invest.112,1796–1808.
    144. Xu H, Barnes GT, Yang Q, et al.2003. Chronic inflammation in fat plays a crucial rolein the development of obesity-related insulin resistance. J. Clin. Invest.112,1821–1830.
    145. Kintscher U, Hartge M, Hess K, et al.2008. T-lymphocyte infiltration in visceraladipose tissue: a primary event in adipose tissue inflammation and the development ofobesity-mediated insulin resistance. Arterioscler. Thromb. Vasc. Biol.28,1304–1310.
    146. Cancello R, Henegar C, Viguerie N, et al.2005.Reduction of macrophage infiltrationand chemoattractant gene expression changes in white adipose tissue of morbidlyobese subjects after surgery-induced weight loss. Diabetes54,2277–2286.
    147. Cancello R, Tordjman J, Poitou C, et al.2006. Increased infiltration of macrophages inomental adipose tissue is associated with marked hepatic lesions in morbid humanobesity. Diabetes55,1554–1561.
    148. Harman-Boehm I, Bluher M, Redel H, et al.2007. Macrophage infiltration into omentalversus subcutaneous fat across different populations: effect of regional adiposity andthe comorbidities of obesity. J. Clin. Endocrinol.Metab.92,2240–2247.
    149. Cinti S, Mitchell G, Barbatelli G, et al.2005. Adipocyte death definesmacrophagelocalization and function in adipose tissue of obese mice and humans. J. Lipid Res.46,2347–2355.
    150. Gordon S,2007. Macrophage heterogeneity and tissue lipids. J. Clin. Invest.117,89–93.
    151. Lumeng CN, DelProposto JB,Westcott DJ, Saltiel AR,2008. Phenotypic switching ofadipose tissue macrophages with obesity is generated by spatiotemporal differences inmacrophage subtypes. Diabetes57,3239–3246.
    152. Patsouris D, Li PP, Thapar D, et al.2008. Ablation of CD11c-positive cells normalizesinsulin sensitivity in obese insulin resistant animals. Cell Metab.8,301–309.
    153. Apovian CM, Bigornia S, Mott M, et al.2008. Adipose macrophage infiltration isassociatedwith insulin resistance and vascular endothelial dysfunction in obesesubjects. Arterioscler. Thromb. Vasc. Biol.28,1654–1659.
    154. Zeyda M, Farmer D, Todoric J, et al.2007. Human adipose tissue macrophages are ofan anti-inflammatory phenotype but capable of excessive pro-inflammatory mediatorproduction. Int. J. Obes.(Lond)31,1420–1428.
    155. Ortega E, Xu X, Koska J, et al.2009. Macrophage content in subcutaneous adiposetissue: associations with adiposity, age, inflammatory markers, and whole-body insulinaction in healthy Pima Indians. Diabetes58,385–393.
    156. Sengenes C, Miranville A, Lolmede K, et al.2007. The role of endothelial cells ininflamed adipose tissue. J. Intern. Med.262,415–421.
    157. Ferri C, Desideri G, Valenti M, et al.1999. Early upregulation of endothelial adhesionmolecules in obese hypertensive men. Hypertension34,568–573.
    158. Curat CA, Miranville A, Sengenes C. et al.2004. From blood monocytes to adiposetissue-resident macrophages: induction of diapedesis by human mature adipocytes.Diabetes53,1285–1292.
    159. Nishimura S, Manabe I, Nagasaki M, et al.2008. In vivo imaging inmice reveals localcell dynamics and inflammation in obese adipose tissue. J. Clin. Invest.118,710–721.
    160. Brakenhielm E, Cao R, Gao B, et al.2004. Angiogenesis inhibitor, TNP-470, preventsdiet-induced and genetic obesity in mice. Circ. Res.94,1579–1588.
    161. Rupnick MA, Panigrahy D, Zhang CY, et al.2002. Adipose tissue mass can beregulated through the vasculature. Proc. Natl. Acad. Sci. U.S.A.99,10730–10735.
    162. Jiao P, Chen Q, Shah S, et al.2008. Obesity-related upregulation of monocytechemotactic factors in adipocytes: involvement of NF-{kappa} B and JNK pathways.Diabetes.
    163. Berg AH, Lin Y, Lisanti MP, Scherer PE,2004. Adipocyte differentiation inducesdynamic changes in NF-kappaB expression and activity. Am. J. Physiol. Endocrinol.Metab.287, E1178–E1188.
    164. Maury E, Noel L, Detry R, Brichard SM,2009. In vitro hyper-responsiveness toTNF-{alpha} contributes to adipokine dysregulation in omental adipocytes of obesesubjects. J. Clin. Endocrinol. Metab..
    165. Fleischman A, Shoelson SE, Bernier R, Goldfine AB,2008. Salsalate improvesglycemia and inflammatory parameters in obese young adults. Diabetes Care31,289–294.
    166. Sourris KC, Lyons JG, de Court Dougherty SL, et al.2009. JNK activity insubcutaneous adipose tissue but not NF{kappa}B activity in peripheral bloodmononuclear cells is an independent determinant of insulin resistance in healthyindividuals. Diabetes58,1259–1265.
    167. Takahashi K, Yamaguchi S, Shimoyama T, et al.2008. JNK-and IkappaB-dependentpathways regulateMCP-1but not adiponectin release from artificially hypertrophied3T3-L1adipocytes preloaded with palmitate in vitro. Am. J. Physiol. Endocrinol.Metab.294, E898–E909.
    168. Trayhurn P, Wang B, Wood IS,2008. Hypoxia in adipose tissue: a basis for thedysregulation of tissue function in obesity? Br. J. Nutr.100,227–235.
    169. Ye J,2009. Emerging role of adipose tissue hypoxia in obesity and insulinresistance.Int. J. Obes.(Lond)33,54–66.
    170. Hosogai N, Fukuhara A, Oshima K, et al.2007. Adipose tissue hypoxia in obesity andits impact on adipocytokine dysregulation. Diabetes56,901–911.
    171. Ye J, Gao Z, Yin J,He Q,2007.Hypoxia is a potential risk factor for chronicinflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obesemice. Am. J. Physiol. Endocrinol. Metab.293, E1118–E1128.
    172. Pasarica M, Sereda OR, Redman LM, et al.2009. Reduced adipose tissue oxygenationin human obesity: evidence for rarefaction, macrophage chemotaxis, and inflammationwithout an angiogenic response. Diabetes58,718–725.
    173. Virtanen KA, Lonnroth P, Parkkola R, et al.2002. Glucose uptake and perfusion insubcutaneous and visceral adipose tissue during insulin stimulation in nonobese andobese humans. J. Clin. Endocrinol.Metab.87,3902–3910.
    174. Semenza GL,2000. HIF-1and human disease: one highly involved factor. Genes Dev.14,1983–1991.
    175. Wang B, Wood IS, Trayhurn P,2007. Dysregulation of the expression and secretion ofinflammation-related adipokines by hypoxia in human adipocytes.Pflugers Arch.455,479–492.
    176. Cnop M,2008. Fatty acids and glucolipotoxicity in the pathogenesis of Type2diabetes.Biochem. Soc. Trans.36,348–352.
    177. Shi H, Kokoeva MV, Inouye K, et al.2006. TLR4links innate immunity and fattyacid-induced insulin resistance. J. Clin. Invest.116,3015–3025.
    178. Bes-Houtmann S,Roche R, Hoareau L, et al.2007. Presence of functional TLR2andTLR4on human adipocytes. Histochem. Cell Biol.127,131–137.
    179. Vitseva OI, Tanriverdi K, Tchkonia TT, et al.2008. Inducible Toll-like receptor andNF-kappaB regulatory pathway expression in human adipose tissue. Obesity16,932–937.
    180. Nguyen MT, Satoh H, Favelyukis S, et al.2005. JNK and tumor necrosis factor-alphamediate free fatty acid-induced insulin resistance in3T3-L1adipocytes. J. Biol. Chem.280,35361–35371.
    181. Nguyen MT, Favelyukis S, Nguyen AK, et al.2007. A subpopulation of macrophagesinfiltrates hypertrophic adipose tissue and is activated by free fatty acids via Toll-likereceptors2and4and JNK-dependent pathways. J. Biol. Chem.282,35279–35292.
    182. Suganami T, Mieda T, Itoh M, et al.2007. Attenuation of obesity-induced adiposetissue inflammation in C3H/HeJ mice carrying a Toll-like receptor4mutation.Biochem. Biophys. Res. Commun.354,45–49.
    183. Furuhashi M, Fucho R, Gorgun CZ, et al.2008. Adipocyte/macrophage fattyacid-binding proteins contribute to metabolicdeterioration through actions in bothmacrophages and adipocytes in mice. J. Clin. Invest.118,2640–2650.
    184. Backhed F, Manchester JK, Semenkovich CF, Gordon JI,2007. Mechanismsunderlying the resistance to diet-induced obesity in germ-free mice. Proc. Natl. Acad.Sci. U.S.A104,979–984.
    185. Cani PD, Amar J, Iglesias MA, et al.2007. Metabolic endotoxemia initiates obesity andinsulin resistance. Diabetes56,1761–1772.
    186. Leuwer M, Welters I, Marx G, et al.2009. Endotoxaemia leads tomajor increases ininflammatory adipokine gene expression in white adipose tissue of mice. Pflugers Arch.457,731–741.
    187. Cani PD, Bibiloni R, Knauf C,Waget, et al.2008. Changes in gut microbiota controlmetabolic endotoxemia-induced inflammation in high-fat diet-induced obesity anddiabetes in mice. Diabetes57,1470–1481.
    188. Amar J, Burcelin R, Ruidavets JB, et al.2008. Energy intake is associated withendotoxemia in apparently healthy men. Am. J. Clin. Nutr.87,1219–1223.
    189. Creely SJ, McTernan PG, Kusminski CM, et al.2007. Lipopolysaccharide activates aninnate immune systemresponse inhumanadipose tissue inobesity andtype2diabetes.Am. J. Physiol. Endocrinol. Metab.292, E740–E747.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700