用户名: 密码: 验证码:
游离脂肪酸增高致胰岛β细胞功能紊乱的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:脂毒性对胰岛β细胞自身胰岛素信号通路及分泌功能的影响及机制
     目的:探讨高脂饲养大鼠胰岛β细胞分泌功能的变化及机制。
     方法:将8周龄雄性SD大鼠随机分为高脂饲料组(HF组,20只)和正常饲料组(NC组,20只)。各组分别饲养至20周,(1)采空腹血检测血糖、胰岛素,测血中及胰腺组织甘油三酯含量;胰腺组织切片行HE染色;(2)胰岛细胞表面灌注实验,评价离体胰岛β细胞动态分泌功能;(3)正常血糖高胰岛素钳夹试验,评价外周组织胰岛素抵抗程度;(4)采用实时荧光定量PCR方法比较两组大鼠胰岛素受体底物-1(IRS-1)、胰岛素受体底物-2(IRS-2)、磷酯酰肌醇3激酶(PI3K)和葡萄糖转运子-2(Glut-2)mRNA表达的变化。
     结果:(1)HF组胰岛素、血中和胰腺组织TG水平显著高于NC组(P<0.01);高脂组大鼠胰岛内可见脂质沉积;(2)HF组大鼠葡萄糖输注率(GIR)较NC组明显降低(P<0.01);HF组葡萄糖刺激的胰岛素分泌(GSIS)功能明显降低;(3)HF组胰岛细胞IRS-1 mRNA表达降低42.3%,IRS-2及PI3K分别降低28.1%、16.8%,Glut-2mRNA表达降低22.9%,(P均<0.05)。(4)相关分析显示:胰腺组织TG水平与胰岛细胞IRS-1 mRNA表达呈负相关(r=—0.623,P<0.05);且与IRS-2 mRNA表达也明显负相关(r=—0.537,P<0.05)。
     结论:高脂饲养导致大鼠胰岛β细胞胰岛素信号转导分子基因表达下降,可能与胰腺组织TG的异位沉积有关。
     第二部分:大剂量抗氧化剂对高脂饲养大鼠胰岛β细胞分泌功能的影响及机制
     目的:探讨大剂量抗氧化剂—N-乙酰半胱氨酸(N-acetyl-l-cysteine,NAC)对高脂饲养大鼠胰岛β细胞分泌功能的影响及可能机制。
     方法:8周龄SD大鼠随机分为正常饲料组(NC组),高脂饲料组(HF组),和高脂+NAC组(NAC组)。饲养20周,(1)测血浆及胰腺组织丙二醛(MDA)和还原型谷胱甘肽(GSH)水平;(2)正常血糖高胰岛素钳夹实验,评价外周组织胰岛素抵抗程度;(3)胰岛细胞表面灌注实验,评价离体胰岛β细胞动态分泌功能;(4)实时荧光定量PCR方法比较各组大鼠胰岛素受体底物-1(IRS-1)、胰岛素受体底物-2(IRS-2)和葡萄糖转运子-2(Glut-2)mRNA表达的变化。
     结果:(1)HF组血浆及胰腺MDA水平明显高于NC组,GSH水平低于NC组,NAC可以改善以上变化;(2)HF组葡萄糖输注率(GIR)比NC组降低(P<0.01),用NAC后GIR明显改善(P<0.01);HF组葡萄糖刺激的胰岛素分泌(GSIS)功能下降,用NAC后可逆转上述变化;(3)HF组胰岛细胞IRS-1、IRS-2、Glut-2mRNA表达降低42.3%、28.1%、22.9%(P均<0.05);NAC组胰岛细胞IRS-1、IRS-2、Glut-2mRNA表达与HF组相比增加40.2%、30.2%,19.1%(P均<0.05)。
     结论:大剂量抗氧化干预治疗能改善胰岛细胞胰岛素信号传导,逆转高脂饲养导致的大鼠胰岛细胞分泌功能紊乱,其机制可能与NAC纠正机体氧化及抗氧化失衡有关。
     第三部分:氧化应激-PI3K/Akt通路与高FFA所致的INS-1细胞分泌功能的紊乱
     目的:本试验观察了棕榈酸对INS-1细胞胰岛素分泌功能及氧化应激-PI3K/Akt通路的影响及抗氧化剂干预的作用,旨在探讨氧化应激及β细胞自身的胰岛素信号通路在T2DM发病中所起的作用及机制。
     方法:大鼠胰岛β细胞系接种于6孔板(2×10~5/孔)中,除对照组外,分别加入0.2mmol/L棕榈酸和/或0.2mg/mlNAC以及50nm/L Wortmannin进行干预。各组每24h更换RPMI 1640培养基,细胞达70%汇片生长时,各组细胞分别加入干预,孵育48h。胰岛素释放实验检测β细胞对高糖刺激的反应能力;细胞内硝基酪氨酸测定,反映氧化应激的情况;实时荧光定量PCR检测胰岛素及PDX-1基因表达水平,Western blot检测磷酸化的Akt水平。
     结果:(1)P组和P+NAC组的ISI较NC组均明显降低,但是P+NAC组的ISI较单独加棕榈酸组明显升高(NC:2.12±0.17;P:0.84±0.12:P+NAC:1.16±0.11,P<0.05)(2)P组和P+NAC组细胞内胰岛素mRNA表达较NC组细胞分别下降了37.4%(P<0.05)和22.6%,细胞内PDX-1 mRNA表达分别下降了32.1%(P<0.05)和27.5%。(3)P组和P+NAC组细胞内NT含量较NC组升高(mmol/l,NC:0.14±0.03;P:0.37±0.02;P+NAC:0.25±0.0.02,P<0.05)。(4)培养基中加入10nmol/L胰岛素孵育1 h后,P组P-Akt的蛋白表达水平较正常对照组降低,NAC可部分逆转上述变化,加入50nm/LWortmannin后,P-Akt表达受抑制。
     结论:氧化应激产物增加可能影响胰岛细胞PI3K-Akt活性,使胰岛素信号通路受阻,进而导致胰岛细胞分泌功能障碍。
     第四部分:胰岛素信号通路在高游离脂肪酸所致的β细胞功能紊乱中的作用及机制
     目的:观察血浆游离脂肪酸(FFA)水平升高对β细胞胰岛素分泌功能的影响,探讨β细胞胰岛素信号通路在其中所起的作用及机制。
     方法:将8周龄雄性SD大鼠随机分为脂肪乳输注组(FFA组,13只)和生理盐水输注组(NS组,12只)。分别输注48小时,检测以下指标:(1)采血检测胰岛素,FFA水平。(2)正常血糖高胰岛素钳夹实验,评价外周组织胰岛素抵抗程度。(3)静脉葡萄糖耐量实验,评价活体胰岛β细胞分泌功能。(4)胰岛细胞表面灌注实验,评价离体胰岛β细胞动态分泌功能。(5)采用实时荧光定量PCR方法检测肌肉中胰岛素受体底物-1(IRS-1)、胰岛素受体底物-2(IRS-2)mRNA表达的变化。(6)实时荧光定量PCR方法检测胰岛细胞IRS-1、IRS-2和葡萄糖转运子-2(Glut-2)mRNA表达的变化。
     结果:(1)FFA组血中胰岛素水平比NS组增高(24.44±1.25 uIU/ml VS 18.09±1.37uIU/ml,P<0.05),FFA水平也显著高于NS组(1.39±0.18mmol/1 VS 0.64±0.10mmol/1,P<0.001);(2)FFA刺激后,离体和活体的胰岛β细胞分泌功能均增强。(3)FFA组葡萄糖输注率(GIR)较NS组明显降低(P<0.05),提示存在明显的外周胰岛素抵抗;(4)FFA组肌肉IRS-1 mRNA表达比NS组降低87.7%,IRS-2表达降低50.7%(P均<0.05)(5)FFA组胰岛细胞IRS-1 mRNA表达增加29.3%(P<0.05),IRS-2及Glut-2分别增加345.1%、536.4%(P均<0.01)。
     结论:血浆FFA水平短期升高,造成外周胰岛素抵抗的同时,对β细胞胰岛素分泌有刺激作用,此时胰岛细胞胰岛素信号通路分子基因表达增加。
Part one:A study on the relationship and mechanism of islet beta cell insulin resistance and the fat deposition ectopically
     Objective:To study the changes and mechanism of insulin signal transduction molecules in islet cells of high-fat-diet rat models and its relationship with isletβcells insulin resistance.
     Methods:Forty SD rats were randomly divided into 2 groups and fed with high-fat-diet(HF group) and normal diet(NC group).At the end of twenty weeks feeding,we determined fasting blood glucose(FBG)、fasting serum insulin(Ins), triglyceride(TG)in the blood and the pancreas.The glucose infusion rat(GIR) was measured by using euglycemic hyperinsulinemia clamp to evaluated the perpherial insulin risistance.The rats in the two groups were sacrificed,and the pancreatic islets were isolated and collected.The islet cell perifusion was conducted to evaluate the function of isleβcell.The expression of insulin receptor substrate- 1(IRS- 1),insulin receptor substrate-2(IRS-2),phosphatidylinositol-3-kinase(PI3K),glucose transporter-2 (Glut-2)gene in islets were detected by real-time PCR.
     Results:(1)The serum insulin and TG concentration of blood and pancreas in HF group were higher than in NC group(P<0.01).The GIR was decreased significantly in HF group compared with NC group(P<0.01).(2)The glucose stimulated insulin secretion was impaired in the high-fat-diet rats.(3)The gene expression of IRS-1 was significantly decreased by 42.3%in HF group(P<0.05) and the expression of IRS-2,PI3K and Glut-2 was decreased by 28.1%、16.8%and 22.9%(P<0.05).(3) There was a significantly negative correlation between the content of TG in pancreas and IRS-1 gene expression(r=—0.623,P<0.05) as well as IRS-2 gene expression in isletβcells in HF group(r=—0.537,P<0.05).
     Conclusion:High-fat-diet rat models shown an impaired expression of insulin signal transduction molecules in isletβcells which may correlated with the fat deposition ectopically in pancreas.
     Part two:A study on the mechanism of the improvement of isletβcell function after using NAC
     Objective:To study the changes of isletβcells function in high-fat-diet rat models and the effect of N-acetyl-1-cysteine intervention.
     Methods:59 normal male SD rats,8 week old,were randomly divided into 3 groups, i.e.,a normal diet group(NC,n=20),a high fat diet group(HF,n=20),and a N-acetyl-1-cysteine treated group(NAC,n=19,N-acetyl-1-cysteine 300mg·kg~(-1)·d~(-1) and high fat diet).At the end of twenty weeks feeding,we determined fasting serum insulin(Ins),glucose(Glu),malonaldehyde(MDA) and reduced glutathione(GSH) in plasma and pancreas.The glucose infusion rate(GIR) was measured by using euglycemic hyperinsulinemia clamp to evaluate the peripheral insulin resistance.After the rats were sacrificed,the pancreatic islets were isolated and collected.Thr islet cells of three groups were performed in a perifusion medium containing 3.3mmol/L glucose for 15 min,followed by running in 16.7mmol/L glucose for 30 min,insulin content of perifusion medium was measured by RIA.The expressions of IRS-1,IRS-2,Glut-2 gene in islets were detected by real time PCR.
     Results:(1)The insulin,glucose and MDA concentration in HF group were higher than in NC group,but GSH levels in plasma and pancreas were lower.NAC intervention could reverse these effects.(2)The GIR was decreased significantly in HF group compared with NC group((5.25±1.2)mg.min~(-1).kg~(-1) vs(13.56±1.7)mg.min~(-1). kg~(-1),P<0.01),NAC intervention can reverse these effect(GIR9.28±1.5mg.min~(-1).kg~(-1)vs 5.25±1.2mg.min~(-1).kg~(-1),P<0.01).(3)16.7mmol/L glucose could increase the insulin secretion in the islet cells of the three groups,but the peak was lower in HF group.NAC intervention could reverse these effects.(4) The gene expression of IRS-1 was significantly decreased by 42.3%in HF group(P<0.01),and the expressions of IRS-2 and Glut-2 were decreased by 28.1%and 22.9%(P<0.05) compared with NC group.In contrast,the expressions of IRS-1,IRS-2,Glut-2 in NAC group reversed 40.2%,30.2%and 19.1%respectively than HF group.
     Conclusion:Antioxidant therapy could increase the gene expression of insulin signal transduction molecules in isletβcells and reversed the high-fat-diet feeding induced functional disorder of isletβcells which might relate with the antioxidant effects of NAC.
     Part three:The effect of free fatty acid on the function of INS-1 cells and oxidative stress-PI3K-Akt transduction signals
     Objective:To evaluate the effect of lipotoxicity and NAC on the pancreatic isletβ-cell function through intracellular oxidative stress.
     Methods:To determine the insulin secretion in INS-1 cells exposed to palmitate,as well as the expression of INS,PDX-1,and NT within cells via real-time PCR and Western Blot methods.
     Results:Compared with normal group,exposure to palmitate significantly impair insulin secretion index in INS-1 cells in a time-dependent manner(NC:2.12±0.17;P: 0.84±0.12;P+NAC:1.16±0.11,P<0.05 ).Compared with control,the gene expression of INS was significantly decreased by 37.4%(P<0.05) and 22.6%expectively in palmitate group and palmitate plus NAC group.But the expressions of PDX-1 was decreased by 32.1%and 27.5%.Moreover,the concentration of NT within cells exposed to palmitate was evidently elevated.In addition,both the mRNA and protein levels of P-Akt were increased in INS-1 cells treated with palmitate compared with normal group,but NAC could partly reverse the effect.
     Conclusion:Palmitate induces the impairment in pancreatic isletβcell function, which is closely associated with the aggravation of oxidative stress and induced by the changes of insulin transduction signals.
     Part four:Effect of lipid infusion on the function of isletβcells and gene expression of insulin signal transduction system
     Objective:To study the changes and mechanism of the function of isletβcells and insulin signal transduction molecules after lipid infusion.
     Methods:Twenty five SD rats were randomly divided into 2 groups,FFA group and NS group.Catheters were implanted under pentobarbital anesthesia in the right atrium via the jugular vein and the left carotid artery.A technique for a 48-h infusion in unrestrained rats was used for triglyceride and heparin or saline infusion.The infusion period started on day 2 after surgery.After 48-h infusion,we determined fasting serum insulin(Ins)、free fat acid(FFA ) in the blood.The glucose infusion rat(GIR) was measured by hyperinsulinemia euglycemic clamp to evaluated the perpherial insulin resistance.The ivgtt and islet cell perifusion was conducted to evaluate the function of isleβcell.The rats in the two groups were sacrificed,and the pancreatic islets were isolated and collected.The expression of insulin receptor substrate-1 (IRS-1)、insulin receptor substrate-2(IRS-2)、glucose transporter-2(Glut-2) gene in islets and IRS-1,IRS-2 in muscle were detected by real-time PCR。
     Results(1)The serum FFA and insulin concentration of blood in FFA group were higher than in NS group(P<0.05).(2)The GIR was decreased significantly in FFA group compared with NS group(P<0.05).(3)The glucose stimulated insulin secretion increased in the FFA group.(4)The gene expression of IRS-1 in muscle was significantly decreased by 87.7%in FFA group,and the expression of IRS-2 was decreased by 50.7%(all P<0.05 ).The gene expression of IRS-1 in islets was significantly increased by 29.3%(P<0.05),and the expression of IRS-2,Glut-2 was increased by 345.1%and 536.4%in FFA group(all P<0.01 ).
     Conclusion:Lipid infusion in short time increased the secretion of insulin and impaired expression of insulin signal transduction molecules in muscle but it can increased the expression of insulin signal transduction molecules in isletβcells.
引文
1.Masato Kasuga.Insulin resistance and pancreatic β cell failure.The Journal of Clinical Investigation,2006,116:1757-1760.
    2.《中国糖尿病防治指南编写组》.中国糖尿病防治指南.北京:北京大学医学出版社,2006,2-8.
    3.Vincent Poitout,Robertson paul.Secondary β cell failure in type 2 diabetes.Endocriology,2002,143:339-342.
    4.McGarry JD.What if minkowski had been ageusic? An alternatice angle on diabetes.Science,1992,258:766-770.
    5.Reaven GM.The fourth musketeer-from Alexandre Dumas to Claude Bernard.Diabetologla,1995,38:3-13.
    6.Schalch DS,Kipnis DM.Abnormalities in carbohydrate tolerance associated with elevated palsma nonesterified fatty acids.J Clin Invest,1965,44:2010-2020.
    7.McGarry J D.Dysregulation of fatty acid metabolism in the etiology of type 2diabetes.Diabetes,2002,51:7-18.
    8.Yoshikawa H,tajiri H,hashimoto T,et al.Effect of free acids on β-cell function:a possible involvement of peroxisome proliferator activated receptors or pancreatic duodenal homeobox.Metabolism,2001,50:613-618.
    9.Yun-Ping Zhou,Valdemar E G,et al.Long-Term Exposure of Rat Pancreatic Islets to Fatty Acids Inhibits Glucose induced Insulin Secretion and Biosynthesis through a Glucose Fatty Acid Cycled clin Invest,1994,93(2):870-876.
    10.Kawai T,Hirose H,Seto Y,et al.Chronic effects of different fatty acids and leptin in INS-1 cells.Diabetes Res Clin Pract,2001,51(1):1-8.
    11.Lupi R,Del Guerra S,Marselli L,et al.Rosiglitazone prevents the impairment of human islet function induced by fatty acids:evidence for a role of PPAR γ in the modulation of insulin secretion.Am J Physiol Endocrinol Metab,2004,286:E 560-567.
    12.Carpentier A,Mittelman SD,Bergman Richard N,et al.Prolonged elevation of plasma free fatty acids impairs pancreatic[beta]-cell function in obese nondiabetic humans but not in individuals with type 2 diabetes.Diabetes,2000,49(3):399-408.
    13.Harbeck MC,Louie DC,Howland J,et al.Expression of insulin receptor mRNA and insulin receptor substrate 1 in pancreatic islet beta-cells. Diabeted, 1996, 45(6):711-717.
    14. Otani K,Kulkarni RN,Baldwin AC,et al.Reduced beta cell mass and altered glucose sensing impair insulin secretory function in beta IRKO mice.AmJ Physiol Endocrinol Metab,2004,286:E412E49.
    15. Aspinwall CA,Qian WJ,Roper MG,et al.Roles of insulin receptor Substrate-1 ,phosphatidylinositol 3-kinase, and release of intracellular Ca2+ stores in insulin stimulated insulin secretion in β cells.J Biol Chem,2000, 275:22331-22338.
    16. Kubota N,Tobe K,Terauchi Y,et al.Disruption of insulin receptor substrate 2 causes type 2 diabetes because of liver insulin resistance and lack of compensatory β -cell hyperplasia.Diabetes,2000,49:188021889.
    1. Masato Kasuga. Insulin resistance and pancreatic βcell failure.The Journal of Clinical Investigation,2006,l 16:1757-1760.
    2. Michael Stumvoll,Barny J,Timon W,et al.Type 2 diabetes:principles of pathogenesis and therapy.Lancet,2005,365:1333-1346.
    3. Porte D. Clinical importance of insulin secretion and its interaction with insulin resistance in the treatment of type 2 diabetes mellitus and its complications. Diabetes Metab. Res. Rev. 2001.17:181-188.
    4. Prentki M, Joly E, El-Assaad W, et al. Malonyl-CoA signaling, lipid partitioning, and glucolipotoxicity: role in beta-cell adaptation and failure in the etiology of diabetes. Diabetes, 2002,51(3):S405-S413.
    5. Leahy JL. Pathogenesis of type 2 diabetes mellitus. Arch. Med. Res. 2005,36:197-209.
    6. Poitout V, Robertson RP. Minireview: secondary beta-cell failure in type 2 diabetes - a onvergence of glucotoxicity and lipotoxicity. Endocrinology,2002,143:339-342.
    7. Zimmet P, Alberti K.G, and Shaw J. Global and societal implications of the diabetes epidemic.Nature,2001,414:782-787.
    8. McGarry JD.What if minkowski had been ageusic? An alternatice angle on diabetes. Science, 1992,258:766-770.
    9. Reaven GM.The fourth musketeer-from Alexandre Dumas to Claude Bernard. Diabetologia, 1995,38:3-13.
    10. Chalch DS, Kipnis DM. Abnormalities in carbohydrate tolerance associated with elevated palsma nonesterified fatty acids.J Clin Invest, 1965,44:2010-2020.
    11. McGarry J D. Dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes, 2002, 51:7-18.
    12. Pan DA, Lillioja S, Kriketos AD, et al.Skeletal muscle triglyceride levels are inversely related to insulin action. Diabetes , 1997,46:983-988,.
    13. Forouhi NG, Jenkinson G, Thomas EL, et al.Relation of triglyceride stores in skeletal muscle cells to central obesity and insulin sensitivity in European and South Asian men. Diabetologia, 1999,42:932-935.
    14. Krssak M, Petersen KF, Dresner A, et al. Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study. Diabetologia, 1999,42:113-116.
    
    15. Perseghin G, Scifo P, DeCobelli F, et al. Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: a 1H-13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents.Diabetes, 1999,48:1600-1606.
    
    16. Levin K, Schroeder HD, Alford FP, et al.Morphometric documentation of abnormal intramyocellular fat storage and reduced glycogen in obese patients with type Ⅱ diabetes. Diabetologia, 2001,44:824-833.
    
    17. Szsczepaniak LS, Babcock EE, Schick F, et al.Measurement of intracellular triglyceride stores by 1H spectroscopy: validation in vivo. Am J Physiol, 1999,276:E977-E989,
    
    18. Defronzo RA, Bonadonna RC, Ferrannini E.Pathogenesis of NIDDM: a balanced overview. Diabetes Care, 1992,15:318-368.
    
    19. Brechtel K, Dahl DB, Machann J, et al. Fast elevation of the intramyocellular lipid content in the presence of circulating free fatty acids and hyperinsulinemia:a dynamic 1H-MRS study. Magn Reson Med, 2001,45:179-183.
    
    20. Boden G, Chen X, Rosner J, et al. Effects of a 48-h fat infusion on insulin secretion and glucose utilization. Diabetes, 1995,44:1239-1242.
    
    21. Kelley DE, Mintun MA, Watkins SC, et al.The effect of non-insulin-dependent diabetes mellitus and obesity in glucose transport and phosphorylation in skeletal muscle. J Clin Invest, 1996,97:2705-2713.
    
    22. Man Z-W, Hirashima T, Mori S, et al.Decrease in triglyceride accumulation in tissues by restricted diet and improvement of diabetes in Otsuka Long-Evans Tokushima fatty rats, a non-insulin-dependent diabetes model. Metabolism,2000,49:108-114.
    
    23. Ritz-Laser B,Meda P, Constant I,et al.Glucose-induced preproinsulin gene expression is inhibited by the free fatty acid palmitate. Endocrinology, 1999,140:4005-4014.
    
    24. Jacqueminet S, Briaud I, Rouault C,et al.Inhibition of insulin gene expression by long-term exposure of pancreatic β-cells to palmitate is dependent on the presence of a stimulatory glucose concentration. Metabolism,2000, 49 :532 -536,
    
    25. Briaud I, Harmon JS, Kelpe CL,et al.Lipotoxicity of the pancreatic β-cell is associated with glucose-dependent esterification of fatty acids into neutral lipids.Diabetes, 2001, 50:315-321.
    26.Milburn JL Jr,Hirose H,Lee YH,et al.Pancreatic β-cells in obesity:evidence for induction of functional,morphologic,and metabolic abnormalities by increased long chain fatty acids.J Biol Chem,1995,270:1295 -1299.
    27.Shimabukuro M,Zhou YT,Levi M,et al.Fatty acid-induced β-cell apoptosis:a link between obesity and diabetes.Proc Natl Acad Sci U S A,1998,95:2498-2502.
    28.Alan R Saltiel C Ronald Kahn.Insulin signaling and the regulation of glucose and lipid metabolism.Nature,2001,dec(414):799-806.
    29.Michael,M.D.Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction.Mol.Cell,2000,6:87-94.
    30.Miyake,K.Hyperinsulinemia,glucose intolerance,and dyslipidemia induced by acute inhibition of phosphoinositide 3-kinase signaling in the liver.J.Clin.Invest,2002,110:1483-1491.
    31.Bruning J.C.A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance.Mol.Cell,1998,2:559-569.
    32.Bluher M.Adipose tissue selective insulin receptor knockout protects against obesity and obesity-related glucose intolerance.Dev.Cell,2002,3:25-38.
    33.Bruning J.C.Role of brain insulin receptor in control of body weight and reproduction.Science,2000,289:2122-2125.
    34.Okamoto H.Transgenic rescue of insulin receptor-deficient mice.J.Clin.Invest,2004,114:214-223.
    35.Harbeck MC,Louie DC,Howland J,et al.Expression of insulin receptor mRNA and insulin receptor substrate lin pancreatic islet beta-cells.Diabeted,1996,Jun;45(6):711-717.
    36.Gerich JE.The genetic basis of type 2 diabetes mellitus:impaired insulin secretion versus impaired insulin sensitivity.Endocr Rev 1998;19:491 - 503
    37.卜石、杨文英、王昕等,长期高脂饲养对大鼠葡萄糖刺激的胰岛素分泌的影响.中华内分泌代谢杂志,2003,19:25-28.
    38.Kubota N,Tobe K,Terauchi Y,et al.Disruption of insulin receptor substrate-2causes type 2 diabetes because of liver insulin resistance and lack of compensatory β-cell hyperplasia.Diabetes,2000,49:1880-1889.
    39.Wang MY,Koyama K,Shimabukuro M,Mangelsdorf D,Newgard CB,Unger RH: Overexpression of leptin receptors in pancreatic islets of Zucker diabetic rats restores GLUT-2, glucokinase, and glucose-stimulated insulin secretion. Proc Natl Acad Sci U S A 95:11921-11926, 1998
    40. Petrik J, Srinivasan M, Aalinkeel R, Coukell S, Arany E,Patel MS, and Hill DJ. A chronic high-carbohydrate diet causes an altered ontogeny of pancreatic islets of Langerhans in the neonatal rat. Pediatr Res 49: 84-92, 2001.
    41. Srinivasan M, Aalinkeel R, Song F, Lee B, Laychock SG, and Patel MS. Adaptive changes in insulin secretion by islets from neonatal rats raised on a high-carbohydrate formula. Am JPhysiol Endocrinol Metab 279: E1347-E1357, 2000.
    1. Porte D. Clinical importance of insulin secretion and its interaction with insulin resistance in the treatment of type 2 diabetes mellitus and its complications. Diabetes Metab. Res. Rev,2001,17:181-188.
    2. DeFronzo RA.Pathogenesis of type 2 diabetes: metabolic and molecular implications for identifying diabetes genes. Diabetes Review, 1997,5:177-269.
    3. Paolisso G, Giugliano D.Oxidative stress and insulin action. Is there a relationship? Diabetologia, 1996,39:357-363.
    4. Slatter DA, Bolton CH, Bailey AJ.The importance of lipid-derived malondialdehyde in diabetes mellitus. Diabetologia, 2000,43:550-557.
    5. Paolisso G, Di Maro G, Pizza G, D,et al.Plasma GSH/GSSG affects glucose homeostasis in healthy subjects and non-insulin-dependent diabetics. Am J Physiol, 1992,263 :E435-E440.
    6. Melov S, Coskun P, Patel M, et al.Mitochondrial disease in superoxide dismutase 2 mutant mice. Proc Natl Acad Sci USA, 1999,96:846-851.
    7. Melov S.Mitochondrial oxidative stress. Physiologic consequences and potential for a role in aging. Ann NY Acad Sci ,2000,908:219-225.
    8. Dr(o|¨)ge W. Free radicals in the physiological control of cell function. Physiol Rev, 2002,82:47-95.
    9. Dalton TP, Shertzer HG, Puga. A,et al.Regulation of gene expression by reactive oxygen. Annu Rev Pharmacol Toxicol, 1999,39:67-101.
    10. Allen RG, Tresini M. Oxidative stress and gene regulation. Free Radic Biol Med, 2000,28:463-499.
    11. Toborek M, Hennig B.Fatty acid-mediated effects on the glutathione redox cycle in cultured endothelial cells. Am J Clin Nutr, 1994,59:60-65.
    12. Hennig B, Meerarani P, Ramadass P, et al. Fatty acid-mediated activation of vascular endothelial cells. Metabolism, 2000,49:1006-1013.
    13. Carlsson C, Borg LA, Welsh N.Sodium palmitate induces partial mitochondrial uncoupling and reactive oxygen species in rat pancreatic islets in vitro. Endocrinology, 1999, 140:3422-3428.
    14. Mitochondrial Functional State in Clonal Pancreatic β-Cells Exposed to Free Fatty Acids J. Biol. Chem.2003,278( 22): 19709-19715.
    15. Wojtczak L,Schonfeld P. Effect of fatty acids on energy coupling processes in mitochondria. Biochim Biophys Acta, 1993,1183:41-57.
    16. Rudich A, Kozlovsky N, Potashnik R, et al.Oxidant stress reduces insulin responsiveness in 3T3-L1 adipocytes. Am J Physiol, 1997,35:E935-E940.
    17. Ceriello A.Oxidative stress and glycemic regulation. Metabolism, 2000,49:27-29.
    18. Yaworsky K, Somwar R, Klip A. Interrelationship between oxidative stress and insulin resistance. In Antioxidants in Diabetes Management. New York, Marcel Dekker, 2000, p. 275-302
    19. Maddux BA, See W, Lawrence JC Jr, et al. Protection against oxidative stress-induced insulin resistance in rat L6 muscle cells by micromolar concentrations of α lipoic acid. Diabetes, 2001,50:404-410.
    20. Maechler P, Jornot L, Wollheim CB. Hydrogen peroxide alters mitochondrial activation and insulin secretion in pancreatic beta cells. J Biol Chem, 1999 274:27905-27913.
    21. Rudich A, Tirosh A, Potashnik R, et al. Lipoic acid protects against oxidative stress induced impairment in insulin stimulation of protein kinase B and glucose transport in 3T3-L1 adipocytes.Diabetologia, 1999,42:949-957.
    22. Packer L, Rosen P, Tritschler H, et al. Antioxidants and Diabetes Management. New York, Marcel Dekker, 2000.
    23. Jacob S, Lehmann R, Rett K, et al.Oxidative stress and insulin action: a role for antioxidants. In Antioxidants in Diabetes Management. Packer L, Ro¨ sen P, Tritschler HJ, King GL, Eds. New York, Marcel Dekker, 2000, p. 319-338.
    24. Evans JL, Goldfine ID: α -Lipoic acid: a multi-functional antioxidant that improves insulin sensitivity in patients with type 2 diabetes. Diabetes Technol Ther , 2000,2:401-413.
    25. Kyriakis JM, Avruch J.Sounding the alarm: protein kinase cascades activated by stress and inflammation. J Biol Chem, 1996 ,271:24313-24316.
    26. Paz K, Hemi R, LeRoith D, et al. A molecular basis for insulin resistance: elevated serine/threonine phosphorylation of IRS-1 and IRS-2 inhibits their binding to the juxtamembrane region of the insulin receptor and impairs their ability to undergo insulin-induced tyrosine phosphorylation. J Biol Chem, 1997,272:29911-29918.
    27. Birnbaum MJ.Turning down insulin signaling. J Clin Invest, 2001, 108:655-659.
    28. Tiedge M, Lortz S, Munday R, et al.Complementary action of antioxidant enzymes in the protection of bioengineered insulin-producing RINm5F cells against the toxicity of reactive oxygen species. Diabetes, 1998,47 :1578 -1585.
    29. Brown K,Parks,Kanno T . Mutual regulation of the transcriptional activation NF-kB and its inhibitor IKB-α.Proc Natl Acad Sci USA ,1993 ,90 :2532-2536.
    30. Hennig B, Meerarani P, Ramadass P, Watkins BA, Toborek M. Fatty acid-mediated activation of vascular endothelial cells. Metabolism, 2000, 49: 1006-1013.
    31. Toborek M, Lee YW, Garrido R,et al. Unsaturated fatty acids selectively induce an inflammatory environment in human endothelial cells.Am J Clin Nutr,2002, 75: 119-125.
    32. Dichtl W, Nilsson L, Goncalves I,et al.Very low-density lipoprotein activates nuclear factor-κB in endothelial cells. Circ Res, 1999,84:1085-1094.
    33. Toborek M, Malecki A, Garrido R,et al.Arachidonic acid-induced oxidative injury to cultured spinal cord neurons. J Neurochem, 1999,73:684-692.
    34. Hennig B, Meerarani P, Toborek M,et al.Antioxidant-like properties of zinc in activated endothelial cells. J Am Coll Nutr,1999,18:152-158.
    35. Blondeau N, Widmann C, Lazdunski M,et al.Activation of the nuclear factor-KB is a key event in brain tolerance. J Neurosci,2001,21:4668-4677.
    36. Lee JY, Sohn KH, Rhee SH,et al.Saturated fatty acids,but not unsaturated fatty acids.Chem,2001,276:16683-16689.
    37. Lameloise N,Muzzin P,Prentki M.Uncoupling protein 2:A possible link beteen fatty acid excess and impaired glucose-induced insulin secretion? Diabetes,2001,50: 803-809.
    38. Krauss S,Zhang CY,Scorrano L,et al.Superoxide-mediated activation of uncoupling protein 2 causes pancreatic beta cell dysfunction.J Clin Invest. 2003, 112:1831-1842.
    39. Zhou YT, Shimabukuro M, Koyama K, et al. Induction by leptin of uncoupling protein-2 and enzymes of fatty acid oxidation. Proc Natl Acad Sci U S A , 1997, 94:6386-6390
    40. Chan CB, MacDonald PE, Saleh MC, et al. Overexpression of uncoupling protein 2 inhibits glucose-stimulated insulin secretion from rat islets. Diabetes, 1999, 48: 1482-1486
    41. Gimeno RE, Dembski M, Weng X, et al.Cloning and characterization of an uncoupling protein homolog: a potential molecular mediator of human thermogenesis. Diabetes, 1997, 46: 900-906.
    42. Enerback S, Jacobsson A, Simpson EM, et al.Mice lacking mitochondrial uncoupling protein are coldsensitive but not obese. Nature, 1997,387:90-94.
    43. Fleury C, Neverova M, Collins S, Raimbault S, Champigny O, Levi-Meyrueis C, Bouillaud F, Seldin MF, Surwit RS, Ricquier D, Warden CH: Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia. Nat Genet, 1997 15:269-272.
    44. Chan CB, De Leo D, Joseph JW, et al.Increased uncoupling protein-2 levels in beta-cells are associated with impaired glucose-stimulated insulin secretion: mechanism of action. Diabetes , 2001,50:1302-1310.
    45. Brown JEP, Thomas S, Digby JE, et al.Glucose induces and leptin decreases expression of uncoupling protein-2 mRNA in human islets.FEBS Lett, 2002, 513:189-192.
    46. Schrauwen P, Hesselink M.UCP2 and UCP3 in muscle controlling body metabolism. J Exp Biol, 2002, 205:2275-2285.
    47. Nicholls DG, Locke RM. Thermogenic mechanisms in brown fat. Physiol Rev, 1984,64:1-64.
    48. Samec S, Seydoux J, Dulloo A. Role of UCP homologues in skeletal muscles and brown adipose tissue: mediators of thermogenesis or regulators of lipids as fuel substrate? FASEB J, 1998, 12:715-724.
    49. Himms-Hagen J, Harper ME. Physiological role of UCP3 may be export of fatty acids from mitochondria when fatty acid oxidation predominates: an hypothesis. Exp Biol Med, 2001, 226:78-84.
    50. Arsenijevic D, Onuma H, Pecqueur C, et al.Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production. Nat Genet, 2000, 26:435-439.
    51. Nishikawa T, Edelstein D, Du XL, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature , 2000, 404: 787-790.
    52. Li LX,Skorpen F,Egeberg K,et al.Uncoupling protein-2 participates in cellular defense against oxidative stress in clonal beta-cells. Biochem Biophys Res Commun,2001,282(1):273-277.
    53. Zhang CY, Parton LE, Ye CP, Genipin inhibits UCP2-mediated proton leak and acutely reverses obesity- and high glucose-induced beta cell dysfunction in isolated pancreatic islets.Cell Metab. 2006 ,3(6):417-27.
    
    54. Joseph JW, Koshkin V, Zhang CY et al. Uncoupling protein 2 knockout mice have enhanced insulin secretory capacity after a high-fat diet. Diabetes. 2002 Nov;51(11):3211-9.
    1 Asfari M, Janjic D, Meda P, et al.Establishment of 2-mercaptoethanol-dependent differentiated insulin-secreting cell lines.Endocrinology 1992, 130:167—178
    2 Unger RH. Lipotoxicity in the pathogenesis of obesity-dependent NIDDM.Genetic and clinical implications.Diabetes, 1995,44:863-870.
    3 Elks ML,Chronic perifusion of rat islets with palmitate suppresses glucose-stimulated insulin release.Endocrinology, 1993,133:208-214.
    4 Mingrone G, Henriksen FL, Greco AV, et al. Triglyceride-induced diabetes associated with familial lipoprotein lipase deficienty.Diabetes,1999,48:1258-1263.
    5 Alstrup KK, Gregersen S,Jensen HM, et al.Differential effects of cis and trans fatty acids on insuliln release from isolated mouse islets. Metablism, 1999,48:22-29.
    6 Lee Y, Hirose H, Ohneda M, et al. Beta-cell lipotoxicity in the pathogenesis of non-insulin-dependent diabetes mellitus of obese rats: impairment in adipocyte-beta-cell relationships. Proc Natl Acad Sci USA,1994,91:10878-10882.
    7 Cornelius Bollheimer, Daniela M, Simone M,et al. Intracellular depletion of insulin: a comparative study with palmitate ,oleate and elaidate in ins-1 cells. European Journal of Endocrinology,2003,148:481-486.
    8 Mason TM, Goh T, Tchipashvili V,et al.Prolonged elevation of plasma free fatty acids desensitizes the insulin secretory response to glucose in vivo in rats. Diabetes, 1999,48:524-530.
    9 Boden G, Chen X,Rosner J,et al.Effects of a 48-h fat infusion on insulin secretion and gluxose utilization. Diabetes, 1994:441239-1242.
    10 Cynthia L, Patrick C,Susan D,et al.Palmitate inhibition of insulin gene expression is mediated at the transcriptional level via ceramide synthesis. Journal of Biological Chemistry,2003,278:30015-30021.
    11 Derek K, Lori B,Susan D, et al. Palmitate inhibits insulin gene expression by altering PDX-1 nuclear localization and reducing mafa expression in isolated rat islets of langerhans. J Biol Chem,2005,280:32413-32418.
    12 Beate R, Paolo Meda, Isabel Constant,et al. Glucose-induced preproinsulin gene expression is inhibited by the free fatty acid palmitate.Endocrine Society, 1999,140:4005-4014.
    13 Randle PJ,Garland PB,Hales CN,et al.The glucose fatty acids cycle,its role in insulin sensitivity and the metabolic disturbances in diabetes mellitus.Lancet, 1963,i:785-789.
    
    14 Brun T,Assimacopoulos JF,Corkey BE,et al.Long-chain faty acids inhibit acetyl-CoA carboxylase gene expression in the pancreatic β cell lines INS- 1.Diabetes, 1997,46:3 93-400
    
    15 Laser BR,Meda P,Constant I,et al.Glucose-induced preproinsulin gene expression is inhibited by the free fatty acid palmitate. Endocrinology, 1999,140:4005-4014.
    
    16 Lameloise N,Muzzin P,Prentki M,et al.Uncoupling Protein 2:a possible link between fatty acid excess and impaired glucose induced insulin secretion? Diabetes,2001,50:803-809
    
    17 Lee Y,Hirose H,Zhou YT,et al .Increased lipogenic capacity of the islets of obese rats.Diabetes, 1997,46:408-413.
    
    18 Pick A,Clark J,Kubstrup C,et al.Role of apoptosis in failure of β cell mass compensation for insulin resistance and P cell defects in the male Zuker diabetic fatty rat.Diabetes, 1998,47:358-364.
    
    19 Rudich A, Kozlovsky N, Potashnik R, et al.Oxidant stress reduces insulin responsiveness in 3T3-L1 adipocytes. Am J Physiol, 1997,35:E935-E940.
    
    20 Ceriello A.Oxidative stress and glycemic regulation. Metabolism, 2000,49:27-29.
    
    21 Yaworsky K, Somwar R, Klip A. Interrelationship between oxidative stress and insulin resistance. In Antioxidants in Diabetes Management. New York, Marcel Dekker, 2000, p. 275-302
    
    22 Maddux BA, See W, Lawrence JC Jr, et al. Protection against oxidative stress induced insulin resistance in rat L6 muscle cells by micromolar concentrations of a lipoic acid. Diabetes, 2001,50:404-410.
    
    23 Maechler P, Jornot L, Wollheim CB. Hydrogen peroxide alters mitochondrial activation and insulin secretion in pancreatic beta cells. J Biol Chem, 1999 274:27905-27913.
    
    24 Maechler P,Antinozzi PA,Wollheim CB.Modulation of glutamate generation in mitochondria affects hormone secretion in INS-1E beta cells.IUBMB Life.2000,50(1):27-31.
    
    25 Jamie W Joseph, Vasilij Koshkin, Monique C.Sleh,et al.Free fatty acid-induced P cell defects are dependent on uncoupling protein 2 expression.J Biol Chem,2004,279:51049-51056.
    1.Bollheimer LC,Skelly RH,Chester MW et al:Chronic exposure to free fatty acid reduces pancreatic b-cell insulin content by increasing basal insulin secretion that is not compensated for by a corresponding increase in proinsulin biosynthesis translation.J Clin Invest,1998,101:1094-1101.
    2.Zhou YP,Grill VE:Long term exposure to fatty acids and ketones inhibits b-cell function in human pancreatic islets of Langerhans.J Clin Endocrinol Metab,1995,80:1584-1590.
    3.Elks ML:Chronic perifusion of rat islets with palmitate suppresses glucose-stimulated insulin release.Endocrinology,1993,133:208-214.
    4.邬云红、李秀钧、李宏亮等,高脂饮食肥胖大鼠胰岛细胞胰岛素抵抗机理的探讨.中华医学杂志,2005,July20,Vol85,N0 27.1907-1910.
    5.McGarry JD:Dysregulation of fatty acid metabolism in the etiology of type 2diabetes.Diabetes,2002 51:7-18.
    6.Kawai T,Hirose H,Seto Y,et al.Chronic effects of different fatty acids and leptin in INS-1 cells.Diabetes Res Clin Pract,2001,51(1):1-8.
    7.Lee,Y.,et al.Beta-cell lipotoxicity in the pathogenesis of non-insulin-dependent diabetes mellitus of obese rats:impairment in adipocyte beta-cell relationships.Proc.Natl.Acad.Sci.U.S.A.1994.91:10878-10882.
    8.Unger,R.H.,and Zhou,Y.T.Lipotoxicity of beta-cells in obesity and in other causes of fatty acid spillover.Diabetes.2001.50(Suppl.1):S118-S121.
    9.Shulman GI:Cellular mechanisms of insulin resistance.J Clin Invest,2000106:171-176
    10.Griffin ME,Marcucci MJ,Cline GW,et al:Free fatty acid-induced insulin resistance is associated with activation of protein kinase C_and alterations in the insulin signaling cascade.Diabetes,1999,48:1270-1274,
    11.Stein DT,Esser V,Stevenson BE,Lane KE,et al:Essentiality of circulating fatty acids for glucose stimulated insulin secretion in the fasted rat.J Clin Invest 1996,97:2728-2735,.
    12.Dobbins RL,Chester MW,Daniels MB,McGarry JD,Stein DT:Circulating fatty acids are essential for efficient glucose-stimulated insulin secretion after prolonged fasting in humans.Diabetes,1998,47:1613-1618,
    13.McGarry JD,Dobbins RL:Fatty acids,lipotoxicity and insulin secretion. Diabetologia, 1999 42:128-138.
    14. Harbeck MC, Louie DC, Howland J, et al. Expression of insulin receptor mRNA and insulin receptor substrate 1 in pancreatic islet beta-cells Diabeted, 1996, Jun;45(6):711-717.
    15. Muller Dany Guo Cai Huang, Stephanie Amiel: Identification of Insulin Signaling Elements in Human b-Cells-Autocrine Regulation of Insulin Gene Expression.Diabetes,2006,oct,55:2835-2842.
    1.Harbeck MC,Louie DC,Howland J,et al.Expression of insulin receptor mRNA and insulin receptor substrate 1 in pancreatic islet beta-cells.Diabeted,1996,Jun;45(6):711-717.
    2.Alan R Saltiel C Ronald Kahn.Insulin signaling and the regulation of glucose and lipid metabolism.Nature,2001,dec(414):799-806.
    3.Otani K,Kulkarni RN,Baldwin AC,et al.Reduced beta cell mass and altered glucose sensing impair insulin secretory function in beta IRKO mice.AmJ Physiol Endocrinol Metab,2004,286:E412E49.
    4.Aspinwall CA,Qian WJ,Roper MG,et al.Roles of insulin receptor Substrate-1,phosphatidylinositol 3-kinase,and release of intracellular Ca~(2+) stores in insulin stimulated insulin secretion in β cells.J Biol Chem,2000,275:22331-22338.
    5.Kubota N,Tobe K,Terauchi Y,et al.Disruption of insulin receptor substrate 2causes type 2 diabetes because of liver insulin resistance and lack of compensatory β -cell hyperplasia.Diabetes,2000,49:188021889.
    6.Hennige AM,Burks DJ,Ozcan U,et al.Upregulation of insulin receptor substrate-2in pancreatic β cells prevents diabetes.J Clin Invest,2003,112:1521-1532.
    7.Garofalo RS,Orena SJ,Rafidi K,et al.Severe diabetes,age-dependent loss of adipose tissue,and mild growth deficiency in mice lacking Akt2/PKB.J Clin Invest,2003,112:197-208.
    8.Roper MG,Qian WJ,Zhang BB,et al.Effect of the insulin mimetic L2783,281 on intracellular[Ca~(2+)]and insulin secretion from pancreatic β-cells.Diabetes,2002,51:S43-S49.
    9.McGarry J D.Dysregulation of fatty acid metabolism in the etiology of type 2diabetes.Diabetes,2002,51:7-18.
    10.Maechler P,Antinozzi PA,Wollheim CB.Modulation of glutamate generation in mitochondria affects hormone secretion in INS-1E beta cells.IUBMB Life.2000,50(1):27-31.
    11.Jamie W Joseph,Vasilij Koshkin,Monique C.Sleh,et al.Free fatty acid-induced βcell defects are dependent on uncoupling protein 2 expression.J Biol Chem,2004,279:51049-51056.
    12.Kathryn E.Wellen,Gokhan S.Hotamisligil.Inflammation,stress,and diabetes.J Clin Inves.2005,115:1111-1119.
    13.Minsheng Yuan,Nicky Konstantopoulos,Jongsoon Lee,et al,Reversal of Obesityand Diet -Induced Insulin Resistance with Salicylates or Targeted Disruption of Ikk β.Sci ence,2001,293:1673-1677.
    14.Hatada,E.N,Krappmann D,Scheidereit,C.NF-kappaB and the innate immune response.Curr.Opin.Immunol.2000.12:52-58.
    15.Ozcan U,Cao Q,Yijmaz E,et al.Endoplasmic reticulum stress links obesity,insulin action and type 2 diabetes.Science,2004,306:457-461.
    16.Araki E,Oyadomari S,Mori M.Impacto of endoplasmic reticulum stress pashway on pancreatic beta cells and diabeted mellitus.Exp Bio J Med,2003,228:1212-1217.
    17.陈晓平,杨文英,卜石,等.罗格列酮和二甲双胍对高脂饲养造成的胰岛素抵抗的影响.中华内科杂志,2004,43:280-283.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700