用户名: 密码: 验证码:
钙钛矿型复合氧化物的合成及光催化降解酸性红B的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钙钛矿型氧化物(ABO_3)不但具有结构稳定,催化活性高等特点,而且可以通过改变A、B原子的类型制备出禁带宽度较窄,能大量吸收太阳光的催化剂。本文以A,B的硝酸盐为原料,以氨水或碳酸钠为沉淀剂,利用混合沉淀的方法合成了系列钙钛矿型氧化物。A选碱土金属元素Mg、Ca、Sr、Ba等及稀土金属元素La;B选过渡金属元素Cr、Mn、Fe、Co、Ni等。活性测试结果表明,A的影响相对较小,B的影响比较显著,总的变化趋势是,随着B原子序数的增大,光催化活性提高。
     在所有的上述催化剂中,CaNiO_3的催化活性最高,XRD,TEM测试结果显示所合成CaNiO_3为纯度较高,粒径150~200nm的近球形颗粒。对比测试了CaNiO_3与TiO_2的光催化活性,结果表明,紫外光照射下二者的活性相当;在模拟太阳光照射下前者的活性高于后者,对酸性红B降解率分别为63%和47%。合成了CaFexNi_(1-X)O_3(x=0.1~0.9)型的复合氧化物催化剂,其中CaFe_(0.3)Ni_(0.7)O_3在模拟太阳光照射下对酸性红B的降解率可达到91%。进一步研究了Co,Ag负载对CaFe_(0.3)Ni_(0.7)O_3光催化活性的影响,结果显示负载Co使活性大幅度下降,而负载Ag使活性上升至96%以上。
     研究了紫外光照射下,以CaNiO_3为催化剂,光催化降解酸性红B的动力学行为。确定反应级数为1.4,指前因子为:1.01×10~7 mol~(-0.4)L~(0.4)min~-(-1),活化能Ea为:35.5 kJ·mol~(-1)。
     对经不同时间降解的酸性红B进行红外以及紫外-可见光谱分析,根据分析结果推测了酸性红B的降解机理。首先是偶氮双键的消失,其次是萘环的断裂以及苯的开环。
     考察了工艺条件对光催化降解酸性红B的影响:在废水溶液中加入H_2O_2后光催化活性提高,并且随着加入量的增大有增长的趋势;提高溶液的酸性有利于染料废水的降解;酸性红B废水溶液的初始浓度越高,光催化越难降解。
Perovskite oxides (ABO3) has stable structure and high photocatalytic activity ,further more
    a catalyst which has more narrow band gap can be synthesized and can absorb more solar energy by altering the type of A and B. A series of perovskite oxides are synthesized by means of blend deposition using the nitrate of A and B as the raw materials, and ammonia or sodium carbonate
    as sedimentation .A includes alkaline-earth metals such as Mg, Ca, Sr, Ba and rare-earth metals
    La; while B includes transition metal Cr, Mn, Fe, Co and Ni. The result of activity evaluation indicates that the effect of A is low while the effect of B is remarkable comparatively. The normal tendency of change is that the photocatalytic activity improvements with the increases of
    atomic number.
    The activity of CaNiO3 is the highest among the above photocatalysts. The test result of
    XRD and TEM shows that the purity of CaNiO3 is comparatively high and the particle shape is
    approximately round ball whose diameter is in the range of 150-200nm. The photocatalytic activity of CaNiO3 and TiO2 is compared, and the result shows that the activity of the two photocatalysts are equal under the irradiation of UV while under imitation of sunlight the farmer's activity is higher than the latter's, and that the rate of degradation of acid red B is 63%
    and 47% respectively. The compound oxides of CaFexNi1-xO3 (x=0.1-0.9) have been synthesized.
    Among them, the activity of CaFe0.3Ni0.7O3 is the highest and under the imitation of sunlight, the rare of degradation of acid red B can reach 91%. The effect of load of Co and Ag on the CaFe0.3Ni0.7O3 is studied, and indicates that the activity of CaFe0.3Ni0.7O3 supporting Co is much
    lower, while the activity of CaFeo.3Ni0.7O3 supporting Ag is increased and that the rate of degradation of acid red B is 96%.
    The kinetics of degradation of acid red B under UV is studied over CaNiO3 catalyst. The
    
    
    
    reaction order is defined to be 1.4. Pre-exponential factor in ko= 1.01 × 107 mol-0.4L0.4min-1, and the activation energy is Ea=35.5 kJ.mol-1.
    Acid red B degraded in different time is analyzed by IR and UV-VIS spectra analysis. According to result, the mechanism of acid red B degradation is inferred, i.e., double bond of nitrogen is disappeared, firstly and then, naphthalene ring is broken and benzene ring is cracked.
    The effects of experimental condition on photocatalytic degradation of acid red B are studied. The photocatalysis is improved by adding H2O2 into the solution and the activity is raised with the increase of the amount of H2O2. Increasing the acidity of the solution is benefited to decompose acid red B. The higher the initial concentration of acid red B, the more difficult the photocatalysis.
引文
[1] 李家珍.染料、染色工业废水处理.北京:化学工业出版社,1997.156
    [2] 范洪波,孙晓娟,吴卫忠,等.难降解染料废水处理方法的研究进展.江苏石油化工学院学报,2002,14(1):61
    [3] M modell. Treatment for Oxidation of Organics in Supercritical Water. US Pantent, 4338199,1982
    [4] 李太友.有机污染物的半导体光催化氧化研究进展综述.江汉大学学报,1999,16(3):12
    [5] 邱健斌,刘云珍,姚建年.TiO_2薄膜的制备及其光催化性能.化学试剂,2002,24(2):80
    [6] 武荣国,司民真.二氧化钛光催化及其在废水有机污染物处理中的应用展望.楚雄师专学报,2001,16(3):51
    [7] 郑敏,宋心远.印染废水光催化氧化作用机理解析.染整技术,2002,24(1):42
    [8] 刘飞跃,李秉环,徐银菘.半导体光催化降解废水有机污染物概述.广州化学,2001,26(3):24
    [9] E Bredow, K Jug. Study of photocatalytic formation and Reaction of OHRadicals at Anatase particles. J Phys Chem, 1995,99: 285
    [10] 田中启一.光催化剂在水处理方面的应用.环境科学,1996,27(10):68
    [11] R W Matthews. War Res, 1986, 20: 569.
    [12] 陈士夫.不同制备条件对TiO_2/beads光催化活性的影响.环境科学,1996,17(4):33
    [13] 许宜铭,陈文星,朱志杰.光化学法降解水中氯代苯酚的研究进展.环境科学,1990,9(6):13
    [14] 谭香萍,蒋伟川.水溶液中α-萘乙酸的光降解研究.环境科学,1995,16(2):15
    [15] 岳林海,樊帮堂.半导体的表面修饰与其光电化学应用.环境污染与防治,1994,16(4):2
    [16] 魏凤玉.H_2O_2/TiO_2氧化法处理氨基丁酸工业废水的研究.环境科学与技术,1998,(2):14
    [17] 程沧沧.附着态TiO_2光降解可溶性染料的研究.环境科学与技术,1998(2):11
    [18] 祝万鹏.光催化氧化法处理染料中间体H酸水溶液.环境科学,1996,17(4):7
    [19] 樊邦堂.环境化学.杭州:浙江大学出版社,1991.147
    [20] 杨秋华,傅希贤,王俊珍,等.La_(1-x)Sr_xFeO_3光催化降解水溶性染料.应用化学,2000,17(6):585
    [21] 赵恒勤,陈建军,秦庆伟,等.纳米TiO_2的光催化作用及其应用研究进展.有色金属(冶炼部分),2002,06:35
    [22] 石建敏,李巧玲,周仁贤,等.二氧化钛光催化降解水溶性分散染料的研究.水处理技术,2002,02:105
    
    
    [23] A Fujishima, K Honda. Nature, 1972, 238(5358): 37
    [24] 施利毅,李春忠,房鼎业,等.二氧化钛超细粒子的制备及其光催化降解含酚溶液.华东理工大学学报,1998,03:291
    [25] 赵文宽,贺飞,方佑龄,等.TiO_2光催化反应及其在废水处理中的应用.化学进展,1998,4(10):349
    [26] S S Kistler, J Phys Chem, 1932, 36: 52
    [27] G Dagan, M Tomkiewicz. Phys Chem, 1993,97(49): 12651
    [28] D Bersani, P Politici, A Montenern, et al. J Mater Sci, 1996,31:3153
    [29] 林元华,张中太,黄淑兰,等.纳米金红石型TiO_2粉体的制备及其表征.无机材料学报,1999,06:854
    [30] J Szczyrbowski, G Bruer, M Ruske, et al. Some properties of TiO_2-layers prepared by mid-frquency and dc reactive magnetron sputtering. J Non-Cryst Solids, 1997,218: 262
    [31] 武瑞涛,张岩峰,魏雨.纳米TiO_2粉体的制各及应用进展.功能材料,2000,4:354
    [32] T Matsunaga, M Okochim. TiO_2-mediated photochemical disinfection of Escherichia coti using optical fibers. Environ Sci Technol, 1995, 29(2): 501
    [33] 李越湘,吕功煊,李树林.半导体光催化分解水研究进展.分子催化,2001,15(1):72
    [34] M I Litter, J A Navio. Photocatalytic properties of iron-doped titania semiconductors [J]. Photochem Photobio A Chem, 1996, 98: 171
    [35] W Choi. Phys Chem, 1994, 98(51): 13669
    [36] J M Hermann, J Disdier, et al. TiO_2-based solar photocatalytic detoxification of water containing organic pollutantes. Case studies of 2, 4-dichlorophenoxyaceticacid (2, 4-D) aad of benzofuran. Appl Cata B Environ, 1998, 17: 15
    [37] T Uchihana, M Matsumura, J Ono, et al. Phys Chem, 1990, 94(1): 415
    [38] H Uchida, Torimoto. Langmuir. 1995,11(10): 3725
    [39] 李芳柏,古国榜.WO_3/TiO_2纳米材料的制备及光催化性能.物理化学学报,2000,16(11):997
    [40] 李芳柏,古国榜,黎永津.WO_3/TiO_2复合半导体的光催化性能研究.环境科学,1999,04:76
    [41] Y R Do, K Lee, A Dwight Kand Wold. The Effect of WO_3 on the Photocatalytic Activity of TiO_2. J Solid State Chemistry, 1994, 108(1): 198
    [42] 张虎勤,陈开勋,金振声.Pt/CdS光催化剂表面修饰和表面结构.应用化学,1997,01:98
    [43] 桑丽霞,傅希贤,白树林等.ABO_3钙钛矿型复合氧化物光催化活性与B离子d电子结构的关系.感光科学与光化学,2001,19(2):109
    [44] 傅希贤,桑丽霞,王俊珍,等.钙钛矿型(ABO_3)化合物的光催化活性及其影响因素.天津大学学报,
    
    2001,34(2):229
    [45] 杨秋华,傅希贤,桑丽霞.纳米LaCoO_3的光催化氧化还原活性.燃料化学学报,2002,30(4):368
    [46] 傅希贤,桑丽霞,白树林,等.钙钛矿型SrFeO_(2-λ)对部分染料的光催化活性.化学研究与应用,2000,12(5):514
    [47] 傅希贤,杨秋华,白树林,等.制备方法对LaFeO_3及掺杂LaFeO_3光催化活性的影响.化学工业与工程,1999,16(6):316
    [48] 桑丽霞,傅希贤.制备方法对LaFeO_3及掺杂LaFeO_3光催化活性的影响.化学工业与工程,2000,17(6):336
    [49] R W Matthews. Wat Res, 1986, 20: 569
    [50] 雷乐成,汪大翠.水处理高级氧化技术.北京:化学工业出版社,2001.102
    [51] 王俊珍,颜秀如.光催化剂SrTiO_3的制备及其性能的研究.化学工业与工程,2000(4):2
    [52] J C Zhao, H Satoshi, W Natsuko. Photooxidation mechanism of nitrogen-containing compounds at TiO_2/H_2O interfaces: an experimental and theoretical examination of hydrazine derivatives. Chemosphere, 2000, 41(3): 337
    [53] S Kalyushnyi, V Sklyar. J Wat Sci Technol, 2000, 41: 23
    [54] 宋世谟,庄公惠.物理化学.北京:高等教育出版社,1992.204
    [55] D Y Caswami. A review of engineering developments of aqueaus phase solar photocataltic degradation and disinfection processes. Solar Energy Eng, 1997, 119(3): 101
    [56] M Zhang. Decolorizationand biodegradability of dyeingwastewater treated by a TiO_2-sensitized photo-oxidation process. Wat Sic Tech, 1996, 34(9): 49
    [57] 王怡中.染料化合物催化氧化降解中氮元素的行为分析.环境化学,2001,20(1):18
    [58] 詹豪强.萘酚偶氮染料光化学氧化及其降解机理研究进展.染料工业,1997,11(2):43
    [59] 詹豪强.偶氮染料结构、光稳定性和光化学降解机理研究.化学进展,1998,10(4):415
    [60] 马万红,蔡汝秀.偶氮类化合物在纳米TiO_2表面光降解的UV-Vis光谱示踪研究(Ⅰ)——中间体的发现及动力学行为.高等学校化学学报,1999,20(10):1542
    [61] C Wu, X Liu. Solar photocataltic degradation and disinfection processes. War Res, 2001(35): 3927
    [62] 雷乐成,汪大翠.水处理高级氧化技术.北京:化学工业出版社,2001.261
    [63] A A Khodja, T Sehili, F Pihichowski. Designing microorganisma for the treatment of toxic wasters. Photochem Photobiol. 2001, 142 (3): 85

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700