用户名: 密码: 验证码:
用于墙体具有自调温功能相变储热微胶囊的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相变材料应用于建筑材料的方式之一是将其微胶囊化(microPCM),这可以解决相变材料的疲劳及相变材料与周围材料界面等问题,使材料具有较长的使用寿命。本文采用微胶囊技术,以不同包覆方法制备了不同壁材的相变储热微胶囊,并对其性能进行了研究。
     采用复合凝聚法,以明胶-阿拉伯树胶为壁材,在水相体系中通过控制pH值和物料比,制得相变储热微胶囊。采用光学显微镜、TEM、SEM、激光粒度分析仪研究了微胶囊的表面形态、包覆效果和粒径分布;采用TG和DSC研究了微胶囊的热稳定性和储热调温效果。结果表明:以明胶-阿拉伯树胶为壁材制备的相变储热微胶囊平均粒径均匀;壁材完整,包覆效果较好;热分析显示,相变储热微胶囊具有自调温功能,但明胶-阿拉伯树胶为壁材的微胶囊热稳定性较差。
     采用原位聚合法用三聚氰胺甲醛树脂包覆一种相变点为24℃的相变材料,制得相变储热微胶囊。利用激光粒度分布仪、SEM、DSC和TG分别研究了所得微胶囊的粒径分布、表面形态及热性能的影响因素。实验结果表明所得微胶囊粒径分布均匀,表面光洁,具有很好的致密性和一定的强度。其中当乳化速度为2500r/min、乳化时间大于5min、壁材滴加速度小于0.5 ml·min~(-1)且系统调节剂为芯材的30%~40%时微胶囊的粒径分布集中;DSC显示微胶囊包覆相变材料不影响其相变点,相变储热明显。此种微胶囊中的相变材料在发生相变时具有调温作用,将其应用于室内墙体材料中,可使墙体材料具有自调温作用。
     采用乳液体系,以2,4-二异氰酸酯基甲苯(TDI)及二亚乙基三胺(DETA)为单体,应用界面聚合法制备直径约1μm的聚氨酯微胶囊。所用相变材料为十八烷,乳化剂是一种非离子型表面活性剂NP-10。制备聚脲树脂微胶囊的过程不仅包括TDI和DETA的反应,还包括TDI与自身水解产物的界面反应。TDI与DETA反应质量比为3:1。另外,NP-10还与TDI反应生成脲烷。包含十八烷的微胶囊在29℃~30℃范围内表现出了十八烷的相变温度特征。用十八烷熔融热法测得的芯材含量低于理论计算值。随芯材含量降低,十八烷的微胶囊化效率提高。
Phase change material (PCM) has been recently studied and applied for thermal energy storage. As PCM can absorb, store and release large amounts of latent heat over a defined temperature range during itself changes phase, it can be used in many fields. In this study, a kind of PCM is used in architecture field, it can make room comfortable and save energy. Microcapsulation of PCM (microPCMs) offers a measure to solve the super-cool problem and interfacial combine with circumstance materials. Also make the PCM have a long-life. MicroPCMs has been used in functional fiber, solar energy utilize, heat energy transfers, agriculture, and building materials. The objective of this study was to synthesize microcapsules containing a composite phase change materials for application in indoor wall controlling temperature, which would save energy and make comfort indoors. Three microcapsulation methods have been applied to preparation microPCMs.
    First, the complex coacervation of gelatin-acacia system in microcapsulation process was investigated in this paper. The influence of different technological conditions including pH . mass ratio of gelation, the time of gelation, as well as the hardening time on yields of microcapsulation the efficiency of encapsulation were studied respectively. The microencapsulation condition were also optimized. The means of SEM, DSC and TGA were applied in this study. It was found that the gelation speed of the gelation had a great effect on its
    
    
    microcapsulation process, there was a best fitting gelation time for high yield of the microcapsules and good encapsulation efficiency. The gelation with complete cooling time of 40min had a high yields and encapsulation efficiency, and the process may be contrplled. The microPCMs was stable and its diameter was uniformity. The thermal profile of microcapsule was not affected by the ratio of gelation, but the thermal was not good enough.
    The microPCMs were prepared by using in-suit polymerization with prepolymer of melamine-formaldehyde (MF) and charactized the properties such as shape, diameter distribution, thermal prosperities, strength, shell thickness and penetration property. Double-shell heat energy storage microcapsule was prepared used the prosperities of microcapsules were investigated. A phase change material as core, which melt point was 24 C and phase transition heat was 225.5J/g .The microcapsules would been used in indoor wall to regulate the temperature and saving energy sources .The surface morphological structure was examined by means of scanning electron microscopy. The strength of shell was evaluated through observing the surface change after pressure by means of scanning electron microscopy. The melting point of the microcapsules was 24.7 C, nearly equaled to the pure phase change material. The DSC results make clearly that the polymer shell of microcapsules do not influence the proprieties of the phase change material. Also founded that the avoiding penetration property of double-shell microcapsules was better than that of single shell. It was necessary to investigate the shell for the thickness would affect the strength and penetration property of the microcapsules. In order to observe the double-shell shell we adapted the methods of in-bed the microcapsules in glutin, and got the SEM images of slices. The average thickness was 0.5-1 m. The thermal test showed the microPCMs had good resisted thermal properties and good absorb thermal property.
    This article also calculated the microPCms quantities and energy saving effect in theory
    
    
    designed the experimental apparatus to measure the energy saving effect, and analyzed the temperature equalization action of the microPCMs by comparing experimnt.
    Last, polyurea microcapsule containing octadecane as phase change material was successfully synthesized by interfacial polycondensation using TDI and DETA as shell monomers in an emulsion only by reaction of TDI and DETA, but also reaction of TDI and amines which are formed by hydrolysis of TDI at the interface. In this study,
引文
1.秦培篱,周世权.能源材料的研究现状及发展前景.节能,2002,5:5~7
    2.唐黎明.相变储热材料研究进展.化学世界,2001,12:662~665
    3. Chang H S, Morehouse J H. J Solar Eng Trans of ASME, 1991, 113: 224~249
    4. Maria Telkes, Son C H. J Solar Energy Engineering, 1986, 108: 282~289
    5.刘道平.固液相变蓄热技术的研究进展.节能,2002,12:3~6
    6. Schroeder, Rabin Y, Korin E. An efficient numberial solution for the multimensional solidification problem. Int J Heat Mass Transfer, 1993, 36: 673~683
    7. Krichel. J Solar Energy Engineering, 1991, 113: 224~249
    8. Comini G, Del Guidices, Lewis R W. A numberical method for solving two-dimensional problems of heat conduction with change of phase. Chem Eng Prog. Symp Set. 1999, 63: 79~85
    9. Charunyakorn P, Sengupta S, Roy S K. Forced convection heat transfer in microencapsulated phase change material slurries: flow in circular ducts. Int J Heat Mass Transfer, 1991, 34: 819~833
    10. hio Eunsoo, Cho Young I, Lorsch Harold G. Forced convection heat tranfer with phase-change material slurries: turbulent flow in a circular tube. Int J of Heat and Mass Transfer, 1994, 37: 207~215
    11.叶宏,葛新石,焦冬生.带定形PCM的相变贮能式地板辐射采暖系统热性能的数值模拟.太阳能学报,2002,4:482~487
    12.顾同曾.德国的建筑节能技术.建筑科技,2001,2:62~67
    13. Rudd A F. Phase change material wallboard for distributed thermal storage in buildings. ASHRAE Trans, Res, 1993, 99: 339~346
    14.林怡辉,张正国,王世平.复合相变储热材料的研究与发展.新能源,2000,22(7):35~38
    15.王东辉,赵裕蓉.微胶囊的应用及研究进展.化工新型材料,2000,7:1
    16.管蓉,艾照全,李建宗.高分子材料在微胶囊新技术中的应用.高分子材料科学与工程,1997,5:134
    17.洪宗国.微型胶囊在胶粘剂中的应用.中国胶粘剂,2000,10(3):38
    18. Robert P, Arens, North St, Paul, Norman P. Sweeny et al. Encapsulation process. US3423489, 1969
    
    
    19.王毓明.微胶囊技术.涂料工业,1999,5:33
    20.谈定生,严年喜,施亚钧.无机粉体的聚合物胶囊化过程研究.高分子材料科学与工程,1999,15(6):101
    21.董擎之,郭群,唐闻群.乳化剂加非溶剂法制备复合高分子微胶囊的研制.高分子材料科学与工程,1996.13(3):137
    22. Gale W. Matson, Minneapolis, Minn. Microcapsule-containing Paper. US. Patent 3516846, 1970
    23. Hans Eberhard Praetzel, Schubertstr, Herbert Jenkner. Shaped articles comprising self-extingushing compositions of plastics and microcapsulation containing flame-abating compounds and process for producing the same. US. 3660321, 1972
    24. Jing-Den Chen, Kerry Kovacs, Margaret T. Thomas, et al. Methods for the producting of microcapsulesusing functionalized isocyanate. US. 5011885, 1991
    25. MarvinGoldberg, Marlboro. N. J, David. M. Kellneer, et al. Antiperspirant/deodorant containing Microcapsules. US. 5176903, 1993
    26. Zhi-Yan Zhang, Qi-Neng Ping, Bin Xiao. Microencapsulation and Characterization of tramadol-resin complexes. Journal of Controlled Release, 2000, 66: 107
    27. Jiang Ji, Ronald F. Childs, Mahesh Mehta. Mathematical model for encapsulation by interracial polymerization. Journal of Membrane Science, 2001,192: 55~70
    28. Gesine E. Hildebrand, Johannes W. Tack. Microencapsulation of peptides and proteins. Inter J of Pharma. 2000, 196: 173~176
    29.冷延国.明胶微胶囊化技术研究.博士学位论文,北京:北京化工大学,1999
    30. Bi Botti C. Youan,Tanise L. Jackson,Lorenzo Dickens et al . Protein releaseprofiles and morphology of biodegradable microcapsules containing an oial core. Journal of Controlled Release, 2001,76:313
    31.宋健.微胶囊包合型可逆热变色材料的研究.大连:大连理工大学,1998.
    32. A. Lamprecht. European Journal of Pharmaceutics and Biopharmaceutics. 2000, 49: 1
    33. Patrick Couvreur. Advanced Drug Delivery Reviews, 1997, 28: 85
    34.邹黎明.微胶囊膜厚的测定方法及膜厚与其它性质的关系.北京:中国纺织大学,1992
    35. Ki-jeong Hong, Sooomin Park. Preparation and characterization of polyureamicrocapsules with different dimines. Material Research Bulletin, 1999, 34(6): 963
    36.梁治齐.微胶囊技术及应用.北京:中国轻工业出版社,1999
    37. Jiang Ji, Ronald F. Childs, Mahesh Mehta. Mathematical model for encapsulation by interfacial
    
    polymerization. Journal of Membrane Science, 2001, 192: 55
    38. Zhi-Yan Zhang, Qi-Neng Ping, Bin Xiao. Microencapsulation and characterization of tramadol-resin complexes. J of Controlled Release, 2000, 66: 107~113
    39. Katrin Heinzelmann, Knut Franke. Colloids and Surfaces B: Biointerfaces. 1999, 12: 223
    40.贡长生,张克立.绿色化学工业实用技术.北京:化学工业出版社,2002
    41. Robert C. Brown, John D. Rasberry, Scott P. Overmann. Microencapsulated phase-change materials as heat transfer media in gas-fluidized beds. Power Technology, 1998, 98: 217-222
    42.王春莹,张春祥.调温微胶囊的研制.印染,2002,6:13
    43. Jeong-Sook Cho, Aehwa Kwon, Chang-Gi Cho, Microencapsulation of octadecane as a phase-change material by interracial polymerization in an emulsion system, Colloid polymer science,2002,280:260
    44. Robert C. Brown, John D. Rasberry, Scott P. Overmann. Microencapsulated phase-change materials as heat transfer media in gas-fluidized beds. Power Technology, 1998, 98: 217-222.
    45. M Farid, W J Kong. Underfloor heating with latent heat storage. Proc Instn Mech Engrs, Vol 215, PartA: 601~609
    46. S. K Roy, B. L. Avanic phD Research Group, Inc. Int Comm. Heat Mass transfer, 1997, 24 (5): 653~662
    47. Hittle Douglas C, Andre Tifani L. A. New test instrument and procedure for evaluation of fabrics containing phase-change material. ASHRAE Transactions, 2002, 108: 175
    48. Holman Mark E. Use of microencapsulated phase-change materials to enhance the thermal performance of apparel. American Society of Mechanical Engineers 1999, 44, 235
    49. Mulligan J. C, Colvin D. P, Bryant Y. G. Microencapsulated phase-change material suspensions for heat transfer in spacecraft thermal systems. Journal of Spacecraft and Rockets, 1996, 33(2): 278
    50. Inaba Hideo, Kim Myoung-Jun, Horibe Akihiko. Heat transfer characteristics of latent microcapsule-water mixed slurry flowing in a pipe with constant wall heat flux. Transactions of the Japan Society of Mechanical Engineers, Part B 2002, 68(665): 161
    51. Cartwright D. Kelly, Bryant, Yvonne G, Colvin David P. Use of microPCMs in agricultural applications. American Society of Mechanical Engineers, 1999, 44: 241
    52. Hawlader M. N. A, Uddin M. S, Zhu H. J. Preparation and evaluation of a novel solar storage material: microencapsulated paraffin. International Journal of Solar Energy 2000,
    53. G. Sun, Z. Zhang. Mechanical properties of melamine-formaldehyde microcapsules. Journal of Microencapsulation 2001, 18(5): 593
    
    
    54. G. Sun, Z. Zhang. Mechanical strength of microcapsules made of different wall materials 2002,242,307
    55.冒东奎.含相变材料的壁板的潜热蓄热实验.新能源,1998,20:1~5
    56.胥义,刘道平.固液相变储热技术的研究进展.节能,2002,12:3~6
    57. H. G. Bungendurg, de Jone, H. R. Kruyt. Proc. Kungl. Nwd. Acad. Wetensch. 1929,32: 849
    58. Green. Gelatin microcapsulation method. US. 2800458, 1953
    59. Schleicher. Liquid microcapsulation. US. 2800457, 1953
    60.甘户朝治.微胶囊化工艺学.阎世翔译.北京.中国轻工业出版社,1991
    61.冷延国.明胶微胶囊化技术研究.博士学位论文,北京化工大学,1999
    62. Arshady R. Polymer Engineering and Science, 1990,31 (15): 905~914
    63. Kaur Noderjeet, Raghuvie Barsola, Anita Gupta, et al. J Appl Polym Sci, 1994, 54, 1131~1139
    64.黄明智.明胶科学与技术.2000,6(1):32~43
    65. Marotta N G et al. US. 3455838, 1969
    66. Mith R A, Lambrou A. US. 3819838, 1974
    67. Chau T L. US. 5108763, 1992
    68. Afmer R, Yoav B. US. 5098725, 1992
    69.程侣柏.化工百科全书.Vol6.北京:化学工业出版社,1994:28~31
    70.钟景兴.大粒径高强度含油微胶囊的制备.硕士学位论文.华南理工大学,2001
    71.郑忠编.胶体科学导论.北京:化学工业出版社,1990
    72. Napper D H. Polymeric Stabilitization of Co; oidal Dispersions London: Acadimic press, 1983
    73.沈丁一.高分子表面活性剂.北京:化学工业出版社,2002
    74.赵国玺.表面活性剂物理化学.北京:化学工业出版社,1990
    75. Heller W, Pugh T L. J Chem Phys. 1954, 22: 1778
    76.沈钟,王果庭.胶体与表面化学(第二版).北京:化学工业出版社,1996
    77.李春燕.分散染料微胶囊的制备及应用.硕士学位论文.东华大学,2000
    78.王菊生.整染工艺原理.纺织工业出版社,1987
    79. Risch S J, Reineccius G A. Perfum. Flavorist. 1990, 15: 55
    80.钱蕾.聚电解质在压敏显色微胶囊原位聚合法中的应用.中国纺织大学学报,1997,23(2):27~33
    81.宋健,陈磊,李效军.微胶囊化技术及应用.北京:化学工业出版社,2001,36
    82. Kare M, Langer R. Controlled release of food additives. In Flavor Encapsulation: Risch S J, Reineccius G A. eds. ACS Symposium Series No. 370: ACS: Washington D. C., 1988, 177
    
    
    83. Chen A C et al. Food Technology, 1988, 42: 87
    84. G. sun, Z. Zhang. Mechanical strength of microcapsules made of different wall materials. International J of Pharmaceutics, 2002, 242: 307
    85. G. sun, Z. Zhang. Mechanical properties of melamine-formaldehyde microcapsulaes. J. Microcapsulation, 2001, 18, 593
    86. Zaoli L T, Kydonieus A F. In controlled Relesse Technology. Das K G. New york; John Wiley&Sons, 1983, 61~120
    87. C.A.Finch, Pendergress D. The use of controlled delivery in print material. Second Workshop on Controlled Dilivery in Consumer Products. Controlled Release Society. 1992, 230
    88.罗艳.缓释型微胶囊的研制及其在纺织上的应用.博士学位论文,东华大学,2001
    89. Fan L T, Singh S K. Controlled Release: A Quantitative Treatment. Springer-Verlag, 1989
    90. Zhang. Z, Ferenczi M A, Lush A C, Thomas C R. A novel micromanipulation technique for measuring the bursting strength of single mammalian cells. Appl Microbiol Biotech, 1991, 36: 208~210
    91.艾明星.相变储热材料的研究.硕士学位论文.河北工业大学,2003
    92.张永波,高来宝,曹红霞,张涛.聚氨酯芳香微胶囊的研究.天津工业大学学报,2001,3:13
    93. K. Hong, S. Park. Melamine resin microcapsules containing fragrant oil: synthesis and characterization. Materials Chemistry and Physics, 1999, 58: 128~131
    94. K. Hong, S. Park. Preparation of polyurethane microcapsules with different soft segment and their characteristics. Reactive & Functional Polymers, 1999, 42: 193~200
    95. K. Hong, S. Park. Preparation of polyurea microcapsules with different composition ratios: structures and thermal properties. Materials Science and Engineering A. 1999, 272: 418~421
    96.付荣兴,岳倩,沈介发等.聚氨酯微球功能材料的制备与表征.江苏石油化工学院学报,2000,1:29~31
    97. Arranz F, Sanchez-Chavez M, Martinez R. Angew Makrom Chem, 1987,152: 559
    98. Mahabadi HK, Ng TH, Tan HS. J Microencapsulation. 1996, 13: 559
    99.邓建国,王建平,龙新平等.硬质聚氨酯微球的合成研究.合成化学,2001,6:518~520
    100. Jeong-Sook Cho, Aehwa Kwon, Chang-Gi Cho. Microencapsulation of octadecane as a phase-change material by interfacial polymerization in an emulsion system. Colloid Polym Sci, 2002, 280: 260~266

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700