用户名: 密码: 验证码:
二维光子晶体带隙与慢光特性研究及结构优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着光通信的发展,光器件的小型化和易于控制性越来越成为人们追求的目标,这就对光通信器件的集成度要求越来越高,然而现有的光器件还无法满足这个需求。光子晶体的概念提出之后,其以独特的带隙和慢光性能使得设计具有更高集成度和更好性能的光通信器件成为可能。本文主要针对二维光子晶体带隙和慢光特性进行了研究,设计了具有更大绝对带隙的光子晶体和具有更小群速度的光子晶体慢光波导结构,初步分析了慢光在全光缓存中的应用,并设计了光子晶体慢光实验平台,对制作的光子晶体波导慢光特性进行了测试。具体在以下几个方面展开工作并进行创新:
     (1)针对三种常见的介质柱横截面分别为正六边形,正方形和圆形的二维光子晶体,提出了一种增大光子绝对带隙的方法。通过对介质柱截面形状进行变形,即在直角坐标系下,增大X方向长度为原来长度的p倍,并以原点为中心旋转角度φ。通过调整p和φ大小来降低其结构对称性,对其进行了大量的仿真分析,得到了具有更大的绝对带隙的光子晶体结构。改变结构之前最大绝对带隙率约为5.3%,改变结构之后,对于三种介质柱三角晶格结构的光子晶体,最大绝对带隙率均能达到12%以上,尤其对于正方柱三角晶格光子晶体,最大绝对带隙率达到15.1%。这种增大带隙的方法在其他文献中尚未被提及,为以后设计类似结构的大带隙光子晶体提供了一个重要参考。
     (2)通过平面波展开法中的超胞算法对光子晶体线缺陷波导结构的慢光特性进行了研究。当缺陷柱半径小于光子晶体介质柱半径时,随着缺陷柱半径的增加,导模中心频率向低频移动,群速度也越来越小;当增大介质柱的介电常数时,导模有相同的变化规律。针对这种现象,本论文从介电常数在平面波展开法中的作用出发进行了探讨。然后研究了缺陷柱位置对导模慢光的影响,通过上下平移缺陷柱,得到具有更好线性的导模,此时群速度曲线相对平坦,色散值也更小。最后得到结论:缺陷柱的大小和介电常数的变化更多的是影响导模的慢光值,而通过调整缺陷柱上下平移的距离则能达到减小慢光群速度色散特性的目的。
     (3)通过改变缺陷腔的结构,研究了二维光子晶体耦合腔波导慢光的变化情况,得到了具有极小慢光群速度的光子晶体耦合腔波导结构。首先对普通结构光子晶体CCW慢光特性进行了计算,随着腔间距离的增大,腔间耦合系数越小,CCW的慢光群速度越来越小;还计算了改变普通结构的微腔中心缺陷柱半径后的CCW慢光值,得到单独减小微腔缺陷柱尺寸并不能得到更小的慢光值的结论。定义慢光因子为导模最大群速度与真空中光速的比值,然后通过改变微腔中心缺陷柱和周围四个缺陷柱半径的方法设计新型结构的CCW,在中心缺陷柱半径为零的情况下得到慢光因子最小值为5.89x10-4;将中心缺陷柱尺寸影响考虑进去之后,通过调整周围四个缺陷柱,得到最小慢光因子为3.26x10-4,这大约是对应普通缺陷腔结构慢光因子的1/10。另外,当固定周围四个缺陷柱半径在某些范围内时,慢光因子随中心缺陷柱半径的变化很小,而且慢光因子值也很小。结合光子晶体的制作可知,这种结构在制作中对精度要求可以相对降低很多,从而具有很好的应用价值。
     (4)结合慢光缓存的应用,通过紧束缚法原理介绍了CCW结构对应的慢光缓存参数计算方法,对耦合腔波导的比特长度和缓存容量等进行计算分析,看到CCW慢光缓存中延迟时间和缓存容量是相互制约的,即腔间距的增大,一方面使得耦合系数增大,从而减小了群速度,另一方面却使得导模带宽变小且比特长度增加,从而减小了缓存容量。通过对不同结构进行计算,在9.78cm的光子晶体CCW长度上实现了1μs的延迟,延迟时间大约是类似文献中结果的3倍,缓存容量达到3.3kbit。通过进一步分析得出,对于CCW慢光结构,当微腔间距较小时,系统具有较小的比特长度,从而缓存容量较大,此时对于慢光缓存具有较大的应用价值;而当微腔间距较大时,系统具有较大的比特长度,此时虽然缓存容量较小,却具有更小的慢光群速度,使得慢光时延较大,这种结构更适合用于对光与物质之间作用时间要求较长的非线性效应等应用中。
     (5)结合测量光子晶体波导慢光的需求,对慢光实验平台的测试原理进行了分析,确认了通过测试光在光子晶体波导中相位变化来计算等效折射率变化的方法,并在此基础上设计了实验平台。用聚焦离子束方法(FIB)进行光子晶体波导制作,并对制作的W1型光子晶体波导进行慢光测试,得到其群折射率曲线。针对1560nm处的群折射率,通过光示波器进行延迟验证,得到4.7ps左右的延迟,与群折射率曲线结果吻合。
All-optical buffer is essential in the realization of all-optical network scheme and it plays a key role in all-optical switching system. The development of all-optical network has to breakthrough the technology of all-optical buffer. Two-dimensional (2D) photonic crystal (PhC) and its slow light properties provide many advantages to the development of the technology of all-optical buffer. The slow light testbed is designed and the slow light properties of the fabricated PCW are measured. To be specific, the contents and main results in this thesis are described as follows:
     1. For three typical sorts of conventional 2D photonic crystals with dielectric rod's cross sections'shapes of hexagon, square and circular, a novel method for increasing improving the PBG of the photonic crystals is proposed. It achieves the design goal by increasing the length in X direction to be p times and rotating shapes with angleφ. The symmetry of the structures are decreased through changing the values of p andφp. Through the extensive simulations using planar wave expansion method, we find that improved PBG rate can reach up to 12% due to the photonic crystals of the three types of dielectric rod with triangular lattice. Especially for photonic crystals of rectangle rod with triangular lattice, the max PBG rate can reach 15.1%. This method provides us an important reference to design the PhC structure with better absouluty PBG. It is innovative, and currently there is no work about this to our knowledge.
     2. The characteristics of slow light in PhC line defect waveguide structure is studied with supercell algorithm of PWE. When the radius of defect rod is smaller than the one of PhC dielectric rod, the central frequency of guided mode transfers to lower frequency and its group velocity gets smaller and smaller as the increase of radius of defect rod; The guided mode changes the same as the increase of dielectric constant of dielectric rod. With this observation, a discussion is set out from the function of dielectric constant in PWE. Then the effect of position of defect rod on guided mode slow light is studied, and the guided mode with better linearity which represents that the curve of group velocity is more smooth and the GVD is smaller is obtained through shifting the defect rod up and down. To sum up, the size of defect rod and the change of dielectric constant mostly effects on the value of group velocity, while the change of the position of the defect rod optimizes the GVD of slow light.
     3. Through modifying the structure of the defedted cavity, we study the variation of the group velocity of the slow light in the 2D PhC CCW and get the CCW strucuter with ultro-small group velocity. Firstly we calculate the group velocity of the normal PhC CCW and find that the group velocity and coupling coefficient decrease as the distance between coupled cavities increases. The group velocity of the CCW structure is also calculated by changing cetral defect rod's radius only and we find that this can't reduce the group velocity. Then we design new CCW structure through modifying the radii of the central rod and around four rods. The slow light factor can reach 5.89×10-4 by varying the radii of other four rods when the radius of the central rod is zero. Ultra small slow light factor 3.26×10-4, which is about 1/10 of that of corresponding normal CCW, can be gotten if we modify the five rods at the same time. We also find that the variation of the slow light factor caused by the changing of the radius of the central rod is very small when the radii of the around four rods are set within a certain range. Considering the manufacture of PhC, this type of CCW structure has great application value since it reduces the demand of the precision.
     4. Combined with the application of slow light buffers, the corresponding computation method of CCW structure is introduced through the principle of tight binding method. The BIT length of coupled cavity waveguide and buffering capacity etc. are analyzed to obtain that the delay time and buffering capacity in CCW slow light buffering restrict each other. This means that, on the one hand, the coupling coefficient gets larger as the increase of space between cavities to reduce the group velocity; on the other hand, the guided mode bandwidth gets narrower and the BIT length gets longer to reduce the buffering capacity. The delay time of 1μs in PhC CCW of 9.78cm is implemented through calculation on different structures and it is 3 times larger than similar literatures. Buffering capacity can reach 3.3kbit. Moreover, the analytic results on CCW slow light structures shows that, when the space between cavities is smaller, the system gains smaller BIT length to increase the buffering capacity, which is of great applied values to slow light buffering; when the space between cavities is larger, the system gains larger nic crystals with a triangular lattice of air holes", J. Opt. Soc. Am. B, Vol.20, 2003,p.19221926.
     Olivier S, Smith C J M, Rattier M, et al., "Miniband transmission in a photonic crystal coupled-resonator optical waveguide", Opt. Lett., Vol.26, between (?) of measurement of PhC slow light, we analyze the test principle of the slow light testbed and decide to measure the change of the equivalent dielectric constant by testing the variation of the phase in PCW. Based on the analysis, we design the testbed. The W1 PCW is fabricated with focused ion beam (FIB) method. The obtained results demonstrate that the group index curve measured with the phase-delay method has the exact same trend with that in simulations. The time-delay of the pulse is also measured, and it fits for the theoretical result calculated according to the group index with the phase-delay method, witch is about 4.7ps.
引文
验平台。用聚焦离子束方法(FIB)进行光子晶体波导制作,并对制作的W1型光子晶体波导进行慢光测试,得到其群折射率曲线,并通过光示波器进行延迟验证。
    第七章:总结。概括了本论文研究的主要内容,并对后续的研究工作进行了展望。
    [1]Almeida R., Pelegrini J., Waldman H., "A generic-traffic optical buffer modeling for asynchronous optical switching networks", IEEE. Commun. Lett.9(2),175-177 (2005).
    [2]Fayoumi, A., Jayasumana, and A.P, "A surjective-mapping based model for optical shared-buffer cross-connect", IEEE/ACM Trans. Netw.15(1),226-233 (2007).
    [3]Tokushima M., Jun Ushida, Gomyo A., "Pillar Photonic Crystal waveguides for Integrated Optical Buffers", Lasers and Electro-Optics,2005. CLEO/Pacific Rim 2005. Pacific Rim Conference. 30(02), Aug.2005, pp,636-637.
    [4]R. S. Tucker, P. C. Ku, and C. J. Chang-hasnain, "Slow-light optical buffers: capabilities and fundamental limitations", J. Lightwave. Technol.23,4046-4066 (2005).
    [5]Yablonovitch E., "Inhibited spontaneous emission in solid-state physics and electronics", Phys. Rev. Lett., Vol.58,1987, pp.2059-2062.
    [6]John, S., "Strong localization of photon in certain disorder dielectric super-lattices." Phys. Rev. Lett. Vol.58,1987, pp.2486-2489.
    [7]http://ab-initio.mit.edu/photons/
    [8]Strutt, JW (Lord Rayleigh), "On the Maintenance of Vibrations by Forces of Double Frequency, and on the Propagation of Waves Through a Medium Endowed with a Periodic Structure." Phil. Mag., S.5, vol.24, no.147, August 1887, pp.145-59.
    [9]Abram I, and Bourdon G, "Photonic-well microcavities for spontaneous emission control", Phys. Rev. A., Vol.54,1996, pp.3476-3479.
    [10]Agrwal G S and Gupta S D, "Microcavity-induced modification of the dipole-dipole interaction", Phys. Rev. A., Vol.57,1998, pp.667-670.
    [11]Song B S, Asano T, Akahane Y, et al., "Multichannel add/drop filter based on in-plance hetero photonic crystals", IEEE. J. Lightwave Technology. Vol.23, No.3,2005, pp.1440-1446.
    [12]Hwang K H and Song G H, "Design of high-Q channel add-drop multiplexer based on the two-dimensional photonic-crystal membrance structure", Opt. Express., Vol.13, No.6,2005, pp. 1948-1957.
    [13]Shinya A, Mitsugi S, Kuramochi E, et al, "Ultrasmall multi-port channel drop filter in two-dimensional photonic crystal on silicon-on-insulator substrate", Opt. Express., Vol.14, No.25, 2006, pp.12394-12400.
    [14]O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, I. Kim "Two-Dimensional Photonic Band-Gap Defect Mode Laser", SCIENCE, Vol.284,1999, pp.1819.
    [15]Inoue K, Sasada M, Kawamata J, et al., "A two-dimensional photonic crystal laser", Jpn. J. Appl. Phys. Vol.38,1999, pp. L157-158.
    [16]Loncar M., Yoshie T, and Scherer A, "Low-threshold photonic crystal laser", Appl. Phys. Lett., Vol. 81, No.15,2002, pp.2680-2682.
    [17]Kwon S H, Ryu H Y, Kim G H, et al., "Photonic bandedge laser in two-dimensional square-lattice photonic crystal slab", Appl. Phys. Lett., Vol.83, No.19,2004, pp.3870-3872.
    [18]Park H G, Kim S H, Kwon S H, et al., "Electrically driven single-cell photonic crystal laser", Science, Vol.305, No.5689,2004, pp.1444-1447.
    [19]Hatice Altug, Dirk Englund, Jelena Vuckovic, "Ultra-fast Photonic Crystal Nanocavity Laser", Nature Physics,2,2006, pp.484-488.
    [20]Wu L J, Mazilu M, Gallet J F, et al., "Planar photonic crystal polarization splitter", Optics. Lett. Vol.29, No.14,2004, pp.1620-1622.
    [21]OhteraY, SatoT, KawashimaT, et al., "Photonic crystal polarization splitters", J. Electronics Letters, Vol.35, No.15,1999, pp.1271-1272.
    [22]T. Baba and T. Matsumoto, "Resolution of photonic crystal superprism", Appl. Phys. Lett.81, 2002, pp.2325-2327.
    [23]Panoiu N C, Bahl M, Osgood R M, "Optically tunable superprism effect in nonlinear photonic crystals", Opt. Lett.2003,28, pp.2503.
    [24]Wu L J, Mazilu M, Karle T, et al., "Superprism phenomena in planar photonic crystals," IEEE J. Quantum Electronics., Vo.38, No.7,2002, pp.915-918.
    [25]Prasad T, Colvin V and Mittleman D, "Superprism phenomenon in three-dimensional macroporous polymer photonic crystals", Phys. Rev. B., Vol.67,2003, pp.165103.
    [26]Momeni B and Adibi A, "Systematic design of superprism based photonic crystal demultiplexers", IEEE J. Selected Areas in Commu. Vol.23, No.7,2005, pp.1355-1363.
    [27]陈小军,吴立军,胡巍,“非线性光子晶体中光敏超棱镜现象的研究”,物理学报,第58卷第2期,2009,1025-1030.
    [28]Scalora M, Dowling J P, Bowden C M, et al., "Optic limiting and switching of ultrashor pulses in nonlinear photonic band gap materials", Phys. Rev. Lett, Vol.73,1994, pp.1368-1371.
    [29]Hu X Y, Jiang P, Ding C Y, et al. Picosecond and low-power all-optical switching based on an organic photonic bandgap microcavity.Nature Photonics,2008,2:185-189.
    [30]Asakawa K, Sugimoto Y, Watanabe Y, "Photonic crystal and quantum dot technologies for all-optical switch and logic device", New J. Phy. Vol.8,2006, p.208.
    [31]Asakawa K, Sugimoto Y, Watanabe Y, "New design for wide/flat bandwidth in photonic crystal-based SMZ all-optical device (PC-SMZ)", ICTON 2006, Jun,18-22, Nottingham UK, pp. 146-149.
    [32]Lee M C, Hah M, D. Lau E K, et al., "MEMS-actuated photonic crystal switches", IEEE Photonics Tech. Lett., Vol.18, No.2,2006, pp.358-360.
    [33]Joannopoulos J D, Villeneuve P R, "Photonic Crystals:Putting a new twist on light," Nature, Vol. 386,1997, pp.143-149.
    [34]Lin S Y, Chow E, Hietala V, et al., "Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal", Science, Vol.282, No.5387,1998, pp.274-276.
    [35]Chow E, Lin S Y, Wendt J R, et al., "Quantitative analysis of bending efficiency in photonic-crystal waveguide bends at λ= 1.55 μm wavelengths", Opt. Lett., Vol.26, No.5,2001, pp.286-288.
    [36]Boscolo S, Midrio M, and Krauss T F, "Y junction in photonic crystal channel waveguide:high transmission and impedance matching", Opt. Lett., Vol.27, No.12,2002, pp.1001-1003.
    [37]Frandsen L H, Borel P I, Zhuang Y X, et al., "Ultralow-loss 3-dB photonic crystal waveguide splitter", Opt. Lett., Vol.29, NO.14,2004, pp.1623-1625.
    [38]Sigalas M M, Soukoulis C M, Economou E N et al, "Photonic band gaps and defects in two dimensions: Studies of the transmission coefficient", Phys. Rev. B., Vol.48, No.19,1993, pp. 14121-14126.
    [39][11] Lei X Y, Li H, Ding F et al, "Novel application of a perturbed photonic crystal:High quality filter", Appl. Phys. Lett., Vol.71, No.20,1997, pp.2889-2891.
    [40]Knight J C, Birks T A, Russell P St J, et al., "All-silica single-mode optical fiber with photonic crystal cladding", Opt. Lett., Vol.21, No.19,1996, pp.1547-1549.
    [41]Yablonovitch E, Gmitter T J. Photonic band structure: The face-centered-cubic case. Phys. Rev. Lett.,1989,63(18):1950-1953.
    [42]Yablonovitch E, Gmitte T J, Meade R D et al.. Donor and acceptor modes in photonic band structure. Phys. Rev. Lett.,1991,67 (24):3380-3383.
    [43]Susumu Noda et al., "Full Three-Dimensional Photonic Bandgap Crystals at Near-Infrared Wavelengths", Science July 2000.
    [44]Blanco A, Chomski E, Grbtchak S, et al., "Large scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometer", Nature, Vol.405,2000, pp.437-440.
    [45]Baek K H, and Gopinath A, "Self-assembled photonic crystal waveguide", IEEE Photonics Technology Letters, Vol.17, No.2,2005, pp.351-353.
    [46]H.-B. Sun, S. Matsuo, and H. Misawa, "Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin," Applied Physics Letters 74,1999, pp. 786-788.
    [47]B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, et al., "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398,1999, 51-54.
    [48]Markus Deubel, Georg von Freymann, Martin Wegener, et al., "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications", Nature Materials 3,2004, pp.444-447.
    [49]V.L. U.Gruning, V. Lehmann and C.M.Engelhardt, "Two-dimensional infrared photonic band gap structure based on porous silicon", Appl. Phys. Lett., vol.66,1995, pp.3254.
    [50]Chu S and Wong S, "Linear pulse propagation in an absorbging medium", Phys. Rev. Lett. Vol.48, 1982, pp.738-741.
    [51]S. E. Harris, J. E. Field, A. Imamoglu,'Nonlinear Optical Processes Using Electromagnetically Induced Transparency', Phys. Rev. Lett.1990,64(10), pp.1107-1110.
    [52]Kasapi K, Jain M, Yin G Y, et al., "Electromagnetically Induced Transparency: Propagation Dynamics", Phys. Rev. Lett., Vol.74,1995, pp.2447-2450.
    [53]Schmidt O, Wynands R, Hussein Z, et al., "Steep dispersion and group velocity below c/3000 in coherent population trapping", Phys. Rev. A. Vol.53,1996, pp. R27-R30.
    [54]Hau LV, Dutton S E, and Behroozi C H, "Light speed reduction to 17metres per second in an ultracold atomic gaps", Nature, Vol.397,1999, pp.594-5978.
    [55]Kash M M, Sauterkov V A, Alexander S Z, et al., "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas", Phys. Rev. Lett., Vol.82,1999, pp. 5229-5232.
    [56]Budker D, Kimball D F, Rochester S M, et al., "Nonlinear Magneto-optics and Reduced Group Velocity of Light in Atomic Vapor with Slow Ground State Relaxation", Phys. Rev. Lett., Vol.83, 1999, pp.1767-1770.
    [57]A. V Turukhin, V S. Sudarshanam, M. S. Shahriar, "Observation of Ultraslow and Stored Light Pulses in a Solid. Phys. Rev. Lett.2002,88, pp.023602.
    [58]M. S. Bigelow, N. N. Lepeshkin, R. W. Boyd, "Observation of Ultraslow Light Propagation in a Ruby Crystal at Room Temperature", Phys. Rev. Lett.,2003,90(11), pp.113903.
    [59]S. H. Lin, K. Y. Hsu, P. Yeh, "Experimental Observation of the Slowdown of Optical Beams by a Volume-Index Grating in a Photorefractive LiNbO3 Crystal", Opt. Lett.2000,25(21):1582-1854.
    [60]E. Podivilov, B. Sturman, A. Shumelyuk, et al., "Light Pulse Slowing Down up to 0.025 cm/s by Photorefractive Two-Wave Coupling", Phys. Rev. Lett.2003,91, pp.083902.
    [61]Song K Y, "Long Optically Controlled Delays in Optical Fibers," Opt. Lett.2005,30, pp. 1782-1784.
    [62]Okawachi Y, Bigelow M S, Sharping J E et al. Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber. Phys. Rev. Lett.,2005,94, pp.153902.
    [63]掌蕴东,范保华,袁萍等,“固体材料中慢光现象的实验观测”,中国激光,2004,31,pp.175-176.
    [64]23 Y. D. Zhang, B. H. Fan, P. Yuan, Z. G. Ma. Reduction of Light Group Velocity by Coherent Population Oscillation in a Ruby Crystal. Chin. Phys. Lett.2004,21(1), pp.87-89.
    [65]G. Zhang, F.Bo, R. Dong, J. Xu. Phase-Coupling-Induced Ultraslow Light Propagation in Solids at Room Temperature. Phys. Rev. Lett.2004,93:133903.
    [66]Steven GJohnson, Pierre R.Villeneuve, Shanhui Fan. Linear Waveguides in Photonic-Crystal Slabs. Phys.Rev.B.2000,62(12), pp.8212-8222.
    [67]M.L.Povinelli, Steven GJohnson, J.D.Joannopoulos. Slow-light Band- Edge Waveguides for Tunable Time Delays[J]. Opt.Express,2005,13(18), pp.7145-7159.
    [68]H.Gersen, T.J.Karle, R.J.P.Engelen. Real-Space Observation of Ultraslow Light in Photonic Crystal Waveguides. Phys. Rev. Lett.2005,94, pp.073903.
    [69]C.E.Finlayson, F.Cattaneo, N.M.B.Perney. Slow Light and Choromatic Temporal Dispersion in Photonic Crystal Waveguides Using Femtosecond Time of Flight.Phys.Rev.E.2006,73, pp. 016619.
    [70]M.Notomi, K.Yamada, A,Shinya. Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs. Phys.Rev.Lett.2001,87(25), pp.253902.
    [71]Yurii A.Vlasov, Sharee J.McNab. Coupling into the Slow Light Mode in Slab-Type Photonic Crystal Waveguides. Opt.Lett.2006,31(1), pp.50-52.
    [72]GD'Aguanno, M.Centini, M.Scalora. Slowing Light in X(2) Photonic Crystals. Phys.Rev.E.2003, 68, pp.046613.
    [73]Arnout Imhof, Willem L.Vos, Rudolf Sprik. Large Dispersive Effects near the Band Edges of Photonic Crystals. Phys.Rev.Lett.1999,83(15), pp.2942-2945.
    [74]Lars H.Frandsen, Andrei V,Lavrinenko, JacobFage-Pedersen. Photonic Crystal Waveguides with Semi-Slow Light and Tailored Dispersion Properties. Opt.Express.2006,14(20), pp.9444-9450.
    [75]E.Kuramochi, M.Notomi, S.Hughes. Disorder-Induced Scattering Loss of Line-Defect Waveguides in Photonic Crystal Slabs. Phys.Rev.B.2005,72, pp.161318.
    [76]Daisuke Mori, Toshihiko Baba. Wideband and Low Dispersion Slow Light by Chirped Photonic Crystal Coupled Waveguide. Opt.Express.2005,13(23), pp.9398-9408.
    [77]Daisuke mori, Toshihiko Baba. Dispersion-Controlled Optical Group Delay Device by Chirped Photonic Crystal Waveguides. Appl.Phys.Lett.2004,85(7), pp.1101-1103.
    [78]A.Yu.Petrov, M.Eich. Zero Dispersion at Small Group Velocities in Photonic Crystal Waveguides. Appl.Phys.Lett.2004,85(21), pp.4866-4868.
    [79]Yurii A.Vlasov, Martin O'Boyle, Hendrik F.Hamann. Active Control of Slow Light on a Chip with Photonic Crystal Waveguides. Nature.2005,438, pp.65-69.
    [80]Lars H.Frandsen, Andrei V.Lavrinenko, JacobFage-Pedersen. Photonic Crystal Waveguides with Semi-Slow Light and Tailored Dispersion Properties. Opt.Express.2006,14 (20), pp.9444-9450.
    [81]Gersen H, Karle T J, Engelen R J P, et al., "Real-space observation of ultraslow light in photonic crystal waveguides", Phys. Rev. Lett., Vol.94,2005, pp.073903.
    [82]Chu J H, Voskoboynikov O, Lee C P, "Slow light in photonic crystals", Microelectronies J. Vol.36, 2005, pp.282-284.
    [83]Tokushima M, Ushide J, Gomyo A. "Pillar Photonic Crystal waveguides for Integrated Optical Buffers", CLEO2005, Vol.1,2005, pp.636-637.
    [84]Yariv, Y. Xu, R. K. Lee, et al., "Coupled-resonator optical waveguide: a proposal and analysis", Opt. Lett., Vol.24, No.11,1999, pp.711-713.
    [85]Kazuhiko Hosomi, Toshio Katsuyama, "A Dispersion Compensator Using Coupled Defects in a Photonic Crystal", IEEE J. Quantum Electron., Vol.38, No.7,2002, pp.825-829.
    [86]Altuga H, and Vuckovic J, "Two-dimensional coupled photonic crystal resonator arrays," Appl. Phys. Lett. Vol.84,2004, pp.161-163.
    [87]Tanabe T, Notomi M, Kuramochi E, et al., "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nature Photonics. Vol.1,2007, pp.49-52.
    [88]M Svaluto Moreolo, V Morra and G Cincotti, "Design of photonic crystal delay lines based on enhanced coupled-cavity waveguides", J. Opt. A: Pure Appl. Opt.10,2008, pp.064002. 束缚法等等,这些方法各有优缺点。根据需要,重点对论文中用到的平面波展开法进行了详细描述,为下面几章的数值仿真分析提供了理论和算法支持。
    [1]Shangping Guo and Sacharia Albin, "Numerical tecniques for exitation and analysis of defect modes in photonic crystals", Optics Express., Vol. No.9,2003, pp.1080-1089.
    [2]Shangping Guo and Sacharia Albin, "Simple plane wave implementation for photonic crystal calculations", Optics Express., Vol.11, No.2,2003, pp.167-175.
    [3]Plihal M and Maradudin A A, "Photonic band structure of two-dimensional:the triangular lattice", Phys. Revi. B., Vol.44, No.16,1991, pp.8565-8571.
    [4]Plihal M, Shambrook A, Maradudin A A, "Two-dimensional photonic band structure", Opt. Commun., Vol.80, No.3,1991, pp.199-204.
    [5]Yee K S. "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media", IEEE Trans. Antennas and Propagation, Vol.14,1966, p.302.
    [6]Chan C T, Yu Q L, and Ho K M, "Order-N spectral method for electromagnetic waves," Phys. Rev. B. Vol.51,1995, pp.16635-16642.
    [7]Qiu M, and He S L, "A nonorthogonal finite-difference time-domain method for computing the band structure of a two-dimaensional photonic crystal with dielectric and metalic inclusions," Appl. Phys. Vol.87,1992, pp.8268-8275.
    [8]葛德彪,闫玉波,《电磁波时域有限差分法》,西安电子科技大学出版社,2005.
    [9]Zi J, Wan J, Zhang C, "Large frequency range of negligible transmission in one-dimensional photonic quantum well structures," Appl. Phys. Lett., Vol.73,1998, pp.2084-2086.
    [10]王辉,李永平,“用特征矩阵法计算光子晶体的带隙结构”,物理学报,Vol.50,No.1l,2001,pp.2172-2178.
    [11]Jiang M P, Jiang X F, Shen X M, et al. "Study on the Polarization Property of 1-D Photonic Crystal, " Chinese Journal of Quantum Electronics,22(4),2005, pp.612-616.
    [12]Puppin R. "Surface polaritons of a left-handed medium, " Phys Lett A,277(2),2000, pp.61-64.
    [13]Yonekura J, Ikeda M, "A nalysis of finite 2D photonic crystals of columns and lightwave devices using the scattering matrix method," J.L.T., Vol.17,1999, pp.1500.
    [14]Felbacq D, Tayeb G, "Scat tering by a random set of parallel cylinders," J. Opt. Soc. Amer, Vol.11, 1994, pp.2526.
    [15]Yonekura J, IkedaM. "Analysis of finite 2D photonic crystals of columns and light wave devices using the scattering matrix method," J LT,17,1999, p.1500.
    以上是对正六边形,正方形和圆形介质柱的二维光子晶体带隙特性进行仿真计算,将数据汇总,结果如表3-1所示。从表中可以看出,通过改变三种介质柱形状,可以使得原本不存在绝对带隙的光子晶体结构出现绝对带隙或者使原本存在的绝对带隙变得更大。具体的,对于三种形状介质柱的三角晶格结构的光子晶体,通过改变结构,最大带隙率能达到12%以上,尤其对于正方柱三角晶格光子晶体,最大带隙率F max达到15.1%。因此可以看出,以上提出的对光子晶体介质柱截面进行变形的方法,是改善介质柱光子晶体结构而获得较好带隙特性的有效途径。
    本章针对三种常见的介质柱横截面分别为正六边形,正方形和圆形的二维光子晶体,使用平面波展开法,通过改变占空比,分别对其四方晶格和三角晶格结构带隙特性进行了仿真分析,计算可知介质柱结构的光子晶体绝对带隙比较小。为了得到更大的绝对带隙,在直角坐标系下,对三种介质柱截面形状进行变形,即增大X方向长度为原来长度的p倍,并以原点为中心旋转角度φ。通过调整p和φ大小来降低其结构对称性,使用平面波展开法,对其进行了详细的仿真分析后可知,结构改变后的光子晶体具有较大的带隙率。对于三种介质柱的三角晶格结构的光子晶体,最大带隙率能达到12%以上,尤其对于正方柱三角晶格光子晶体,最大带隙率达到15.1%。本章提出的增大介质柱结构二维光子晶体绝对带隙的方法为以后设计类似结构的大带隙光子晶体提供了一个重要参考,即只需要把介质柱的形状做上述相应变化,再结合具体条件和要求,就能得到较理想的带隙特性。该方法在其他文献中尚未被提及,具有一定的创新性和实用参考价值。
    [1]朱志宏,叶卫民等,“光子晶体滤波特性分析”,光子学报,33(6),2004,pp.700-703.
    [2]欧阳征标,刘海山,李景镇,“光子晶体超窄带滤波”,光子学报,31(3),2002,pp.281-284.
    [3]E Ya Glushko and A A Zakhidov, "Theory of the nonlinear all-optical logical gates based on PBG structures", CAOL 2005,12-17 September 2005, Yalta, Crimea, Ukraine.
    [4]许桂雯,欧阳征标,“一种新型光子晶体双色谐振腔”,光子学报,36(03),2007,pp.429-433.
    [5]Yoshitomo Okawachi, Mark A Foster, Jay E Sharping, et al., "All-optical slow-light on a photonic chip", Optical Society of America,2006.
    [6]Peter Bienstman, "Taper structures for coupling into photonic crystal slab waveguides", Vol.20, No.9/September 2003/J. Opt. Soc. Am. B.
    [7]Wen W J, Wang N, Ma H R, et al., "Field induced structural transition in mesocrystallites", Phys Rev Lett,82(21),1999, pp.4248-4251
    [8]Zhang W Y, Lei X Y, Wang Z L et al., "Robust photonic band gap from tunable scatters", Phys Rev Lett,84(13),2000, pp.2853-2856.
    [9]Li Z Y, Zhang Z Q, "Fragility of photonic band gaps inverse-opal photonic crystals", Phys Rev (B), 62(3),2000, pp.1516-1519.
    [10]T. F. Krauss, R. M. De La Rue, and S. Brand, "Two-dimensional photonic- bandgap structures operating at near-infrared wavelengths", Nature, vol.383,1996, pp.699-702.
    [11]Gruning, U., et al., "Macroporous silicon with a complete two-dimensional photonic band gap centered at 5μm", Appl. Phys. Lett.68,1996, p.747.
    [12]K. Inoue, M. Wada, et al., "Near-infrared photonic band gap of two-dimensional triangular air-rod lattices as revealed by transmittance measurement", Phys. Rev. B 53,1996, pp.1010-1013.
    [13]Kee C S, Kim J E, Park H Y, "Absolute photonic band gap in a two-dimensional square lattice of square dielectric rods in air", Phys Rev E,56(6),1997, pp.6291-6293.
    [14]Shen L F, He S L, Xiao S S, "Large absolute band gaps in two-dimensional photonic crystals formed by large dielectric pixels", Phys Rev B,66(16),2002, pp.165315-1-165315-6.
    [15]Agio M, Andreani L C, "Complete photonic band gap in a two-dimensional chessboard lattice", Phys Rev B,61 (23),2000, pp.15519-15522.
    [16]李岩,郑瑞生,田进寿等,“一种类分形结构光子晶体的能带”,光子学报,33(10),2004,pp.1218-1221.
    [17]冯尚申,沈林放,何赛灵,“一种具有大带隙的各向异性二维光子晶体结构”,光子学报,32(2),2003,pp.235-238.
    [18]Nobuhiko Susa, "Large absolute and polarization-independent photonic band gaps for various lattice structures and rod shapes", JOURNAL OF APPLIED PHYSICS,91(6),2002, pp. 3501-3510. 在调整导模的形状,可以达到使其更加平坦的效果,这样对于高效光传输是一个有利的因素。
    本章通过平面波展开法中的超胞算法对光子晶体线缺陷波导结构的慢光特性进行了研究。当缺陷柱半径小于光子晶体介质柱半径时,随着缺陷柱半径的增加,导模中心频率向低频移动,群速度也越来越小;当增大介质柱的介电常数时,导模有相同的变化规律,针对这种现象,从介电函数在平面波展开法中的作用出发进行了探讨。然后研究了缺陷柱位置对导模慢光的影响,通过上下平移缺陷柱,得到具有更好线性的导模,此时群速度曲线相对平坦,色散值也更小。总的来说,缺陷柱的大小和介电常数的变化更多的是影响导模的慢光值,而缺陷柱位置的变化则能优化慢光的群速度色散特性。
    [1]Notomi M, Yamada K, Shinya A, et al., "Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs", Phys, Rev. Lett. Vol.87,2001, p.253902.
    [2]Vlasov Y A, Boyle M O, Hamann H F et al., "Active control of slow light on a chip with photonic crystal waveguides", Nature, Vol.438, No.3,2005, pp.65-69.
    [3]Gersen H, Karle T J, Engelen R J, et al., "Real-space observation of ultraslow light in photonic crystal waveguides", Phys. Rev. Lett., Vol.94,2005, p.073903.
    [4]Povinelli M L, Johnson S G, JoannopoulosJ D, "Slow-light, band-edge waveguides for tunable time delays", Opt. Express. Vol.13,2005, pp.7145-7159.
    [5]Ku P C, Chang-Hasnain C J, and S.L. Chuang, "Variable semiconductor all-optical buffer", Electron Lett. Vol.38,2002, pp.1581-1583.
    [6]Alexander V U, Forrest G S, Chang-Hasnain C J, "Delay limit of slow light in semiconductor optical amplifiers", IEEE Photonic Tech L. Vol.18,2006, pp.731-733.
    [7]Tucker R S, Ku P C, Chang-hasnain C J, "Slow-light optical buffers:capabilities and fundamental limitations", J. Lightwave. Technol. Vol.23,2005, pp.4046-4066.
    [8]Tucker R S, Ku P C, Chang-Hasnain C J, "Delay-bandwidth product and storage density in slow-light optical buffers", Electron Lett., Vol.41,2005, pp.61-62.
    [9]Okawachi Y, Foster M A, Sharping Jay E, et al., "All-optical slow-light on a photonic chip", Opt. Express., Vol.14,2006, pp.2317-2322.
    [10]Soljacic M, Johnson S G, Fan S, et al., "Photonic-crystal slow-light enhancement of nonlinear phase sensitivity", J. Opt. Soc. Am. B., Vol.19,2002, pp.2052-2059.
    [11]Notomi M, Yamada K, Shinya A, et al., "Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs", Phys, Rev. Lett., Vol.87,2001, pp.253902.
    [12]Lenz G, Eggleton B J, Madsen C K, and Slusher R E, "Optical delay lines based on optical filters", IEEE J. Quantum Electron., Vol.31,2001, pp.50-52.
    [13]Mori D and Baba T, "Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide", Optics Express., Vol.14, No.23,2005, pp.9398-9408.
    [14]Baba T, Mori,D Inoshita K, "Light localization in line defect photonic crystal waveguides", IEEE J. Sel. Top. Quantum Electron. Vol.10,2004, pp.484-491.
    [15]Petrov A Y and Eich M, "Zero dispersion at small group velocities in photonic crystal waveguides", Appl. Phys. Lett., Vol.85,2004, pp.4866-4868.
    [16]Johnson S G, Villeneuve P R, Fan S H, et al., "Linear waveguides in photonic-crystal slabs", Phys. Rev. B., Vol.62, No.12,2000, pp.8212-8222.
    [17]Johnson S G, Fan S, Villeneuve P R, et al., "Guided modes in photonic crystal slabs", Phys. Rev. B., Vol.60, No.8,1999, pp.5751-5758.
    [18]T F Krauss, "Slow light in photonic crystal waveguides", J. Phys. D: Appl. Phys.40,2007, pp.2666-2670
    [19]Arnout Imhof, Willem L. Vos, Rudolf Sprik, et al., "Large Dispersive Effects near the Band Edges of Photonic Crystals", Phys. Rev. Lett.83,1999, pp.2942-2945
    [20]Johnson S G and Joannopoulos J D, "Block-interative frequency-domain methods for Maxwell's equations in a planewave basis", Optics Express., Vol.8, No.3,2001, pp.173-189.
    [21]Martin G, Hermann D, Hagmann F, et al., "Defect computations in photonic crystals: a solid state theoretical approach", Nanotechnology, Vol.14,2003, pp.177-183.
    [22]Shim J, Lee E K, Lee Y J, et al., "Density-function calculations of defect formation energies using the supercell method:Brillouin-zone sampling", Phys, Rev, B.,71,2005, p.245204.
    [23]Qiu M and He S L, "Numerical method for computing defect modes in two-dimensional photonic crystals with dielectric or metallic inclusions", Phy. Rev. B., Vol.19, No.61,2000, pp.12871-12872.
    [24]Yamada K, Morita H, Shinya A, et al., "Improved line-defect structures for photonic crystal waveguides with high gourp velocity", Opt. Commun. Vol.198,2001, pp.395-402.
    [25]Gersen H, Karle T J, Engelen R J, et al., "Real-space observation of ultraslow light in photonic crystal waveguides", Phys. Rev. Lett., Vol.94,2005, p.073903.
    [26]Frandsen L H, Lavrinenko A V, Fage-Pedersen J, et al., "Photonic crystal waveguides with semi-slow light and tailored dispersion properties", Optics Express., Vol.14, No.20,2006, pp. 9444-9450. 缓存中延迟时间T和缓存容量C是相互制约的,即腔间距的增大,一方面使得耦合系数增大,从而减小了群速度,另一方面却使得导模带宽变小且比特长度增加,从而减小了缓存容量。通过对情况B和E的计算,得出在慢光因子最小值处,可以在9.78cm的长度上实现1μs的延迟,延迟时间大约是类似文献[12]中结果的3倍,缓存容量达到3.3kbit。通过分析得出,对于CCW慢光结构,由于晶格常数相差不大,当微腔间距较小时,系统具有较小的比特长度,从而缓存容量较大,此时对于慢光缓存具有较大的应用价值;而当微腔间距较大时,系统具有较大的比特长度,此时虽然缓存容量较小,但同时却具有更小的慢光群速度,使得慢光时延较大,Q值也较大,这种结构更适合用于对光与物质之间作用时间要求较长的非线性效应中应用。
    [1]Yang T, Sugimoto Y, Lan S, et al., "Transmission properties of coupled-cavity waveguides based on two-dimensional photonic crystals with a triangular lattice of air holes", J. Opt. Soc. Am. B, Vol.20,2003, p.19221926.
    [2]Olivier S, Smith C J M, Rattier M, et al., "Miniband transmission in a photonic crystal coupled-resonator optical waveguide", Opt. Lett., Vol.26, No.13,2001, pp.1019-1021.
    [3]Tanabe T, Notomi M, Kuramochi E, et al., "Large pulse delay and small group velocity achieved using ultrahigh-Q photonic crystal nanocavities", Opt. Express.,15,2007, pp.7826-7838.
    [4]Ozbay E, Bayindir M, Bulu I, et al., "Investigation of localized coupled-cavity modes in two-dimensional photonic bandgap structures", IEEE J. Quantum Electronics, Vol.38, No.7, 2002, pp.837-843.
    [5]Sakai K, Miyai E and Noda S, "Two-dimensional coupled wave theory for square-lattice photonic-crystal lasers with TM-polarization", Opt. Express., Vol.15,2007, pp.3981-3990.
    [6]Peschel U, Reynolds A L, Arredondo B, et al., "Transmission and reflection analysis of functional coupled cavity components", IEEE J. Quantum Electron., Vol.38, No.7,2002, pp.830-836.
    [7]Waks E and Vuckovic J, "Coupled mode theory for photonic crystal cavity-waveguide interaction", Opt. Express., Vol.13,2005, pp.5064-5073.
    [8]Stefanou N and Modinos A, "Impurity bands in photonic insulators", Phys. Rev. B, Vol.57, No. 19,1998, pp.12127-12133.
    [9]Yariv A, Xu Y, Lee R K, et al., "Coupled-resonator optical waveguide:a proposal and analysis", Opt. Lett., Vol.24, No.11,1999, pp.711-713.
    [10]Poon J K S, Scheuer J, Xu Y, et al., "Designing coupled-resonator optical waveguide delay lines", J. Opt. Soc. Am. B, Vol.21,2004, pp.1665-1673.
    [11]Altuga H and Vuckovic J, "Two-dimensional coupled photonic crystal resonator arrays", Appl. Phys. Lett. Vol.84,2004, pp.161-163.
    [12]M Svaluto Moreolo, V Morra and G Cincotti, "Design of photonic crystal delay lines based on enhanced coupled-cavity waveguides", J. Opt. A: Pure Appl. Opt.10,064002 (2008).
    [13]A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, "Coupled-resonator optical waveguide: a proposal and analysis", Opt. Lett.24,711-713 (1999).
    [14]Kazuhiko Hosomi, Toshio Katsuyama, "A Dispersion Compensator Using Coupled Defects in a Photonic Crystal", IEEE J. Quantum Electron., Vol.38, No.7,2002, pp.825-829.
    由于光子晶体的微结构特性以及传输光为红外波段,光子晶体波导慢光的测试对实验条件的要求非常苛刻。本章结合测量光子晶体波导慢光的需求,首先对慢光实验平台的测试原理进行了分析,确认了通过测试光在光子晶体波导中相位变化来计算等效折射率变化的方法,并在此基础上设计了实验平台。然后对平台中所需相应器件的参数需求和设备选取进行了详细阐述,并确认了最终方案。然后用FIB方法进行了光子晶体样品制作,对新型PCW结构的透射功率进行测量,确认了其稳定性和可重复性,并分析了环境对结果的影响;然后主要针对W1光子晶体波导传输特性进行了实验测试,得出了对应的群折射率曲线,与仿真结果相比具有相同的变化趋势。最后通过时域测量光脉冲的方法证实了W1波导光脉冲较脊波导光脉冲具有时间延迟。本章确认并证实了一种测量光子晶体慢光的方法,为以后进行光子晶体慢光的研究提供了很好的基础。
    [1]J. Gomez Rivas, A. Farre Bent, J. Niehusmann, P. Haring Bolivar, and H. Kurz, "Time-resolved broadband analysis of slow-light propagation and superluminal transmission of electromagnetic waves in threedimensional photonic crystals," Phys. Rev. B 71,2005, pp.155110.
    [2]K. Inoue, N. Kawai, Y. Sugimoto, N. Carlsson, N. Ikeda, and K. Asakawa, "Observation of small group velocity in two-dimensional ALGaAs-based photonic crystal slabs," Phys. Rev. B 65,2002, pp.121308.
    [3]S. Inoue and Y. Aoyagi, "Design and fabrication of two-dimensional photonic crystals with predetermined nonlinear optical properties," Phys. Rev. Lett.94,2005, pp.103904.
    [4]H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Real-space observation of ultraslow light in photonic crystal waveguides," Phys. Rev. Lett.94,2005, pp.073903.
    [5]M. Galli, D. Bajoni, F. Marabelli, L. C. Andreani, L. Pavesi, and G. Pucker, "Photonic bands and groupvelocity dispersion in Si/SiO photonic crystals from white-light interferometry," Phys. Rev. B 69,2004, pp.115107.
    [6]T. Asano, K. Kiyota, D. Kumamoto, B.-S. Song, and S. Noda, "Time-domain measurement of picosecond light-pulse propagation in a two-dimensional photonic crystal-slab waveguide," Appl. Phys. Lett.84,2004, pp.4690-4692.
    [7]D. Coquilat, A. Ribayrol, R. M. De La Rue, M. Le Vassor D'Yerville, D. Cassagne, and J. P. Albert, "Observation of band structure and reduced group velocity in epitaxial GaN-sapphire 2D photonic crystals," Appl. Phys. B 73,2001, pp.591-593.
    [8]A. Yu. Petrov, and M. Eich, "Zero dispersion at small group velocities in photonic crystal waveguides," Appl. Phys. Lett.85,2002, pp.4866-4868.
    [9]M. C. Netti, C. F. Finlayson, J. J. Baumberg, M. D. B. Charlton, M. E. Zoorob, J. S. Wilkinson, and G. J. Parker, "Separation of photonic crystal waveguides modes using femtosecond time-of-flight," Appl. Phys. Lett.81,2002, pp.3927-3931.
    [10]V. Kimberg, F. Gel'mukhanov, and H. Agren, "Angular anisotropy of the delay time of short pulses in impurity band based photonic crystals," J. Opt. A: Pure Appl. Opt.7,2005, pp.118-122.
    [11]Yu. A. Vlasov, S. Petit, G. Klein, B. Honerlage, and Ch. Hirlimann, "Femtosecond measurements of the time of flight of photons in a three-dimensional photonic crystals," Phys. Rev. E 60,1999, pp.1030-1035.
    [12]J. Nakagawa, H. Kitano, F. Minami, T. Sawada, S. Yamaguchi, and K. Ohtaka, "Large pulse distortion in a 3D photonic crystal," J. Lumin.108,2004, pp.255-258.
    [13]M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H.-. Ryu, "Waveguides, resonators and their coupled elements in photonic crystal slabs," Opt. Express 12,2004, pp.1551-1561.
    [14]X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romero, P. Viktorovich, M. Le Vassor d'Yerville, D. Cassagne. And C. Jouanin, "Group velocity and propagation losses measurements in a single-line photonic-crystal waveguide on InP membranes," Appl. Phys. Lett.79,2001, pp.2312-2314.
    [15]H. Gersen, D. J. W. Klunder, J. P. Korterik, A. Driessen, N. F. van Hulst, and L. Kuipers, "Propagation of a femtosecond pulse in a microresonator visualized in time," Opt. Lett.29,2004, pp.1291-1293.
    [16]Rune S. Jacobsen, Andrei V. Lavrinenko, Lars H. Frandsen, Christophe Peucheret, Beata Zsigri, Gaid Moulin, Jacob Fage-Pedersen, and Peter I. Borel, "Direct experimental and numerical determination of extremely high group indices in photonic crystal waveguides," Opt. Express 13, 2005, pp.7861-7871.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700