用户名: 密码: 验证码:
光波的时空二元性在高速光纤传输系统中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几年来超大容量、超长距离密集波分复用技术发展十分迅猛,目前单个波长传输速率已达40Gb/s或者100Gb/s,单根光纤容量已超过3.2Tb/s。在如此高速率的光传输中,必然招致巨大的传输损伤,这些传输损伤主要有三类,有光放大器的放大自发辐射噪声、色散包括群速度色散和偏振模色散,非线性效应包括自相位调制、交叉相位调制、受激拉曼散射、受激布里渊散射和四波混频等。为了进行高速光纤通信必须克服这些传输损伤。本论文基于全光时域傅立叶变换(OIFT/OFT:(Inverse)Optical Fourier Transformation)和分数阶傅立叶变换(FRFT:Fractional Fourier Transformation)的方法研究了高速光纤通信中色散补偿和噪声抑制的新方法和原理。
     本论文首先通过研究光脉冲传输的薛定厄方程,并结合光波的时间-空间二元性的映射理论,设计出了全光时域傅立叶变换器件——时间透镜(time lens),并基于时间透镜提出一种新型的应用于单波长传输速率100Gb/s以上的高速光纤频域传输技术和系统——光频域传输方法(OFTS:Optical Frequency Domain Transmission).利用光脉冲在线性光纤中传输时,其频谱包络不变的原理,通过在光纤通信系统的发射端和接收端各加入一个全光傅立叶正、反变换器件来实现无偏振模PMD补偿无色散斜率补偿的100Gb/s以上速率的低成本长途光传输。可用于目前10Gb/s光纤传输系统的直接升级。论文完成了OFTS传输技术的模型并仿真和通过实验来验证系统的性能。最终实现了20Gb/s传输200公里无任何色散补偿,误码率达到10-9。
     本论文还基于时间透镜和分数阶傅立叶变换的原理设计出一种带内噪声的滤波系统和装置,通过采用将信号和噪声通过分数阶傅立叶变换分别变换到不同的域,然后,在接收端进行信号和噪声的分离,通过仿真分析了系统的性能,结果表明,该系统可以提高信噪比6dB。
With the explosive development of ultra-capability, ultra-distance DWDM technologies, recently the transmission speed has been 40 Gbit/s per channel, even 100 Gbit/s, over a long distance, and the capability per fiber has been 3.2 Tbit/s, which will lead to serious impairments to the system performance. These impairments are:ASE noises caused by the EDFAs; chromatic dispersion (Group Velocity Dispersion (GVD) and polarization mode dispersion (PMD)); nonlinear effects, which contain self phase modulation (SPM), cross phase modulation (XPM), four-wave mixing (FWM), stimulated Raman scattering (SRS) and stimulated Brillouin scattering (SBS). All these impairments should be overcome in high-speed optical communications.
     In this thesis, we present new methods and theories of dispersion compensation and noise suppression based on all-optical inverse Fourier transform/Fourier transform (OIFT/OFT) and fractional Fourier transform (FRFT).
     We begin with nonlinear Schrodinger equation (NLSE) and time-space duality, the OIFT/OFT device based on time lens is implemented. Here time lens is simply a quadratic phase modulation. As we know, the spectrum envelop of signal will keep unchanged during linear transmission. Thus a novel transmission method-optical frequency domain transmission based on time lens is proposed which could be used in high-speed optical transmission, over 100 Gbit/s per channel. At the transmitter, the OIFT device, which consists of the first time lens and two high dispersive elements, is used to transform the initial optical pulses. The OFT, consisting of the second time lens and another two high dispersive elements, rebuilds the initial optical pulses at the receiver. The system containing OIFT/OFT can propagate over a long haul distance without PMD compensation and with a very low cost. Another advantage is that the OIFT/OFT device could be used in the existed 10 Gbit/s system directly. Our OIFT/OFT-based system successfully transmits through 200-km G.655 fibers at the speed of 20 Gbit/s without any dispersion compensation, with the BER being 10-12.
     Furthermore, an in-band noise filter is designed based on the principle of FRFT and time lens. The signals and noises are transformed into another domain using FRFT method. Then we could separate the signals and noises at the receiver. We also analyze the system performance through the simulations and the results show that there is 6-dB improvement of signal-to-noise ratio (SNR) using this in-band noise filter.
引文
[1]P.Magill. AT&T Labs. LEOS Annual Mtg.,2007.409-441
    [2]W.Shieh, C.Athaudage. Coherent optical orthogonal frequency division multiplexing. ELECTRONICS LETTERS,2006,42(10):53-56
    [3]A.J.Lowery. Performance of Optical OFDM in Ultralong-Haul WDM Lightwave Systems. JLT,2007,25(1):38-39
    [4]A. Leven, N. Kaneda, A. Klein, et al. Real-time implementation of 4.4 Gbps QPSK Intradyne receiver using field programmable gate array. Electronics Letters,2006,42 (24)23:57-59
    [5]Greg Raybon, Peter J. Winter. 100Gb/s Challenges and Solutions. in OFC/NEOEC, 2008, OTuG1:109-112
    [6]Kyusang Lee, Chan T.D. Thai. All optical discrete Fourier transform processor for 100 Gbps OFDM transmission. OPTICS EXPRESS,2008,16(6):57-60
    [7]J.M.Tang, P.M.Lane, K.Alan Shore. High-speed transmission of adaptively modulated optical OFDM signals over multimode fibers using directly Modulated DFBs. JLT, 2006,24(1):39-41
    [8]Kenichiro Tanaka, Seiji. Norimatsu Transmission performance of WDM_OFDM hybrid systems over optical fibers. Electronics and Communications in Japan,2007, 90(10):44-47
    [9]Torger Tokle. Advanced Modulation Formats for Transmission Systems. in OFC/NFOEC, 2008, OMI1:71-73
    [10]Kenro Sekine. Advanced Multi-level Transmission Systems. In OFC/NEOEC,2008 OMI4:109-110
    [11]Hideo Kuwahara. Fujitsu Labs Technologies for 40 Gb/s and 100Gb/s transmission. in OFC/NFOEC,2008, NTuB1:132-135
    [12]Hongchun Bao, William Shieh. Transmission simulation of coherent optical OFDM signals in WDM systems. OPTICS EXPRESS,2007,15(8):44-47
    [13]H.C.Bao, W.Shieh. Transmission of Wavelength-Division-Multiplexed Channels with Coherent Optical OFDM. IEEE PTL,2007,19(12):39-41
    [14]Govind P. Agrawal. Nonlinear Fiber Optics. (Third Edition).贾东方.北京:电子工
    业出版社,2003.26-35
    [15]Xun Li, Xingzhong Chen. Mahmood Qasmi A Broad-Band Digital Filtering Approach for Time-Domain Simulation of Pulse Propagation in Optical Fiber. JLT, 2005,23(2):864-875
    [16]Chen Lin, Zhang Xiaoguang, Zhang Ru, et al. The Influences of Polarization Mode Dispersion on Multi-channel Optical Communication System. Acta Photonica Sinica, 2004,33(4):443-447
    [17]QIN Xi, CHEN Yong, CAO Ji-hong, et al. Influence of Dispersion Compensation Schemes on Phase Noise of Phase Modulation System. Chinese Journal of Lasers, 2007,34(1):62-66
    [18]Yuan Minghui, Zhang Mingde, Sun Xiaohan. Impact of XPM on the pulse transmission in NOLM. Acta Photonica Sinica,2006,35(6):838-841
    [19]Jing Huang, Jianquan Yao. Analysis and simulation of XPM intensity modulation. Chinese Optical Letters,2005,3(3):129-131
    [20]CHEN Ming-hua, MA Nan, SHI Ying, et al. Experimental Investigation of 40Gb/s Transmission Based on 10Gb/s Transmission Links. Chinese Journal of Lasers,2005, 32(4):529-531
    [21]QIN Xi, CHEN Yong, CAO Ji-hong, et al. Influence of Dispersion Compensation Schemes on Phase Noise of Phase Modulation System. Chinese Journal of Lasers, 2007,34(1):62-66
    [22]Yuan Minghui, Zhang Mingde, Sun Xiaohan. Impact of XPM on the pulse transmission in NOLM. Acta Photonica Sinica,2006,35(6):838-841
    [23]Jing Huang, Jianquan Yao. Analysis and simulation of XPM intensity modulation. Chinese Optical Letters,2005,3(3):129-131
    [24]CHEN Ming-hua, MA Nan, SHI Ying, et al. Experimental Investigation of 40Gb/s Transmission Based on 10Gb/s Transmission Links. Chinese Journal of Lasers,2005, 32(4):529-531
    [25]XU Zhigen, ZHOU Bing-kun, ZHANG Han-yi, et al. Modeling the Noise Accumulation of Optical Paths in WDM Optical Transport Networks. Chinese Journal of Lasers, 2004,31(10):1222-1226
    [26]ITU-T Recommendation G.655. Characteristics of a non-zero dispersion-shifted
    single-mode optical fiber and cable. USA:ITU-T,2003.153-159
    [27]Shuxian Song, Christopher T. Allen, K R. Demarest, et al Intensity-Dependent Phase-Matching Effects on Four Wave Mixing in Optical Fibers. JLT,1999,17(11): 2285-2290
    [28]ZHANG Qi, CHEN Minghua, SHI Ying, et al. Demonstration of 1.6Tbit/s (40×40Gbit/s) Wavelength Division Multiplexing 160km Straight Line Transmission Experiments. Chinese Journal of Lasers,2006,33(9):1230-1233
    [29]Adolfo V.T, Cartaxo Cross-phase modulation in intensity modulation-direct detection WDM systems with multiple optical amplifiers and dispersion compensators. JLT 1999,17(2):178-190
    [30]Seiji N, Seiichi Akai. Statistical Evaluation of Transmission Performance Degradation Originating with Cross-Phase Modulation. Electronics and Communications in Japan, Part 1,2007,90(1):58-67
    [31]Xiong Jie, Luo Bin, Pan Wei, et al. Crosstalk of Signal in Pump Probe Structure with Self-Phase Modulation and Cross-Phase Modulation. Acta Photonica Sinica,2004, 24(10):1370-1374
    [32]C.Weber, C.Bunge, K.Petermann. Fiber Nonlinearities in Systems Using Electronic Predistortion of Dispersion at 10 and 40 Gbit/s. Journal of Lightwave Technology, 2009,27(16):3654-3661
    [33]Watts, Philip, Waegemans, et al. An FPGA-Based Optical Transmitter Design Using Real-Time DSP for Advanced Signal Formats and Electronic Predistortion. Journal of Lightwave Technology,2007,25(10):3089-3099
    [34]Xiaojun Liang, Wei Li. A simple peak-to-average power ratio reduction scheme for all optical orthogonal frequency division multiplexing systems with intensity modulation and direct detection. Optics Express,2009,17(18):15614-15622
    [35]Christophe Finot, Lionel Provost, Periklis Petropoulos. Parabolic pulse generation through passive nonlinear pulse reshaping in a normally dispersive two segment fiber device. OPTICS EXPRESS,2008,15(3):53-55
    [36]F. Parmigiani, P. Petropoulos, M. Ibsen, et al. Pulse Retiming Based on XPM Using Parabolic Pulses Formed in a Fiber Bragg Grating. IEEE Photonics Technology Letters,2006,18(7):829-831
    [37]Daikoku, Masahiro, Yoshikane. Optical 40-Gb/s 3R Regenerator With a Combination of the SPM and XAM Effects for All-Optical Networks. Journal of Lightwave Technology,2006,24(3):1142-1145
    [38]M. Nakazawa, T. Hirooka. Distortion-free optical transmission using time-domain optical Fourier tranformation and transform-limited optical pulses. J.Opt. Soc.Am.B., 2006,22(9):1842-1855
    [39]T. Hirooka, Ken-Ichi Hagiuda, Takashi Kumakura, et al.160-Gb/s-600-km OTDM Transmission Using Time-domain Optical Fourier Transformation. IEEE Photon. Technol. Lett.,2005,18(24):2647-2649
    [40]W. Li, Y. J. Qiao, Q. S. Han, et al. A PMD-Supported 100Gb/s Optical Frequency-domain IM-DD Transmission System. Chin. Opt. Lett.,2009,8(7): 130-132
    [41]B.H.Kolner. Space-time duality and the theory of temporal imaging. IEEE J.Quantum Electron,2004,30:1951-1963
    [42]T. Jannson. Real-time Fourier transformation in dispersive optical fibers. Opt.Lett., 2008,8(4):232-234
    [43]Le Nguyen Binh. Linear and nonlinear transfer functions of single mode fiber for optical transmission systems. J.Opt.Soc.Am.B.,2007,26(7):1564-1575
    [44]A. G. Green, P. P. Mitra, L. G L. Wegener. Effect of Chromatic dispersion on nonlinear phase noise. Opt.Lett.,2006,28(24):2455-2457
    [45]Luis B. Almeida. The Fractional Fourier Transform and Time-Frequency Representations. IEEE Transactions on Signal Processing,1994,42(11):3084-3091
    [46]Marc Brunel. Fractional-order Fourier analysis for ultrashort pulse characterization. J. Opt. Soc. Am. A,2007,24(6):1641-1646
    [47]Toshihiko H, Masataka N. Lightwave Technology. IEEE,2006,24:2530-2532
    [48]Hirooka T, Hagiuda K.-I, Kumakura T, et al. Photonics Technology Letters. IEEE, 2006,18:2647-2649
    [49]Toshikazu Sakano. Kentaro Uchiyama Ippei Shake. Optics Letters,2006,27:583-585
    [50]Brian H. Kolner. Moshe Nazarathy. Optics Letters,1989,14:630-631
    [51]Teng S Y, Cheng C F, Liu M, et al. Acta Phys.Sin.,2003,52(2):316-319
    [52]Li W, Qiao Y J, Han Q S, et al. CHINESE OPTICS LETTER,2009,7(8):679-681
    [53]Hirooka T. Optical adaptive equalization of high-speed signals using time-domain optical Fourier transformation. IEEE J. of Lightwave Technology,2003,24(7):2530-2540
    [54]S. Kumar. Optical implementation of orthognal frequency-division multiplexing using time lenses. OPTICAL LETTER,2005,33(17):2002-2004
    [55]T. Sakano, K. Uchiyama, I. Shake, et al. Large-dispersion-tolerance optical signal transmission system based on temporal imaging. Optics Letters,2002,27(8): 583-585
    [56]T. Hirooka, K. Hagiuda, T. Kumakura, et al.160-Gb/s-600-km OTDM Transmission Using Time-Domain Optical Fourier Transformation. IEEE Photonics Technology Letters,2006,18(24):2647-2649
    [57]Grey Raybon, Peter J. Winzer. 100Gb/s Challenges and Solutions. OFC/NOFC 2008, San Diego,CA,2008.335-339
    [58]Toshikazu Sakano, Kentaro Uchiyama, Ippei Shake, et al. Large-dispersion-tolerance optical signal transmission system based on temporal imaging. Optics Letters,2002, 27(8):583-585
    [59]Toshihiko Hirooka, Ken-Ichi Hagiuda, Takashi Kumakura, et al.160-Gb/s-600-km OTDM Transmission Using Time-Domain Optical Fourier Transformation. IEEE Photonics Technology Letters,2006,18(24):2647-2649
    [60]Ng, T. T. Parmigiani, F. Ibsen M., Zhang Z., et al. Compensation of Linear Distortions by Using XPM With Parabolic Pulses as a Time Lens. IEEEE PHOTONICS LETTERS,2008,20(13):1097-1099
    [61]Brian H.Kolner. Space-time duality and the theory of temporal imaging. IEEE J.Quantum Electronics,1994,30(8):1951-1963
    [62]Sudarshan Shinde, Vikram M. Gadre. An Uncertainty Principle for Real Signals in the Fractional Fourier Transform Domain. IEEE TRANSACTIONS ON SIGNAL PROCESSING,2001,49(11):2545-2548
    [63]A. I. Zayed. A convolution and product theorem for the fractional Fourier transform. IEEE Signal Processing Lett.,1998,5:101-103
    [64]H. M. Ozaktas, B. Barshan, D. Mendlovic, et al. Convolution, filtering, and
    multiplexing in fractional Fourier domains and their relationship to chirp and wavelet transforms. J. Opt. Soc. Amer. A,1994,11:447-559
    [65]L. B Almeida. Product and convolution theorems for the fractional Fourier Transform. IEEE Signal Processing Lett.,1997,4:15-17
    [66]R. Tao, B. Deng, Y. Wang. Research progress of the fractional Fourier transform in signal processing. Science in China:Series F Information Science,2006,49:1-25
    [67]Der-Feng Huang, Bor-Sen Cheri. THE FILTER BANK APPROACH FOR THE FRACTIONAL FOURIER TRANSFORM. Acoustics, Speech, and International Conference on Signal Processing (ICASSP),1999,3:1709-1712
    [68]George Kwamina Aggrey, Ran Tao. FRFT Based Transmultiplexers. Third International IEEE Conference on Signal-Image Technologies and Internet-Based System,2007. 1035-1039
    [69]LIU Jian-Guo, YUAN Bing-Cheng. The Analysis and Simulation of the Detectors Based on FRFT Statistic Performance System Simulation and Scientific Computing. ICSC 2008. Asia Simulation Conference-7th International Conference on 10-12 Oct., 2008.1543-1548
    [70]Xinghao Zhao, Bing Deng, Ran Tao. Dimensional Normalization in the Digital Computation of the Fractional Fourier Transform. Transactions of Beijing Institute of Technology,2005,25(4):26-30
    [71]Lin Qi, Ran Tao, Si yong Zhou, et al. Multicomponent LFM Signal Detection and Parameter Estimation Based on Fractional Fourier Transform. SCIENCE CHINA (Series E),2003, (8):749-759
    [72]Enqing Chen, Ran Tao, Xiangyi Meng. The OFDM System Based on the Fractional Fourier Transform. Innovative Computing. Information and Control,2006. ICICIC '06. First International Conference on Volume 3, Aug.30 2006-Sept.,2006.14-17
    [73]Jang S, Choi W, Sarkar T K, et al. Exploiting early time response using the fractional Fourier transform for analyzing transient radar returns. IEEE Tran Antennas and Propagation,2004,52(11):3109-3121
    [74]Ahmed I. Zayed. On the relationship between the Fourier and fractional Fourier transforms. IEEE signal processing letters,1996,12:417-419

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700