用户名: 密码: 验证码:
GPS接收机干扰抑制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球导航卫星系统可以用来测量运动载体的速度、三维位置和时间。随着它不断地完善和发展,以及未来跟互联网和移动网结合,它将在军用和民用领域获得更加广泛地应用。导航信号非常微弱,很容易遭到各种潜在的无意干扰和敌方的恶意干扰,因此如何保证导航系统在干扰环境下安全、可靠工作成为一个重要问题。导航系统的干扰主要是针对地面接收设备,它分为压制式干扰和欺骗式干扰,本文主要研究了导航信号中调频干扰和宽带噪声干扰这两类压制式干扰的抑制问题,内容如下:
     首先针对单传感器接收机,研究了线性调频干扰的抑制问题。通过分析Wigner-Ville分布、Radon-Wigner变换和分数阶傅立叶变换的关系,提出了在变换域消除线性调频干扰方案,同时由于分数阶傅立叶变换对信号线性处理,接收信号在变换域上不会产生如Wigner-Ville分布一样的交叉干扰。
     其次针对阵列信号处理,研究了宽带噪声干扰抑制问题。阵列信号处理通常利用期望信号的来波方向,根据一定的最优准则,完成波束成形,抑制干扰,增强已知信号。我们研究了在无任何导航信号先验信息情况下,通过正交投影和最大信噪比技术得到最优的加权向量,完成波束成形,抑制干扰和加权期望方向的来波信号。
     然后对于阵列信号处理,研究了在宽带噪声干扰下信源的参数估计问题。在阵列信号处理中,信源个数和信号来波方向是阵列信号处理的两个重要参数。一般的信源参数估计都是在噪声环境下进行的,在强干扰环境,这些方法会失效。我们提出了使用阵列子空间技术抑制接收信号中的强干扰,然后利用稳健的变换Gerschgorin方法估计信源的个数和高分辨率的MUSIC方法估计信号的来波方向。
     最后针对阵列信号处理,研究了干扰变场景变化时,怎样快速获得最优的加权向量,自适应跟踪干扰并消除它。根据期望信号来波方向和RLS算法快速跟踪未知参数变化的能力,提出了基于最小输出能量准则的RLS算法抑制干扰,导出了所提出的RLS算法步骤,分析了算法的稳态性能和动态跟踪能力。
Global Navigation Satellite System (GNSS) is commonly deployed to measure the speed of a moving object and estimate its three-dimension position and time. Through increasing development and perfection, GNSS will be combined with internet and mobile network in the future and therefore applied to military and civilian areas widely. However, the GNSS signals are easily subject to intentional and malicious interference because they are inherently weak. How to guarantee the reliable and safe operation of GNSS in the jamming becomes more and more important. The interference for GNSS is mainly targeted at receivers on the earth and can be classified into overwhelming interference and spurious interference. In this thesis, we consider the issue of suppressing two kinds of overwhelming interference, i.e., FM interferer and wideband noise interferer on navigation receivers in the following aspects.
     First, we analyze the relationships of the Wigner-Ville distribution, Radon-Wigner transform and the fractional Fourier transform, and identify the feature of Linear Frequency Modulation (LFM) interference which is different from the navigation satellite signals’in the transform domain for a receiver with a sensor. Based on these observations, we propose a new approach to cancel LFM interference in the transform domain and, meanwhile, avoid any cross-term interference in the form of Wigner-Ville distribution.
     Second, in array signal processing we consider how to estimate the optimal weight vector in the strong jamming environment when any prior information of navigation signals is unknown. To solve this issue, we adopt the orthogonal projection and maximum signal-noise ratio technique to achieve the optimum weight vector, implement beamforming, and suppress interference and enhance desired signal.
     Third, the number of sources and the direction of arrival (DOA) of each source are two important parameters in array signal processing. The estimation of source parameters is usually executed under noise environment. Hence, the conventional approaches fail in the strong jamming case. In this thesis, we apply a combining technique to estimate the source parameters. More specifically, we use subspace technique to suppress interference, adopt transform Gerschgorin approach to exploit the received signal after interference cancellation for estimating the number of desired signals, and utilize the high resolution MUSIC method to identify the DOA of each desired signal.
     Finally, in the array signal processing, we investigate how to adapt a weight vector quickly for a changing jamming environment. In view of the excellent capability of the RLS algorithm in tracking an unknown parameter vector, the present thesis proposes an improving RLS-version algorithm based on the minimum output energy, derives the steps, and demonstrates its steady-state performance and tracking capability.
引文
[1]寇艳红译. GPS原理与应用.北京:电子工业出版社, 2007.
    [2] J.Ma. Space eye-famous satellite telemetry expert Chen Fangyun, in collection of literary biographies of Chinese national defense science and technology scientists. Beijing, China: People’s Liberation Army Publishing House, 2000.
    [3]狄旻珉. GPS抗干扰接收技术研究: [博士论文].长沙:国防科技大学, 2006.
    [4]谷春艳,陈新福,易克初.卫星通信抗干扰技术的发展趋势.系统工程与电子技术, 2004, 26(12): 1793-1797.
    [5]王婷婷,王圣东,陈欣. GPS干扰与抗干扰技术发展现状分析.指挥控制与仿真, 2008, 30(6): 118-120.
    [6]胡祎,易克初. GPS及其干扰技术研究.电子科技, 2004(8): 41-44.
    [7]陆云,刘建永,曾京. GPS干扰技术及其仿真应用.光电技术应用. 2004(5): 44-46.
    [8]罗鸣,曹冲,肖雄兵等译.全球定位系统—信号、测量与性能.北京:电子工业出版社, 2008.
    [9] L. Vallot. Design and flight teat of a differential GPS/inertial navigation system for approach/landing guidance navigation. Jun. 1991, 38(2): 321-340.
    [10] C. Charles, Councilman multipath-rejecting GPS antennas. Proceedings of the IEEE, Jan. 1999, 87(1): 540-548.
    [11]朱志勤.全球定位的抗干扰及适应性技术.导弹与航天运载技术, 2000, 24(1): 48-54.
    [12] R.L.Fante, J.J.Vaccaro. Evaluation and reduction of multipath-induced bias on GPS time-of-arrival estimates. IEEE PLANS 2002, Doral Palm Springs Resort, Palm Springs, California, Apr. 2002, 12(5): 356-359.
    [13] R. L. Fante, J. J. Vaccaro. Evaluation of adaptive space-time-polarization cancellation of broadband interference in GPS systems. IEEE PLANS 2002, Doral Palm Springs Resort, Palm Springs, California, 2002, 15(7): 1235-1240.
    [14] Wei Sun, M. G. A. Amin. Self-coherence anti-jamming GPS receiver. IEEE Transactions on Signal Processing, Oct. 2005, 53(10): 3910-3915.
    [15] H. E. Witzgall, J. S. Goldstein, M. D. Zoltowski, I. S. Reed. A reduced order correlation kernel extension of the MUSIC algorithm, invited paper. Conf. Record of the 34th Asilomar, IEEE Conference on Signals, Systems and Computers, Oct. 2000: 353-359.
    [16]尚建平. GPS抗干扰技术研究: [硕士论文].武汉:武汉大学, 2004.
    [17]梁康. GPS干扰机的设计: [硕士论文].武汉:武汉大学, 2004.
    [18]张守信. GPS卫星测量定位理论与应用.长沙:国防科技大学出版社, 1996,
    [19]王运军,徐锦,李军. GPS接收机系统的抗干扰技术.舰船电子工程, 2006, 26(3): 31-37.
    [20]宋颖凤,葛海龙,王四海.对GPS的干扰与抗干扰技术研究.舰船电子工程, 2004, 24(6): 26-31.
    [21] A. Brown, D. Reynolds. Jammer and interference location system design and initial test result. Proceedings of the ION GPS’99, Nashville TN, Sep. 1999, 34(5): 353-359.
    [22] J. S. Goldstein, I. S .Reed. Reduced rank adaptive filtering. IEEE trans. on signal processing. Feb.1997, 45(2): 492-496.
    [23] J. S. Goldstein, I. S. Reed. Multidimentional wiener filtering using a nested chain of orthogonal scalar wiener filter. Technical report CSI-96-12-04. University of southern California, Dec.1996: 475-483.
    [24] R. L. Fante, J. J. Vaccaro. Wideband cancellation of interference in a GPS receiver array. IEEE Trans. AES, Apr. 2000, 36(2): 549-564.
    [25] S. W. Gilmore, D. William. Jamming of GPS receivers: A stylized analysis. Project Report, CMT-174, Lincoln Laboratory, Apr. 1994, 10(5): 256-266.
    [26] W. L. Myrick, M. D. Zoltowski, J. S. Goldstein. Anti-jam space–time preprocessor for GPS based on multistage nested Wiener filter. IEEE MILCOM’99, Atlantic City NJ.3-6, Oct. 1999, 8(3): 675-681.
    [27] R. Fante, J. Vaccaro. Wideband cancellation of interference in a GPS receive array. IEEE Trans. on Aerospace and Electronic Systems, Apri. 2000, 36(2): 549-564.
    [28] R. Fante, J. Vaccaro. Cancellation of jammers and jammer multipath in a GPS receiver. IEEE Trans. on Aerospace and Electronic Systems, Nov. 1998, 13(11): 25-28.
    [29] R. Fante, J. Torres. Cancellation of diffuse jammer multi-path by an airborne adaptive radar. IEEE Transactions on Aerospace and Electronic Systems, 1995 31(2): 805-820.
    [30] W. L. Myrick, M. D. Zoltowski, J. S. Goldstein. Anti-jam space–time preprocessor for GPS based on multistage nested Wiener filter. IEEE MILCOM’99, Atlantic City, Oct.1999, 1(2): 675-681.
    [31] J. R. Guerin, J. S. Goldstein, I. S. Reed. Optimal and adaptive reduced-rank STAP. IEEE Trans Aerospace and Electronic system, Apr. 2000, 36(2): 647-663.
    [32] J. S. Goldstein, I. S. Reed. Theory of partially adaptive radar. IEEE Trans Aerospace and Electronic systems. Oct. 1997, 33(4): 1399-1325.
    [33] J. S. Goldstein, I. S. Reed. Reduced-rank adaptive filter. IEEE Trans Signal Processing, Mar. 1997, 45(2): 492-496.
    [34] R. K. Deergha, M. N. S. Swamy, New approach for suppression of FM jamming in GPS receivers, IEEE Trans. On AES, Oct. 2006, 42(4): 1464-1474.
    [35] D. Borio, L. Camoriano, S. Savasta, L. Presti. A time-frequency excisor for GNSS interference. ITST’07, the international conference on 6-8 Jun. 2007, 3(1): 1-6.
    [36] R. K. Deergha, M. N. S. Swamy, E. I. A. Plotkin. Nonlinear adaptive filter for narrowband interference mitigation in spread spectrum systems, Signal Processing (EURASIP), 2005, 85(8): 625- 635.
    [37] B. Badke, A. Spanias. Partial band interference excision for GPS using frequency-domain exponents. IEEE international Conference on Acoustics, Speech, and Signal Processing, May 2002, 4(3): 3936-3939.
    [38] A. Abdulrahman, D. D. Falconer, A. U. Sheikh. Decision feedback equalization for CDMA in indoor wireless communications, IEEE J.Select. Areas Comm. May 1994, 12(4): 698-706.
    [39] U. Madhow, M. Honig, MMSE interference suppression for direct sequence spread-spectrum CDMA, IEEE Trans. Commun., Dec. 1994, 42(12): 3178-3188.
    [40] C. N. Pateros, G. J. Saulnier. An adaptive correlator receiver for direct-sequence spread-spectrum communications. IEEE Trans. Commun., Nov. 1996, 44(11): 1543-1552.
    [41] P. B. Rapajic, B. S. Vucetic. Adaptive receiver structures for asynchronous CDMA systems. IEEE J. Select Areas Commun, May 1994, 12(4): 685-697.
    [42] S. L. Miller, An adaptive direct-sequence code-division multiple-access receiver for multiuser interference rejection, IEEE Trans. Commun., Apr. 1995, 43(23): 1556-1565.
    [43] T. C. Paul, J. H. Brian, M. H. Thomas. A single-chip narrow-band frequency-domain excisor for a Global Positioning System (GPS) receiver. IEEE Journal of Solid-State Circuits, Mar. 2000, 35(3): 401-411.
    [44] Xuemei Ouyang, M. G. Amin. Short-time Fourier transform receiver for nonstationary interference excision indirect sequence spread spectrum communications. IEEE Trans.on SP. Oct. 2001, 45(4): 184-213.
    [45] Xuemei Ouynag, M .G. Amin. Performance analysis of the DSSS communications receiver implementing a short time Fourier transform interference excision system. IEEE International Symp. on time frequency and time scale analysis, 1998, 5(1): 393-396.
    [46] D. Sandberg, S. DelMare, K. Jagler, M. Tzannes. Some alternatives in the transform-domain suppression of narrow-band interference for signal detection and demodulation. IEEE Trans.Comm. Mar. 1995, 43(12): 3025-3036.
    [47] M. J. Medley,G. J. Sualnier, P. K. Das. Interference suppression using cosine-modulated filter banks. IEEE Military Communications Conefrenee.1996, l3(3): 1045-1049.
    [48] W. W. Jones, K. R. Jones. Narrow band interference suppression using filter band analysis/synthesis techniques. IEEE Military Communications Conference, 1992, 6(2): 898-902
    [49] F. Hlawatseh, G. F. Boudrenax-Bartels. Linear and quadratic time-frequency signal representations. IEEE Signal Processing.1992, 9(2): 21-67.
    [50]权友波.卫星导航接收机时频抗干扰抑制算法: [硕士论文].成都:电子科技大学, 2009.
    [51] R. Landry, Jr., P. Mouyon, D. Lekaim. Interference mitigation in spread spectrum systems by wavelet coefficients thresholding. European Transactions on Telecommunications, 1998, 9(2): 191-202.
    [52] A. Brown. Multipath rejection through spatial processing. Proceedings of ION GPS 2000, Salt Lake City, Sep. 2000, 12(3): 453-458.
    [53] K. Anindya, M. Mainak, K. S. Binay, C. Ajay. Implementation issues of adaptive array processing for space borne GPS receiver. KJMW 2007, Nov. 2007, 24(1): 133-136.
    [54] A. Kundu, M. Mukhopadhyay, B.K.Sarkar, et al. Incorporation of anti-jamming techniques on a GPS receiver. ICSCN’08 International Conference, Jan. 2008, 12(3): 132-137.
    [55] L. J. Wang, H. C. Zhao, X. N. Yang. implementation issues of adaptive array processing for space borne GPS receiver. ICMM’07 International Conference, Apr. 2007, 8(1):1-4.
    [56] M. G. Amin, Z. Liang, A. R. Lindesy, Subspace array processing for the suppression of FM jamming in GPS receivers. IEEE Trans. on Aerospace and Electronic systems, Jan. 2004, 2(1): 80-92.
    [57] P. Howells, Intermediate frequency side-lobe canceller, U.S. Patent 3202990, Aug. 1965.
    [58] B. Widow, P. Mantey, L. Grifiths, B. Goode. Adaptive antenna systems. Proceeding of IEEE, Oct. 1967, 55(12): 2143-2159.
    [59] J. Capon. High resolution frequency wave number spectrum analysis. Proceeding of IEEE, 1969, 21(3): 408-1418.
    [60] R. Roy, A. Paulraj, T. kailath. ESPRINT-A subspace rotation approach to estimation of parameter of cisoids in noise. IEEE Trans. Acoust., Speech, Signal Processing, 1986, 34(2): 1340-1342.
    [61] X. Z. Huang, H. C. Wu, J. C. Principe. Robust blind beaming algorithm using joint multiple matrix diagonalization. IEEE, Sensors Journal, Mar. 2007, 7(1): 130-136.
    [62] G. Okamoto. Jamming nulling via complexity blind beamforming algorithm. IEEE, 2007 Antennas and Propagation International Symposium, 2007, 5(1): 25-28.
    [63] L. Wei. Blind adaptive beamforming for wideband circular arrays. IEEE ICASSP’09, 2009, 4(3): 2028-2032.
    [64] G. Okamoto, C. W. Chen. Minimal complexity blind interference mitigation via non-eigen decomposition beamforming. IEEE, 2008 MILCOM, 2008, 7(1): 1-7.
    [65] H. S. Li, Y. He, R. J. Yang. A neural blind beamforming for cyclostationary signal. IEEE/ACES International Conference, 2005, 3(1): 345-348.
    [66] L. Zhao, Y. Jia, S. Yang, C. Zhang. Blind beamforming algorithm based on improved complex value independent component analysis. IEEE, WICOM’08, 2008, 6(1): 1-4.
    [67] R. Schmidt. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas and Propagation, Jun. 1986, 34(2): 276-280.
    [68] R. Kumaresan, D. Tufts. Estimating the angles of arrivals of multiple plane waves. IEEE Trans. Aerospace and Electronic Systems, Apr. 1983, AES-19(1): 134-139.
    [69] P. Stoica, A. Nehorai. MUSIC, maximum likelihood, and Cramer-Rao bound: further results and comparisons. IEEE Trans. on ASSP, 1990, 38(12): 2140-2150.
    [70] P. Stoica, A. Nehorai. MUSIC, maximum likelihood, and Cramer-Rao bound: further results and comparisons. In Proc. ICASSP, 1989, 8(4): 2605-2608.
    [71] B. D. Rao, K. V. S. Hari, Weighted subspace methods and spatial smoothing: analysis and comparison, IEEE Trans. on SP. 1993, 41(2): 788-803.
    [72] M. D. Zoltowski, G. M. Kauta, S. D. Silverstein. Beamspace Root-MUSIC, IEEE Trans. on SP, 1993, 41(1): 344-364.
    [73] Q. S. Ren, A. J. Willis. Extending MUSIC to single snapshot and on line direction finding applications. International Radar Conference, 1997: 783-787.
    [74] B. D. Rao, K. V. S. Hari. Effect of spatial smoothing on the performance of MUSIC and the minimum-norm method. IEE Proc. -F, 1990, 137(6): 449-458.
    [75] B. D. Rao, K. V. S. Hari. Weighted state space method/ESPRINT and spatial smoothing. ICASSP, 1991, 5(4): 3317-3320.
    [76] W. Du, R. L. Kirlin. Improved spatial smoothing techniques for DOA estimation of coherent signals. IEEE Trans. on SP, 1991, 39(5): 1208-1210.
    [77] A. Moghaddamjoo, T. C. Chang. Signal enhancement of the spatial smoothing algorithm. IEEE Trans. on SP, 1991, 39(8): 1907-1911.
    [78] B. D. Rao, K. V. S. Hari. Weighted subspace methods and spatial smoothing analysis and comparison. IEEE Trans. on SP, 1993, 41(2): 788-803.
    [79] D. A. Linebarger, R. D. DeGroat, E. M. Dowling. Efficient direction-finding methods employing forward/backward averaging. IEEE Trans. on SP, 1994, 42(8): 2136-2145.
    [80] C. W. Ma, C. C. Teng. Detection of coherent signals using weighted subspace smoothing. IEEE Trans. on AP, 1996, 44(2): 179-187.
    [81] J. Li. Improved angular resolution for spatial smoothing techniques. IEEE Trans. on SP, 1992, 40(12): 3078-3081.
    [82] J. P. Burg. Maximum entropy spectral analysis. Proc. of the 37th meeting of the Annual Int. SEG Meeting, Oklahoma City, Ok 1967, 10(1): 321-325.
    [83] B. P. Ng. Constraints for linear predictive and minimum-norm methods in bearing estimation. IEE Proc. F, 1990,137(3): 187-192.
    [84] M. Hirakawa, H. Tsuji, A. Sano. Computationally efficient DOA estimation based on linear prediction with Capon method. 2001 IEEE International Conference on ASSP, Salt Lake City, UT, USA, 2001(5): 3009-3012.
    [85] M. Changlin, P. Yingning. Blind estimation of DOA of coherent sources. Signal Processing Proceedings, ICSP’98, 1998, 10(1): 327-330.
    [86]王布宏,王永良,陈辉.一种新的相干信源DOA估计算法:加权空间平滑协方差矩阵的Toeplitz矩阵拟合.电子学报, 2003, 31(9): 1394-1397.
    [87]王布宏,王永良,陈辉.相干信源波达方向估计的加权空间平滑算法.通信学报, 2003, 24(4): 31-40.
    [88] B. H. Wang, Y. L. Wang, H. Chen. Weighted spatial smoothing for direction-of-arrival estimation of coherent signal. 2002 IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting, San Antonio, Texas, USA, 2002, 12(2): 668-671.
    [89]陈辉,王永良.空间谱估计算法结构及仿真分析.系统工程与电子技术, 2001, 23(8): 76-79.
    [90] R. O. Schmidt. A signal subspace approach to multiple emitter location and spectral estimation. Ph. D. dissertation, Stanford Univ., Stanford, CA, 1981.
    [91] K. M. Wong, Q. T. Zhang, J. P. Reilly, P. C. Yip. On information theoretic criteria for determining the number of signals in high resolution array processing. IEEE Trans., Acoust. Speech Signal Processing, Nov. 1990, 38(4): 1959-1970.
    [92] T. W. Anderson. Asymptotic theory for principal component analysis. Ann. J. Math. Stat., 1963, 34(3): 122-148.
    [93] H. Akaike. A new look at the statistical model identification. IEEE Trans. Automat. Contr., 1974, 19(6): 71-723.
    [94] G. Schwart, Estimation the dimension of a mode. Ann., Stat., 1978, 6(2): 461-464.
    [95] L. C. Zhao, P. R. krishnaiah, Z. D. Bai. On detection of numbers of signals in presence of white Noise. J. Multivariate Anal, 1986, 20(1): 1-25.
    [96] L. C. Zhao, P. R. krishnaiah, Z. D. Bai. On detection of numbers of signals when the noise covariance matrix is arbitrary. J. Multivariate Anal, 1986, 20(7): 26-49.
    [97] L. C. Zhao, P. R. krishnaiah, Z. D. Bai. Remarks on certain criteria for detection of numbers of signals, IEEE Trans. on ASSP, 1997, 35(1): 129-132.
    [98] M. Wax, T. Kailath. Detection of signals by information theoretic criteria. IEEE Trans. on Acoust Speech Signal Processing, Apr. 1985, 33(5): 387-392.
    [99] Q. T. Zhang, K. M. Wong, P. C. Yip. Statistical analysis of the performance of information theoretic criteria in the detection of the number of signals in array processing. IEEE Trans. Acoust. Speech Signal Processing, Oct. 1989, 37(6): 1557-1567.
    [100] M. Wax, I. Ziskind. Detection of the number of coherent Signals by the MDI Principle. IEEE Trans. on ASSP, 1989, 37(8): 1836-1847.
    [101] T. J. Shan, A. Paulray, T. Kailath. On smoothed rand profile tests in eigen structure methods for directions-of-estimation. IEEE Trans., on ASSP, 1987, 35(10): 1377-1385.
    [102] A. Di. Multiple sources location--A matrix decomposition approach. IEEE Trans., on ASSP, 1985, 33(4): 1086-1091.
    [103] F. Liu, R. Du, J. K. Wang. A robust source number detection method via rotational invariance. IEEE ICSP 2008, Oct., 2008, 10(1): 124-127.
    [104] Z .Q. Bao, B. Han, S. J. Wu. Sources detection based on clustering in spatially correlated noise fields. Journal of Test and Measurement Technology, jun. 2006, 20(5): 44-450.
    [105] Q. Wu, D. R. Fuhrmann. A parametric method for determining the number of signals in narrow-hand direction finding. IEEE Trans. Signal Processing, Aug. 1991, 39(5): 1848-1857.
    [106] M. Wax, Detection and localization of multiple sources via the stochastic signals model. IEEE Trans. Signal Processing, Nov. 1991, 39(4): 2450-2456.
    [107] M. Wax. Detection and localization of multiple sources in spatially colored noise. IEEE Trans. Signal Processing, Jan. 1992, 40(7): 245-249.
    [108] W. Wu, J. Pierre, M. Kaveh. Practical detection with calibrated arrays. In Proc. Statistical Signal Array Processing Workshop, Canada, Oct. 1992, 3(1): 82-85.
    [109] W. Chen, J. P. Reilly, K. M. Wong. Detection of the number of signals in noise with banded covariance matrices, IEEE Trans. on SP, 1992, 42(5): 377-380.
    [110] H. T. WU, J. Yang, F. K. Chen. Source number estimation using transformed Gerschgorin radii IEEE Trans. on SP, 1995, 43(6): 1325-1333.
    [111] H. T. Wu, J. F. Yang, F. K. Chen. Source number estimator using Gerschgorin disks. IEEE on ICASSP-94, Adelaide, Australia, Apr. 1994, 4(2): 261-264.
    [112] R. Monzingo, T. Miller. Introduction to adaptive array. Wiley and Sons, 1980.
    [113] F. Hildebrand. Methods of Applied Mathematics. 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, 1965.
    [114]王永良,彭应宁.空时自适应信号处理.北京:清华大学出版社, 2000.
    [115]张贤达,矩阵分析与应用.北京:清华大学出版社, 2004.
    [116] J. Goldstein, I. Reed, L. Scharf. A multistage representation of the wiener filter based on orthogonal projections. IEEE Trans. on IT., 1998, 44(7): 2943-2959.
    [117] O. L. Frost. An algorithm for linear constrained adaptive array processing. Proc. IEEE, 1992, 62(8): 926-935.
    [118] A. C. McBride, F. H. Kerr. On Namias’s fractional transform. IMA J. Appl. Math., 1987, 39(10): 159-175.
    [119] V. Namias. The fractional Fourier transform and its application in Quantum Mechanics. J. Inst., math., Its Appl., 1980, 25(5): 241-265.
    [120] M. G. Raymer, M. Beck, D. F. McAlister. Complex wave-field reconstruction using phase-space tomography. Phys. Rev. Lett., 1994, 72(22): 1137-1140.
    [121] D. Mendlovic, H. M. Ozakias. Fractional Fourier Transform and Their Implementation. I. J. Opt. Soc. Amer., A, 1993, 10(3): 1875-1881.
    [122] L. M. Berger, O .D .D Soates. Fractional Fourier Transforms and Optical Systems. Opt. Commun., 1994, 11(5): 517-522.
    [123] L. M. Berger, O. D. D. Soates. Fractional Fourier Transforms and Imaging. J. Opt. Soc., Amer. A, 1994, 11(6): 2622-2626.
    [124] A. W. Lohmann. Image rotation, Wigner rotation and the fractional Fourier transform. J. Opt. Soc. Amer. A, 1993, 10(3): 2181-2186.
    [125] H. M. Ozaktas, O. Aytur. Fractional Fourier domains. IEEE Trans Signal Processing, 1995, 4(6): 119-124.
    [126] D. Mendlovic, H. M. Ozaktas, A. W. Lohmann. Fractional correlation. Appl. Opt., 1995, 34(12): 303-309.
    [127] H. M. Ozaktas, B. Barshan, D. Mendlovic, L. Onural. Convolution, Filter, and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms. J. Opt. Soc. Amer., A, 1994, 11(5): 547-559.
    [128] B. L. Almeida, The fractional Fourier transforms and time-frequency representations. IEEE Trans. Signal Processing, 1994, 42(11): 3084-3091.
    [129] S. Y. Lee, H. H. Szu. Fractional Fourier transforms, wavelet transforms, and adaptive neural Networks, Opt. Eng., 1994, 33(10): 2326-1330.
    [130] J. R. Fonollosa, C. L. Nikias. A new positive time-frequency distribution. Proc. IEEE ICASSP’94, 1994, 4(1): 301-304.
    [131] G. Cincotti, F. Gori, M. Santarsiero. Generalized self-Fourier function. J. Phys. A, 1992, 25(4): 1191-1194.
    [132] M. J. Carson. Self-Fourier Functions. J. Phys. A, 1991, 24(3): 1143-1144.
    [133] M. A. Kutay, H. M. Ozaktas, L. Onural. Digital computation of the fractional Fourier transform. IEEE Trans., Signal Processing, Sept. 1996, 44(9): 2141–2150.
    [134] A.W. Lohmann, B. H. Soffer. Relationship between the Radon-Wigner and fractional Fourier transforms. J. Opt. Soc. Amer. A, 1994, 11(3): 1798-1801.
    [135]平先军,陶然,周思康,王越.一种新的分数阶傅立叶变换.电子学报, 2001, 29(3): 407-408.
    [136] O. Ar?kan, M. A. Kutay, H. M. Ozaktas, O. K. Akdemir. Discrete fractional Fourier transformation. IEEE SP Sym., Time-Freq. Anal., 1996, 4(1): 205–207.
    [137] S. C. Pei, M. H. Yeh, C. Cheng, Discrete fractional Fourier transform based on orthogonal projections. IEEE Trans. SP. May, 1999, 47(5): 1335-1348.
    [138] S. C. Pei, W. L. Hsue, Tridiagonal commuting matrices and fractionalizations of DCT and DST matrices of types I, IV, V and VIII. IEEE Trans. SP., Jun. 2008, 56(12): 2357-2369.
    [139] G. H. Golub, C. F. Loan. Matrix computation. 2nd, ed, Baltimore: The John Hopkins University Press, 1989.
    [140] K. M. Buckley, X. L. Xu. Spatial-spectrum estimation in a location sector. IEEE, Trans Acoust, Speech, Signal Processing, 1990, 38(11): 1842-1852.
    [141] S. T. Alexander. Adaptive signal processing: Theory and applications. New York: Springerverlag, 1986.
    [142] N. Mohanty. Random signal estimation and identification. Van Nostrand Reinhold, 1986
    [143]张贤达.现代信号处理.北京:清华大学出版社, 1995.
    [144] E. Eleftheriou, D. D. Falconer. Tracking properties and steady-state performance of RLS adaptive filter algorithms. IEEE Trans. Acoust., Speech, Signal Processing, Oct. 1986, 10(4): 1097-1109.
    [145] O. D. Macchi, N. J. Bershad. Adaptive recovery of a chirped sinusoid in noise—Part I: Performance of the RLS algorithm. IEEE Trans. Signal Processing, Mar. 1991, 39(3): 583-594.
    [146] S. Haykin. Adptive Filter Theory. 3ird ed. Englewood Cliffs, NJ: Prentice Hall, 1999.
    [147]王永良,陈辉,彭应宁,万群.空间谱估计理论与算法.北京:清华大学出版社, 2004.
    [148] E. Eleftheriou, D. D. Falconer. Tracking properties and steady-state performance of RLS adaptive filter algorithms. IEEE Trans. Acoust., Speech, Signal Processing, Oct. 1986 54(5): 1097-1109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700