用户名: 密码: 验证码:
MEMS微结构平面运动测量方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微机电系统(MEMS)由微电子和机械元件组成,其运动特性测试是MEMS设计、仿真、制造及产品质量控制和性能评价的关键环节,平面运动测试是MEMS微结构运动特性测试的重要组成部分。提高平面运动测试的精度是MEMS三维运动特性精确表征的前提,对于材料特性和机械力学参数的精确测量具有重要意义。论文基于计算机视觉技术对提高MEMS平面运动测量分辨力的方法展开研究。研究内容主要包括:
     1.在系统分析国内外MEMS平面运动特性测试技术的研究现状、应用领域和发展趋势的基础上,提出MEMS刚性平移、旋转角度和区域变形的测量方法,实现运动幅度、旋转角度测量以及区域变形信息的提取。
     2.提出一种综合了模糊集图像增强技术、分形插值和小波变换的边缘检测方法。在连续光照明条件下,实现MEMS平面运动幅值的亚像素分辨力测量。通过分形插值技术重建运动模糊图像的边缘细节,应用小波变换的边缘检测方法测量MEMS微结构运动幅值,提高测量重复性。
     3.将块匹配最优根值法和相位相关拟合法应用于MEMS平面刚性位移测量,对MEMS平面运动的时域和频域测量方法的实现进行了分析。利用灰度补偿减少块匹配算法对由于灰度变化所引起的误差,通过误差补偿减小相关拟合算法的测量误差。
     4.依据刚体运动质心不变的原理,提出一种采用图像孤立特征结构的质心连线旋转角度来表征图像旋转角度的方法,并将此方法应用到MEMS的旋转角度测试中,提高旋转角度测量分辨力。
     5.在相关拟合方法的基础上,结合Newton-Raphson迭代法的算法,实现区域变形信息的提取。通过对Newton-Raphson迭代初始值的改进,提高算法的收敛速度和精度,实现对MEMS区域变形信息提取。
     6.提出一种基于显微相移干涉图像序列解析的亮场图像重建方法,该方法利用多项式拟合消除灰度误差,通过图像叠加实现干涉条件下MEMS平面运动的测量。
Micro-Electro Mechanical System (MEMS) is composed of electric and machine components. Testing technique becomes the important procession of MEMS design, simulation, production, quality control and performance estimation. In-plane motion test is the most important port of MEMS motion test. High resolving power of in-plane motion test is the foundation of MEMS three-dimensional motion measurement, and is significant to material characteristic and mechenics parameter measurement. This dissertation researches on in-plane micro-motion measurement with nanometer resolution for MEMS based on compute vision technology. The research’s main work is as following:
     1. Domestic/foreign in-plane dynamic testing techniques of MEMS are systematically investigated and analyzed in the application field, current status and development trends of Micro- electro mechanical system. MEMS in-plane dynamic testing method is set up which combined rigid displacement test, local deformation measurement and rotation meterage technique.
     2. MEMS motion edge detection algorithm is brought forward, combined with blur image enhance, fractal interpolation and wavelet expectation sub-pixel location technique. Extracting MEMS max motion scope accurately is realized through it. In the condition of continue lighting, MEMS in-plane motion range are obtained using the algorithm based on blur image. With fractal interpolation method, the edge of blur image is reconstructed. The accurate edge is detected by wavelet transformation technology. The measurement repetition is improved.
     3. MEMS two-dimension rigid motion estimation algorithm is brought forward based on two algorithms of block matching Ultimate-root and phase correlation surface fitting sub-pixel resolving power technique. Estimating MEMS in-plane motion quickly and accurately is realized through time space and frequency space measurement algorithms analysis. The error caused by variant illumination is reduced.
     4. According to the theory of invariability of center of mass of a fixed region, an improved rotation measurement method is demonstrated with better calculation precision. Given the insulation structures of MEMS which are left behind fabrication, we get several regions which have unattached object and smooth background. The rotate angel can be obtained with high resolution by observing the changes about center of mass of given regions.
     5. On the base of the surface fitting sub-pixel location technique and the Newton-Raphson iterative method, extraction of the MEMS deformation information is proposed. Take deep research on the initial-value problem in correlation calculation. The displacement calculated from phase correlation and digital differential coefficients are combined as the initial value of Newton-Raphson iterative method. The convergence speed and the precision are improved greatly.
     6. A new method is proposed to extract complex micro-structure three-dimensional information from sequence interferogram based on phase-shifting microscopic interferometry and growth algorithm to measure of. It can extract the bright image from a sequence of interference image. With the block match and phase correlation algorithum, in-plane motion character can be acquired.
引文
[1] 周兆英,王小浩,叶雄英,等,微型机电系统,中国机械工程,2000,11(1-2):163~168
    [2] 李炳乾,朱长纯,刘君华,微电子机械系统的研究进展,国外电子元器件,2001,1:4~8
    [3] 莫锦秋,梁庆华,汪国宝等,微机电系统设计与制造,北京:化学工业出版社,2004
    [4] 王立鼎,刘冲,微机电系统科学与技术发展趋势,大连理工大学学报,2000,40(5):505~508
    [5] 丁衡高,微系统与微米/纳米技术及其发展,微米/纳米科学与技术,2000,5(1):1~6
    [6] Isao Shimo Yama et al. Strategy Towards Fusion of Nano and Mciro Systems, The 8th International Micromachine / Nanotech Symposium, Tokyo, Noember 14, 2002
    [7] 李志信,罗小兵,过增元,MEMS 技术的现状及发展趋势,传感器技术,2001,20(9):58~60
    [8] R P Feynman, There’s plenty of room at the bottom, J. Microelectromech. Syst., 1992, 1(1): 60-66
    [9] David S E, Douglas R S. Application of MEMS technology in automotive sensors and actuators. Proceeding of the IEEE, 1988, 86 (8): 1747~1755
    [10] Lang Walter. Reflexions on the future of microsystem. Sensors and Actuators A, 1999, 72: 1~15
    [11] Z H Ding, G Y Wang, Z J Wang, Microscopic interferometer for surface roughness measurement, Opt. Eng., 1996, 35(10): 2956-2961
    [12] A Harasaki, J Schmit, J C Wyant, Improved vertical-scanning interferometry, Appl. Opt., 2000, 39(13): 2107-2115
    [13] F M Serry, M L Osborn, T Ballinger, et al, 3D MEMS metrology with the stylus profiler and the atomic force profiler, Veeco Instruments Inc.
    [14] F M Serry, T A Stout, M J Zecchino, et al, 3D MEMS metrology with optical profilers, Veeco Instruments Inc.
    [15] D Grigg, E Felkel, J Roth, et al, Static and dynamic characterization of MEMS and MOEMS devices using optical interference microscopy, Proc. SPIE, 2004, 5455: 429-435
    [16] W W Wang, R M LIN, Z Wang, Image measurement of geometrical size for three-dimensional microstructure of MEMS, J. Micromech. Microeng., 2003, 13: 300-306
    [17] J W G Tyrrell, C D Savio, R Kruger-sehm, et al, Development of a combined interference microscope objective and scanning probe microscope, Rev. Sci. Instr., 2004, 75(4): 1120-1126
    [18] J Degrieck, W Van Paepegem, P Boone, Application of digital phase-shifting shadowMoiré to micro deformation measurements of curved surface, Optics and Lasers in Engineering, 2001, 36: 29-40
    [19] S Wolfing, D Banitt, N Ben-Yosef, et al, Innovative metrology method for the 3D measurement of MEMS structures, Proc. SPIE, 2004, 5343: 255-263
    [20] R Windecker, S Franz, H J Tiziani, High-speed optical 3D roughness measurements, Proc. SPIE, 1999, 3824: 105-114
    [21] M Adachi, K Ueda, High-speed precision surface profilometry using large phase shifting, Proc. SPIE, 2003, 5264: 322-331
    [22] M Hart, D G Vass, M L Begbie, Fast surface profiling by spectral analysis of white-light interferograms with Fourier transform spectroscopy, Appl. Opt., 1998, 37(10): 1765-1769
    [23] N Metchkarov, V Sainov, P Boone, High-accuracy surface measurement using laser-diode phase-stepping interferometry, Vacuum, 2000, 58: 465-469
    [24] C Saxer, K Ferischlad, Interference microscope for sub-Angstrom surface roughness measurements, Proc. SPIE, 2003, 5144: 37-45
    [25] S H Wang, C J Tay, C Quan, et al, Determination of deflection and Young's modulus of a micro-beam by means of interferometry, Meas. Sci. Technol., 2001, 12: 1279-1286
    [26] S H Wang, C Quan, C J Tay, et al, Deformation measurement of MEMS components using optical interferometry, Meas. Sci. Technol., 2003, 14: 909-915
    [27] H D Espinosa, B C Prorok, M Fischer, A methodology for determining mechanical properties of freestanding thin films and MEMS materials, Journal of the Mechanics and Physics of Solids, 2003, 51: 47-67
    [28] M W Denhoff, A measurement of Young’s modulus and residual stress in MEMS bridges using a surface profiler, J. Micromech. Microeng., 2003, 13: 686-692
    [29] L A Starman Jr, J A Lott, M S Amer, et al, Stress characterization of MEMS microbridges by micro-Raman spectroscopy, Sensors and Actuators A, 2003, 104: 107-116
    [30] D T Read, Young's modulus of thin films by speckle interferometry, Meas. Sci. Technol., 1998, 9: 676-685
    [31] Taechung Yi, Lu Li, Chang-Jin Kim, Microscale material testing of single crystalline silicon: process effects on surface morphology and tensile strength. Sensors and Actuators, 2000:172~178
    [32] W Osten, S Seebacher, W Jüpner, The application of digital holography for the inspection of microcomponents, Proc. SPIE, 2001, 4400: 1-15
    [33] W Osten, W Jüpner, S Seebacher, et al, The qualification of optical measurement techniques for the investigation of material parameters of microcomponents, Proc. SPIE, 1999, 3825: 152-163
    [34] www.mdl.sandia.gov/micromachine/
    [35] D J Burns, H F Helbig, A system for automatic electrical and optical characterization of microelectromechanical devices, J. Microelectromech. Syst., 1999, 8(4): 473-482
    [36] L Salbut, K Patorski, M Jozwik, et al, Active microelement testing by interferometryusing time-average and quasi-stroboscopic techniques, Proc. SPIE, 2003, 5145: 23-32
    [37] S Petitgrand, R Yahiaoui, A Bsseboeuf, et al, Quantitative time-averaged microscopic interferometry for micromechanical device vibration mode characterization, Proc. SPIE, 2001, 4400: 51-60
    [38] C. Q. Davis and D. M. Freeman, Using a light microscope to measure motions with nanometer accuracy, Optical Engineering, 1998, vol.37:1299-1304
    [39] S. Kurth, Interference Microscopic Techniques for Dynamic Testing of MEMS, Annual Research Report 2002, Chemnitz University of Technology, Germany
    [40] D. M. Freeman, A. J. Aranyosi, M. J. Gordon and S. S. Hong, Multidimensional motion analysis of MEMS using computer microvision, Hilton Head, SC, Dig. Solid State Sensor & Actuator Workshop, 1998:150~155
    [41] C Rembe, R S Muller, Measurement system for full three-dimensional motion characterization of MEMS, J. Microelectromech. Syst., 2002, 11(5): 479-488
    [42] C Rembe, L Muller, R S Muller, et al, Full three-dimensional motion characterization of a gimballed electrostatic microactuator, IEEE, 2001, 91-98
    [43] M R Hart, R A Conant, K Y Lau, et al, Stroboscopic interferometer system for dynamic MEMS characterization, J. Microelectromech. Syst., 2000, 9(4): 409-418
    [44] M Hart, R A Conant, K Y Lau, et al, Time-resolved measurement of optical MEMS using stroboscopic interferometry, Proc. Transducers’99, Sendai, Japan, 1999, 470-473
    [45] S Petitgrand, R Yahiaoui, K Danaie, et al, 3D measurement of micromechanical devices vibration mode shapes by stroboscopic microscopic interferometry, Optics and Lasers in Engineering, 2001, 36: 77-101
    [46] A Bosseboeuf, P Nerin, P Vabre, et al, 3D Full field dynamical characterization of micromechanical devices by stroboscopic white light scanning interferometry, Proc. SPIE, 2001, 4400: 36-42
    [47] A Hafiane, S Petitgrand, O Gigan, Study of subpixel image processing algorithms for MEMS in-plane vibration measurements by stroboscopic microscopy, Proc. SPIE, 2003, 5415: 169-179
    [48] A Bosseboeuf, J P Gilles, K Danaie, et al, A Versatile microscopic profilometer-vibrometer for static and dynamic characterization of micromechanical devices, Proc. SPIE, 3825: 123-133
    [49] A Bosseboeuf, S Petitgrand, Application of microscopic interferometry techniques in the MEMS field, Proc. SPIE, 2003, 5145: 1-16
    [50] S Petitgrand, A Bosseboeuf, Simultaneous mapping of phase and amplitude of MEMS vibrations by microscopic interferometry with stroboscopic illumination, Proc. SPIE, 2003, 5145: 33-44
    [51] S Kurth, Interference microscopic techniques for dynamic testing of MEMS, Annual Research Report, Chemnitz University of Technology, Germany, 2002
    [52] P Aswendt, C D Schnidt, D Zielke, et al, ESPI solution for non-contacting MEMS-on-wafer testing, Optics and Lasers in Engineering, 2003, 40: 501-515
    [53] P Aswendt, Claus-Dieter Schmidt, Dirk Zielke, HNDT solution for MEMS testing on wafer level, The 4th International Workshop on Automatic Processing of Fringe Patterns, Bremen, Germany, 2001
    [54] P Aswendt, R Hofling, K Hiller, Testing microcomponent by speckle interferometry, Proc. SPIE, 1999, 3825: 165-173
    [55] P Aswendt, C D Schmidt, D Zielke, et al, Inspection system for MEMS characterization on wafer level using ESPI, Proc. SPIE, 2001, 4400:43-50
    [56] P Aswendt, Micromotion analysis by deep-UV speckle interferometry, Proc. SPIE, 2003, 5145: 17-22
    [57] 孙长库,叶声华,激光测量技术,天津:天津大学出版社,2001
    [58] K E Speller, H Goldberg, J Gannon, et al, Unique MEMS characterization solutions enabled by laser Doppler vibrometer measurements, Proc. SPIE, 2002, 4827: 478-485
    [59] C Rembe, R Kant, R S Muller, Optical Measurement Methods to Study Dynamic Behavior in MEMS, Proc. SPIE, 2001, 4400: 127-137
    [60] www.polytec.de
    [61] A Bosseboeuf, S Petitgrand, Characterization of the static and dynamic behaviour of M(O)EMS by Optical Techniques, J. Micromech. Microeng., 2003, 13: 23-33
    [62] E M Lawrence, K E Speller, Duli Yu, Laser Doppler Vibrometry for optical MEMS, Proceedings of the 5th International Conference on Vibration Measurements by Laser Techniques, Ancona, Italy, 2002
    [63] E M Lawrence, C Rembe, MEMS characterization using new hybrid laser Doppler vibrometer strobe video system, Proc. SPIE, 2004, 5343: 45-54
    [64] S. Donati, M. Norgia, V. Annovazzi Lodi, S.Merlo, Measurement of MEMS Mechanical Parameters by Injection Interferometry, Proceedings of International Conference on Optical MEMS, 21-24 August 2000, Sheraton Kauai, USA, pp.89-90
    [65] S. Donati, G. Giuliani, and S. Merlo, Laser Diode Feedback Interferometer for Measurement of Displacement without Ambiguity, IEEE J. Quantum Electron, Vol. 31, pp. 113–119, 1995
    [66] S. Donati and S. Merlo, Applications of Diode Laser Feedback Interferometry, J. Optics, Vol. 29, pp. 156–161, 1998
    [67] S. Donati, S. Merlo, and F. Micolano, Feedback Interferometry with Semiconductor Laser for High Resolution Displacement Sensing, Proceedings of Micro-Optical Technologies for Measurement Sensors and Microsystems, Vol. 2783, SPIE Europe Series, 1996, pp. 203–210
    [68] S. S. Donati and G. Giuliani, Analysis of the Signal Amplitude Regimes in Injection-detection using Laser Diodes, SPIE Proc., Vol. 3944, 2000, pp. 639–644
    [69] Valerio Annovazzi-Lodi, Sabina Merlo and Michele Norgia, Comparison of Capacitive and Feedback-interferometric Measurements on MEMS, Journal of Microelectro mechanical System, Vol. 10, No.3, 2001
    [70] M Kujawinska, Modern optical measurement station for micro-materials andmicro-elements studies, Sensors and Actuators A, 2002, 99: 145-153
    [71] www.etec-inc.com
    [72] www.intersci.com
    [73] www.veeco.com
    [74] www.umech.com
    [75] 王琪民,单保祥,连东侠等,微电子机械系统中构件的基本力学量检测,实验力学,1997,12(4):487-499
    [76] 张泰华,杨业敏,赵亚溥等,MEMS 材料力学性能的测试技术,力学进展,2002,32(4):545-562
    [77] 何小元,康新,衡伟等,微电子与微电子机械系统(MEMS)中的现代光学测试技术,机械强度,2001,23(4):447-451
    [78] 朱俊华,叶雄英,何日辉等,复合膜机械特性的片上测量,中国机械工程,2002,13(11):987-989
    [79] 姜岩峰,黄庆安,MEMS 领域中微结构机械参数在线测量方法的研究和进展,微纳电子技术,2003,4:35-39
    [80] 李代林,王向朝,王学锋等,复合光源实时微振动干涉测量仪,中国激光,2004,31(3):350-353
    [81] 赵登峰,夏季,垂直主振系冲击消振系统的简谐激励响应分析,振动与冲击,2004.23(1):84—86
    [82] Halliwell N A, Hocknell A, Rothberg S J, On the measurement of angular vibration displacements:a laser tiltmeter, Journal of Sound and Vibration, 1997, 208(3):497~500
    [83] Wong W O, Chan K T, Quantitative vibration amplitude measurement with time-averaged digital speckle pattern in terferometry, Optics and Laser Technology,1998, 30(5):3l7~ 324
    [84] 白顺科,汪凤泉,振幅测量的平均成像法,工程力学,1999, l6(6): l07~ ll2
    [85] 奚定平,坝塞尔函数, 1998,6(1):181—184
    [86] 郭桂容, 模糊模式识别, 长沙: 国防科技大学出版社, 1993.
    [87] 郭宗祥,模糊信息处理基础, 成都: 成都电讯工程学院出版社,1989.
    [88] Pal S K, King R A, On edge detection of X2ray images using fuzzy sets, IEEE Transaction Pattern Analysis And Machine Intel. 1983, 5 (1) : 69~ 77.
    [89] 马颂德、张正友,计算机视觉—计算理论与算法基础,科学出版社,1998 年
    [90] 沈庭芝,数字图像处理及模式识别,北京理工大学出版社,1998:34~49
    [91] 夏德深,现代图像处理技术与应用,高等教育出版社,1997:41~60
    [92] 贾云得,机器视觉,北京:科学出版社,2000:226~250
    [93] 章毓晋,图像处理和分析基础,高等教育出版社,2002:181~186
    [94] 刘文耀,光电图像处理,北京:电子工业出版社,2002:416~440
    [95] 胡昌华,张军波,夏军等,基于 MATLAB 的系统分析与设计—小波分析,西安电子科技大学出版社,2001:235~250
    [96] 王晓丹,吴崇明,基于 MATLAB 的系统分析与设计—图像处理,西安电子科技大学出版社,2001:121~149
    [97] 徐飞,施晓红,MATLAB 应用图像处理,西安电子科技大学出版社,2001:140~163
    [98] Yu2Shan L I, Tzay Y. Yong, Subpixel Edge Detection and Estimation with a Microprocessor- Controlled Line Scan Camera. IEEE Transaction on Industrial Electronics,1988, 35 (1) : 105~ 112.
    [99] 李艳, 彭嘉雄, 基于 D2 样条插值的 LOG 算子的亚像素边缘检测,华中理工大学学报, 2000, 28 (3) : 77~ 79
    [100] 张之江, 车仁生, 黄庆成, 林伟国,测头成像视觉坐标测量系统中特征点成像中心获取, 光学精密工程, 1998, 6 (5) :12~ 18
    [101] Ghosals, Mehrotra R. Orthogonal Moment operators for sub pixel edge detection, Pattern Recognition. 1993, 26(2) : 295~ 306
    [102] 孔丹, 李介谷,基于空间矩的灰度边缘亚像元度量精度分析,红外与激光工程,1998, 28 (2) : 6~ 10.
    [103] 王建民,浦昭邦,刘国栋,提高图像测量系统精度的细分算法的研究,光学精密工程,1998,6 (4) :44~ 50
    [104] Lyvers Edward P, Mitchell Owen Robert. Subpixel Measurements Using a Moment Based Edge Operator, IEEE Transaction Pattern Analysis and Machine Intelligence, 1989, 11 (12): 1293~ 1307
    [105] Mandelbrot B B. The Fractal Geometry of Nature [M]. San Francisco : Freeman , 1982
    [106] Pentland A P. Fractal-based description of nature scenes [J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 1984 , 6 (6) : 661~674
    [107] 贺忠海,王宝光,廖怡白,理想边缘产生方法的研究,光学精密工程,2002,vol.10(1):89~93
    [108] Christian Rembe and Richard S. Muller, Measurement System for Full Three-Dimensional Motion Characterization of MEMS, Journal of Microelectromechanical System, Vol. 11, No.5, October 2002
    [109] Matthew R. Hart, Robert A. Conant, Kam Y. Lau, and Richard S. Muller, Stroboscopic Interferometer System for Dynamic MEMS Characterization, Journal of Microelectromechanical System, 2000, Vol.9, pp.409~418
    [110] 胡春光,利用相移显微干涉术和频闪成像技术研究 MEMS 离面运动:[硕士学位论文],天津:天津大学,2004
    [111] A.MURAT TEKALP 著,江春,陈丽鑫译,数字视频处理,北京:电子工业出版社,1998:68~104
    [112] 肖德贵,余胜生,周敬利,快速而有效的块运动估计算法,Vol.38(6),2001:680~683
    [113] 王明辉,彭立中,一种新的快速块匹配运动估计算法,Vol.37(3),北京大学学报,2001:315~322
    [114] 李波,涂亚明,基于自适应搜索的快速运动估计算法,Vol.27(4),北京航空航天大学学报,2001:373~376
    [115] 王辉柏,张春田,极低码率视频编码中块自适应分割运动估值,中国图像图形学报,1998,3(6):
    [116] S.D.Conte, C.De Boor, Elementary Numerical Analysis—An Algorithmic Approach, McGraw-Hill, New York, 1980
    [117] S.R. Russel, M.A. Sutton, Image correlation quantitative NDE of impact and fabrication damage in a glass fiber reinforced composite system, J. Mater. Eval., 1989, 47(5), 550-558
    [118] H.A. Bruck, S.R. Mcneill, et al., Digital image correlation using Newton-raphason method of partial differential correlation, Exp. Mech., 1989, 29(3), 261-267
    [119] Li Hua, Statistical analysis of the random error in mearsurements obtained using digital speckle correlation of speckle patterns, Proc. Of the 1993 SEMSpring Con. On Exp. Mech., Dearborn, Michigan, June 1993, P930
    [120] Li Hua, Application of method of digital correlation of speckle patterns to strain mearment on bottoms of notches, Proc. of con. On Advanced Technoligy in Exp. Mech., kanazawa, Japan, P.239, July, 1993
    [121] G. Vendroux, W.G. Knauss, Submicron deformation field measurements: Parts 2. Improved Digital Image Correlation, Exp. Mech., 38(2), 86-91, 1998
    [122] B.S. Smith, Error Assessment for strain mapping by digital image correlation, Experimental Techniques 19-21,1998
    [123] M.A. Sutton, et al., Determination of elastic-plastic stresses and strains from measured surface strain data, Exp. Mech., 1996, 36(2), 99-112
    [124] J.S. Lyons, et al., High-temperature deformation measurements using digital-image correlation, Exp. Mech., 1996, 36(1), 65-70
    [125] S.R.Mcneill, M.A. Sutton, et al., Measurement od surface profile using digital image correlation, Exp. Mech., 1997, 37(1), 13-20
    [126] H. Lu, G. Vendroux and W.G. Knauss, Surface deformation measurements of a cylindrical specimen by digital image correlation, Exp. Mech., 1997, 37(4), 433-439
    [127] Rand James L., Grant Debora A., Optical measurement of biaxial strain in ehin film polymers, ASTM Special Technical Publication, 1997, 1318(8): 123-137
    [128] Chevalier, Calloch S., Hild F., Digital image correlation used to analyze the multiaxial behavior of rubber-like materials, European Journal of Mechanics, A. Solids, 2001, 20(2):169-187
    [129] 刘宝琛,李勇,韧性金属裂纹尖端损伤区内应变场测量,实验力学,1993,8(1),11-16
    [130] 芮嘉白,金观昌,徐秉业,一种新的数字散斑相关方法及其应用,力学学报,Vol.26,No.5,1994,599-607
    [131] 高建新,丁祖泉,方如华,基于数字相关的多用途力学测量系统,第八届全国实验力学学术会议论文集,1995,546-549
    [132] 徐铸,电子显微镜图像位移分析法,第八届全国实验力学学术会议论文集,1995,550-553
    [133] 洪宝林,徐铸等,数字散斑相关方法的数字模型及研究,第八届全国实验力学学术会议论文集,1995,555-557
    [134] 陆惠峰,杨汉国,徐铸等,电子显微图像法测定金属表面二维细观位移场的方法研究,第八届全国实验力学学术会议论文集,1995,558-561
    [135] 白顺科,徐铸,图像位移场分析的变分法,第八届全国实验力学学术会议论文集,1995,562-565
    [136] 杨晓东,杨汉国,徐铸等,用数字散斑相关法测量细观裂纹尖端位移场,第八届全国实验力学学术会议论文集,1995, 566-569
    [137] 王宜庚,杨汉国,徐铸等,细观表面离面位移场测量方法的研究,第八届全国实验力学学术会议论文集,1995, 570-573
    [138] 徐宁光,陆惠峰,微区位移场的 SEM 散斑测量方法研究,西南交通大学学报,1995, 30(4),423-428
    [139] 马少鹏,金观昌,潘一山,白光 DSCM 方法用于岩石变形观测的研究,实验力学,2002,Vol.17,10-16
    [140] 樊雪松,李鸿琦等,一种新的数字散斑搜索方法及其精度分析,机床与液压, No.7,2004,35-37
    [141] 杨凌云,郭勇,王振林,结构变形实测的 DSCM 测量系统开发与应用,计算及时代,2006,Vol.2, 38-40
    [142] Barron J L,Fleet D J.Systems and experiment performance of optical flow techniques[J].International Journal of Computer Vision,1994,12(1).43-77
    [143] 陈邦忠,涂建平,王秀坛等,基于梯度的光流计算方法中梯度计算对性能的影响,[J].计算机工程与应用,2003,(2):75-77
    [144] Horn B K P.Schunck B G.Determining optical flow[J].Artificial Intelligence,1981,17:185-203
    [145] 崔屹.数字图像处理[M].北京:电子工业出版社,1997
    [146] 潘兵,续伯钦,李克景,梯度算子选择对基于梯度的亚像素位移算法的影响,光学技术,Vol.31,No.1,2005,26-31
    [147] 王志,数字图像相关技术的研究及其在断裂力学中的应用:[硕士学位论文],天津;天津大学,2001
    [148] 李岳生,齐东旭,样条函数方法,科学出版社,1979
    [149] 刘效尧,样条函数与结构力学,人民交通出版社,1990
    [150] 邓乃扬,无约束最优化计算方法,北京科学出版社,1982
    [151] 袁亚湘,孙文瑜,最优化理论与方法,科学出版社,1997
    [152] 李喜德,谭玉山,散斑像的恢复与亚像素相关检测,第七届全国实验力学学术会议论文集,1992,615-622
    [153] Loh Kok Heng, Er Meng Hwa, Hui Siew Kok, High accuracy registration of translated and rotated images using hierarchical method, IEEE, 2000
    [154] Hiroyuki Onishi, Hisashi Suzuki, Detection of rotation and parallel translation using Hough and Fourier transforms, IEEE Inter. Conf. Image processing,1996,pp827-830
    [155] 李中科,杨晓辉,针对旋转和平移运动的一种图像配准方法,应用科学学报,2005
    [156] 杨向结,林柏森,图像测量中提高角度精度的一种算法,兵工自动化
    [157] 陈建平,邱力为,基于像素组合的快速哈夫变换,计算机工程与应用,2005
    [158] 金翠云,MEMS 平面微运动测量的若干技术研究:[博士学位论文],天津;天津大学,2004
    [159] 勒中鑫,数字图像信息处理,国防人民出版社,2003.166~168
    [160] 丁慧珍,抗任意角度旋转灰度图像匹配方法研究:[硕士学位论文],南京;河海大学,2006
    [161] 陈建平,邱力为,基于像素组合的快速哈夫变换,计算机工程与应用,2005
    [162] 鲁昌华,韩静,基于 Hough 变换的角度检测和特征识别,电子测量与仪器学报,2005
    [163] 章毓晋,图像工程图像处理,清华大学出版社,2006.140~154
    [164] 梁勇,面向图像测量的边缘检测算法及哈夫变换应用研究:[硕士学位论文],大连;大连理工大学,2003
    [165] 温学恒,温景阳,二值目标图像质心的计算,长春光学精密机械学院学报,第 20卷第 3 期,1997 年 9 月,25-28
    [166] 张伟,吴刚,基于不变矩特征匹配的目标定位方法的实现,光学技术,第 31 卷第3 期,2005 年 5 月
    [167] 何宁,图像匹配问题中关键技术研究:[硕士学位论文],陕西,西北大学,2003
    [168] 杨振亚,王勇,LoG 算子边缘检测方法的改进方案,计算子应用与软件,2004,第 21 卷第 9 期:87~90
    [169] Eric M. Lawrence and Christian Rembe, MEMS Characterization using New Hybrid Laser Doppler Vibrometer / Strobe Video System, Proc. SPIE, 2004, Vol.5343:45-54
    [170] J S Harris, R L Fusek, J S Marcheski, Stroboscopic interferometer, Appl. Opt., 1979, 18(14): 2368-2371
    [171] 廖士中,高培焕,苏艺,王大鹏,一种光学镜头摄像机图像几何畸变的修正方法,中国图像图形学报,Vol5( A),No.7,Ju ly2 000;59359
    [172] Tsai R. An efficient and accurate camera calibration technique for 3D machine vision. In: Proc IEEE conference on Computer Vision and Pattern Recognition, Miami Beach,Florida,1 986.346-37
    [173] Edward P Lyvers, Owen Robert Mitchell1. Subpixel Measurements Using a Moment-Based Edge Operator. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989 ,11 (12) :1293 - 1307.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700