用户名: 密码: 验证码:
可移动终端的多天线系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着无线通信技术的不断发展,系统对传输速率和可靠性的要求越来越高,多输入多输出(MIMO)系统的研究已经成为近年来非常热门的领域。多输入多输出技术是通过在发射端和接收端引入多天线,在不需要额外的频带和发射功率的情况下,增加系统的信道容量,降低误码率。然而,随着终端设备尺寸的不断缩小,可放置天线的空间非常有限,多天线之间的互相耦合成为多天线系统设计中面临的严峻问题。本论文的目标是针对不同情况下的多天线终端,提出有效的解耦合方案以及单天线的优化技术,为多输入多输出系统提供小型化、低耦合和高性能的多天线设计方案。同时,本论文还提出了一种估算有损天线相关性系数的方法,大大简化了对于多输入多输出天线的测量过程,降低了成本。
     本文首先介绍了无线通信领域对于多输入多输出系统的应用需求及其基本原理。其次阐述了多天线系统的相关理论,包括空间复用,分集和波束形成三种应用方式,并详细讨论了影响多天线系统性能的关键因素以及评价多天线系统系能的重要参数,为后续的多天线系统设计提供了基础。为了降低多天线之间的耦合,针对普通地板(ground plane)上的多天线,本文提出了三种不同的解耦合方式,包括缺陷地结构解耦合多天线、电流集中化低耦合多天线、以及极化分集低耦合共位多天线。针对这些解耦合方式,详细介绍其工作机理以及具体天线系统的设计实例和步骤,同时对它们的优缺点以及应用方式进行了比较。这些方法可以有效的应用在大多数终端天线上,至少可以使隔离增强6dB。
     在某些特殊情况下,尤其是频带低于1GHz时,终端设备的基板本身也会像天线一样辐射,这使得天线之间的解耦合设计变得异常复杂。为了解决这个问题,本文利用特征模分析法,对基板的辐射模式特征进行了分析。针对分析结果,本文提出了两种不同的解决方案,即优化天线位置分布以及利用磁天线激发正交的辐射模式。这些方法可以广泛地应用在移动电话的LTE700以及GSM1900频段上,极大增强系统的分集性能和信道容量。
     要想设计一个高性能、小型化的多天线系统,除了降低天线的耦合,单个天线自身的性能也非常重要。本文针对天线的小型化,提出了一种基于分形结构改进的双频天线。为了弥补小型化天线的带宽缺陷,本文还利用槽天线设计了频率可重构天线,极大的增加了天线的工作带宽。这些单天线结构都可以灵活的应用在多天线系统中,使得多天线系统更加紧凑和有效。
     评价一个多天线系统,相关性系数是一个至关重要的参数,然而,利用传统方法测量多天线间的相关性系数时需要三维电场方向图的信息,包括相位信息和极化信息。而这需要特殊的测试设备,测试过程也非常耗时。本论文提出了一种基于等效电路的简化方法,来估算天线间的相关性系数,它可以应用于不同类型的天线,并得到非常可观的精确度。
     综上,本论文主要针对小型移动终端的多输入多输出系统,提出了小型化方法,解耦和方法以及相应的测试方法,为移动终端的发展提出了不同的解决方案。
Research on multiple antenna systems has been a hot topic in recent years due to the demands for higher transmission rate and more reliable link in wireless communications. Using multiple antennas at both the transmitter side and the receiver side increases the channel capacity without additional frequency spectrum and transmit power. However, due to the limited space at the size-shrinking terminal devices, the most critical problem in designing multiple antennas is severe mutual coupling. The aim of this thesis is to provide compact, decoupled and efficient multiple antenna designs for terminal devices. At the same time, we propose simple and cost effective method in multiple antenna measurement. All those efforts contribute to the development of terminal devices for the fourth generation wireless communication.
     The background and theory of multiple antenna system are introduced first. Critical factors influencing the performance of multiple antennas are discussed, and the parameters to evaluate multiple antenna systems are analyzed in details. To design efficient multiple antenna systems, several decoupling methods, including defected ground plane, current localization and orthogonal polarization, are proposed. The working mechanism and design procedure of each method are introduced, and their effectivenesses are compared. Those methods can be applied to most of the terminal antennas, improving the isolation by6dB at least.
     In some special cases, especially at low frequency band below1GHz, the chassis of the device itself radiates like an antenna, which complicates the antenna decoupling. Thus, we extend general decoupling methods to the chassis excited cases. Based on characteristic mode analysis, two different solutions are provided, i.e., optimizing antenna location and creating orthogonal modes by using magnetic antenna. Those methods are applied to mobile phones, providing enhanced diversity and capacity performance.
     To design a good multiple antenna system, besides efficient decoupling, the performance of each single antenna is important. A miniaturized single antenna based on fractal structure is then developed. Frequency reconfigurable antenna is also designed, giving more flexibility to multiple antenna systems. All the efforts contribute to compact and efficient multiple antenna terminals.
     To measure the performance of a multiple antenna system, it is necessary to obtain the correlation coefficient. However, the traditional measurement technique, which requires the complex values of the electric field, is very expensive and time consuming. In this thesis, a more practical and convenient method is proposed. Fairly good accuracy is achieved when it is applied to various kinds of antennas.
引文
[1]A. F. Molisch, Wireless communications,2nd ed. Chichester, West Sussex, U.K.: Wiley:IEEE,2011.
    [2]W. C. Jakes, Microwave mobile communications. New York,:Wiley,1974.
    [3]Y. Okumura, E. Ohmori, T. Kawano, and K. Fukuda, "Field Strength and Its Variability in Vhf and Uhf Land-Mobile Radio Service," Review of the Electrical Communications Laboratories, vol.16, pp.825-&,1968.
    [4]M. Hata and T. Nagatsu, "Mobile Location Using Signal Strength Measurements in a Cellular-System," IEEE Transactions on Vehicular Technology, vol.29, pp.245-252, 1980.
    [5]V. Erceg, L. J. Greenstein, S. Y. Tjandra, S. R. Parkoff, A. Gupta, B. Kulic, A. A. Julius, and R. Bianchi, "An empirically based path loss model for wireless channels in suburban environments," IEEE Journal on Selected Areas in Communications, vol.17, pp.1205-1211, Jul 1999.
    [6]C. E. Shannon, "A Mathematical Theory of Communication," Bell System Technical Journal, vol.27, pp.623-656,1948.
    [7]T. S. Rappaport, Ed., Wireless communications:Principle and Practice. New York, NY:Prentice Hall,2002, p.App. Pages.
    [8]J. H. Winters, "The diversity gain of transmit diversity in wireless systems with Rayleigh fading," IEEE Transactions on Vehicular Technology, vol.47, pp.119-123, Feb 1998.
    [9]G. J. Foschini and M. J. Gans, "On limits of wireless communications in a fading environment when using multiple antennas," Wireless Personal Commun., vol.6, pp. 311-335,1998.
    [10]E. Telatar, "Capacity of multi-antenna Gaussian channels," European Transactions on Telecommunications, vol.10, pp.585-595, Nov-Dec 1999.
    [11]A. Paulraj, R. Nabar, and D. Gore, Introduction to space-time wireless communications. Cambridge; New York:Cambridge University Press,2003.
    [12]C. C. Martin, J. H. Winters, and N. R. Sollenberger, "Multiple-input multiple-output (MIMO) radio channel measurements," IEEE Vehicular Technology Conference, Fall 2000, Vols 1-6, Proceedings, pp.774-779,2000.
    [13]C. C. Martin, J. H. Winters, and N. R. Sollenberger, "MIMO radio channel measurements:Performance comparison of antenna configurations," IEEE 54th Vehicular Technology Conference, Vtc Fall 2001, Vols 1-4, Proceedings, pp. 1225-1229,2001.
    [14]D. Chizhik, J. Ling, P. W. Wolniansky, R. A. Valenzuela, N. Costa, and K. Huber, "Multiple-input-multiple-output measurements and modeling in Manhattan," IEEE Journal on Selected Areas in Communications, vol.21, pp.321-331, Apr 2003.
    [15]D. P. McNamara, M. A. Beach, and P. N. Fletcher, "Experimental investigation of the temporal variation of MIMO channels," IEEE 54th Vehicular Technology Conference, Vtc Fall 2001, Vols 1-4, Proceedings, pp.1063-1067,2001.
    [16]M. A. Beach, D. P. McNamara, P. N. Fletcher, and P. Karlsson, "MIMO-A solution for advanced wireless access?," Eleventh International Conference on Antennas and Propagation, Vols I and 2, pp.231-235,2001.
    [17]G. L. Stuber, Principle of Mobile Communication. Kluwer:Dodrecht,2001.
    [18]C. N. Chuan, J. M. Kahn, and D. Tse, "Capacity of multi-antenna array systems in indoor wireless environment," Globecom 98:IEEE Globecom 1998-Conference Record, Vols 1-6, pp.1894-1899,1998.
    [19]C. N. Chuah, D. N. C. Tse, J. M. Kahn, and R. A. Valenzuela, "Capacity scaling in MIMO wireless systems under correlated fading," IEEE Transactions on Information Theory, vol.48, pp.637-650, Mar 2002.
    [20]T. M. Cover and J. A. Thomas, Elements of information theory. New York:Wiley, 1991.
    [21]R. Y. Tian, B. K. Lau, and Z. N. Ying, "Multiplexing Efficiency of MIMO Antennas," IEEE Antennas and Wireless Propagation Letters, vol.10, pp.183-186,2011.
    [22]M. Schwartz, W. R. Bennett, and S. Stein, Communication Systems and Techniques. New York:McGraw-Hill,1966.
    [23]H. Jafarkhani, Space-time coding:theory and practice. Cambridge, UK; New York: Cambridge University Press,2005.
    [24]J. Proakis, Digital Communications. New York:McGraw-Hillw,1995.
    [25]W. Lee, "Effects on correlation between two mobile radio base-station antennas," IEEE Trans. On Communications, vol.21, pp.1214-1224, Nov.1973.
    [26]S. R. Saunder, Antennas and Propagation for Wireless Communication System:Jogn Wiley& Sons Ltd.,1999.
    [27]Z. Zhao, S. Stapleton, and J. K. Caver, "Analysis of polarization diversity scheme with channel modes," Department of Engineering Science, Simon Eraser University, Burnaby, BC, Canada, Tech. Rep.,1999.
    [28]C. Y. Chiu, J. B. Yan, and R. D. Murch, "Compact three-port orthogonally polarized MIMO antennas," IEEE Antennas and Wireless Propagation Letters, vol.6, pp. 619-622,2007.
    [29]J. T. a. A. M. O. P. C. F. Eggers, "Antenna system for base station diversity in urban small and micro cells," Antenna system for base station diversity in urban small and micro cells, vol.11, pp.1046-1057, Sep.1994.
    [30]R. G. Vaughan, "Pattern translation and rotation in uncorrelated source distributions for multiple beam antenna design," IEEE Transactions on Antennas and Propagation, vol.46, pp.982-990, Jul 1998.
    [31]P. L. Perini and C. L. Holloway, "Angle and space diversity comparisons in different mobile radio environments," IEEE Transactions on Antennas and Propagation, vol.46, pp.764-775, Jun 1998.
    [32]A. J. Paulraj, D. Gesbert, and C. Papadias, "Antenna arrays for wireless communications," in Encyclopedia for Electrical Engineering, ed New York:Wiley, 2000, pp.531-563.
    [33]R. Vaughan and J. B. Andersen, Channels, propagation and antennas for mobile communications. London:Inst. Elect. Eng.,2003.
    [34]V. Plicanic, "Characterization and enhancement of antenna system performance in compact MIMO terminals," a thesis of Lund University for the degree of Doctor of Philosophy,2011.
    [35]C. A. Balanis and P. I. Ioannides, Introduction to smart antennas:Morgan&claypool, 2007.
    [36]P. H. Lehne and M. Pettersen, "An overview of smart antenna technology for mobile communications systems," IEEE Communications Surveys, vol.2, pp.2-13,1999.
    [37]A. R. Lopez, "Performance predictions for cellular switched beam intelligent antenna system," IEEE Commun. Mag.,, vol.34, pp.152-154,1996.
    [38]J. P. Kermoal, L. Schumacher, K. I. Pedersen, P. E. Mogensen, and F. Frederiksen, "A Stochastic MIMO radio channel model with experimental validation," IEEE Journal on Selected Areas in Communications, vol.20, pp.1211-1226, Aug 2002.
    [39]M. Ozcelik, N. Czink, and E. Bonek, "What makes a good MIMO channel mode," presented at the IEEE 62nd, Semiannual Vehicular Technology Conference,2005.
    [40]A. M. Sayeed, "Deconstructing multiantenna fading channel," IEEE Transactions on Signal Processing, vol.50, pp.2563-2579,2002.
    [41]Y. Gao, "Characterisation of multiple antennas and channel for small mobile terminals," a thesis of University of London for the degree of Doctor of Philosophy, 2007.
    [42]R. H. Clarke, "A Statistical Theory of Mobile-Radio Reception," Bell System Technical Journal, vol.47, pp.957-+,1968.
    [43]M. A. Jensen and Y. Rahmatsamii, "Performance Analysis of Antennas for Hand-Held Transceivers Using Fdtd," IEEE Transactions on Antennas and Propagation, vol.42, pp.1106-1113, Aug 1994.
    [44]"TGn channel models, IEEE Technical Report 802.11-03/94Or4," presented at the Antenna and Propagation Society International Symposium,2004.
    [45]Q. H. Li, X. T. E. Lin, J. Z. Zhang, and W. Roh, "Advancement of MIMO Technology in WiMAX:From IEEE 802.16d/e/j to 802.16m," IEEE Communications Magazine, vol.47, pp.100-107, Jun 2009.
    [46]E. Dahlman,3G evolution:HSPA and LTE for mobile broadband,1st ed. Oxford; Burlington, MA:Elscvier Academic Press,2007.
    [47]B. K. Lau, "Multiple antenna terminals," in MIMO:From Theory to Implementation, C. Oestges, A. Sibillea, and A. Zanella, Eds., ed San Diego:Academic Press,2011, pp. 267-298.
    [48]S. Dossche, S. Blanch, and J. Romeu, "Optimum antenna matching to minimise signal correlation on a two-port antenna diversity system," Electronics Letters, vol.40, pp. 1164-1165, Sep 16 2004.
    [49]S. Dossche, S. Blanch, and J. Romeu, "Decorrelation of a closely spaced four element antenna array," presented at the IEEE Antenna Propagat. Soc. Int. Symp., Washington, DC, USA,2005.
    [50]J. C. Coetzee and Y. Yu, "Closed-form design equations for decoupling networks of small arrays," Electronics Letters, vol.44, pp.1441-U99, Dec 4 2008.
    [51]J. W. Wallace and M. A. Jensen, "Mutual coupling in MIMO wireless systems:A rigorous network theory analysis," IEEE Transactions on Wireless Communications, vol.3, pp.1317-1325, Jul 2004.
    [52]S. C. Chen, Y. S. Wang, and S. J. Chun, "A Decoupling Technique for Increasing the Port Isolation Between Two Strongly Coupled Antennas," IEEE Transactions on Antennas and Propagation, vol.56, pp.3650-3658, Dec 2008.
    [53]J. Weber, C. Volmer, K. Blau, R. Stephan, and M. A. Hein, "Miniaturized antenna arrays using decoupling networks with realistic elements," IEEE Transactions on Microwave Theory and Techniques, vol.54, pp.2733-2740, Jun 2006.
    [54]J. C. Coetzee and Y. T. Yu, "Port decoupling for small arrays by means of an eigenmode feed network," IEEE Transactions on Antennas and Propagation, vol.56, pp.1587-1593, Jun 2008.
    [55]C. Volmer, J. Weber, R. Stephan, K. Blau, and M. A. Hein, "An eigen-analysis of compact antenna arrays and its application to port decoupling," IEEE Transactions on Antennas and Propagation, vol.56, pp.360-370, Feb 2008.
    [56]J. Itoh, N. Michishita, and H. Morishita, "A Study on Mutual Coupling Reduction Between Two Inverted-F Antennas Using Mushroom-Type EBG Structures," 2008 IEEE Antennas and Propagation Society International Symposium, Vols 1-9, pp. 3166-3169,2008.
    [57]F. Yang and Y. Rahmat-Samii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures:A low mutual coupling design for array applications," IEEE Transactions on Antennas and Propagation, vol.51, pp.2936-2946, Oct 2003.
    [58]L. Inclan-Sanchez, J. L. Vazquez-Roy, and E. Rajo-Iglesias, "High isolation proximity coupled multilayer patch antenna for dual-frequency operation," IEEE Transactions on Antennas and Propagation, vol.56, pp.1180-1183, Apr 2008.
    [59]E. Rajo-Iglesias, O. Quevedo-Teruel, and L. Inclan-Sanchez, "Mutual coupling reduction in patch antenna arrays by using a planar EBG structure and a multilayer dielectric substrate," IEEE Transactions on Antennas and Propagation, vol.56, pp. 1648-1655, Jun 2008.
    [60]B. K. Lau and J. N. Andersen, "An antenna system and a method for operating an antenna system," 2007.
    [61]B. K. Lau and J. N. Andersen, "Unleashing multiple antenna systems in compact terminal devices," Int. Workshop Antennas Technol. CA, USA, Mar.,2009.
    [62]K. S. Min, D. J. Kim, and Y. M. Moon, "Improved MIMO antenna by mutual coupling suppression between elements," 2005 European Conference on Wireless Technologies (Ecwt), Conference Proceedings, pp.125-128,2005.
    [63]A. C. K. Mak, C. R. Rowell, and R. D. Murch, "Isolation Enhancement Between Two Closely Packed Antennas," IEEE Transactions on Antennas and Propagation, vol.56, pp.3411-3419, Nov 2008.
    [64]L. Minz and R. Garg, "Reduction of mutual coupling between closely spaced PIFAs," Electronics Letters, vol.46, pp.392-U24, Mar 18 2010.
    [65]A. Diallo, C. Luxey, P. Le Thuc, R. Staraj, and G. Kossiavas, "Study and reduction of the mutual coupling between two mobile phone PIFAs operating in the DCS 1800 and UMTS bands," IEEE Transactions on Antennas and Propagation, vol.54, pp. 3063-3074, Nov 2006.
    [66]A. Chebihi, C. Luxey, A._ Diallo, P. Le Thuc, and R. Staraj, "A Novel Isolation Technique for Closely Spaced PIFAs for UMTS Mobile Phones," IEEE Antennas and Wireless Propagation Letters, vol.7, pp.665-668,2008.
    [67]A. Diallo, C. Luxey, P. Le Thuc, R. Staraj, and G. Kossiavas, "Enhanced two-antenna structures for universal mobile telecommunications system diversity terminals," let Microwaves Antennas & Propagation, vol.2, pp.93-101, Feb 2008.
    [68]D. Ahn, J. S. Park, C. S. Kim, J. Kim, Y. X. Qian, and T. Itoh, "A design of the low-pass filter using the novel microstrip defected ground structure," IEEE Transactions on Microwave Theory and Techniques, vol.49, pp.86-93, Jan 2001.
    [69]C. S. Kim, J. S. Lim, S. Nam, K. Y. Kang, and D. Ahn, "Equivalent circuit modelling of spiral defected ground structure for microstrip line," Electronics Letters, vol.38, pp. 1109-1110, Sep 12 2002.
    [70]D. Guha, M. Biswas, and Y. M. M. Antar, "Microstrip patch antenna with defected ground structure for cross polarization suppression," IEEE Antennas and Wireless Propagation Letters, vol.4, pp.455-458,2005.
    [71]H. W. Liu, Z. F. Li, X. W. Sun, and J. F. Mao, "Harmonic suppression with photonic bandgap and defected ground structure for a microstrip patch antenna," IEEE Microwave and Wireless Components Letters, vol.15, pp.55-56, Feb 2005.
    [72]Y. Chung, S. S. Jeon, D. Ahn, J. I. Choi, and T. Itoh, "High isolation dual-polarized patch antenna using integrated defected ground structure," IEEE Microwave and Wireless Components Letters, vol.14, pp.4-6, Jan 2004.
    [73]H. Li, J. Xiong, and S. L. He, "A Compact Planar MIMO Antenna System of Four Elements With Similar Radiation Characteristics and Isolation Structure," IEEE Antennas and Wireless Propagation Letters, vol.8, pp.1107-1110,2009.
    [74]H. Li, J. Xiong, Z. N. Ying, and S. L. He, "High Isolation Compact Four-port MIMO Antenna Systems with Built-in Filters as Isolation Structure," Proceedings of the Fourth European Conference on Antennas and Propagation,2010.
    [75]C. Y. Chiu, C. H. Cheng, R. D. Murch, and C. R. Rowell, "Reduction of mutual coupling between closely-packed antenna elements," IEEE Transactions on Antennas and Propagation, vol.55, pp.1732-1738, Jun 2007.
    [76]S. Y. Huang and Y. H. Lee, "A Compact E-Shaped Patterned Ground Structure and Its Applications to Tunable Bandstop Resonator," IEEE Transactions on Microwave Theory and Techniques, vol.57, pp.657-666, Mar 2009.
    [77]T. Kokkinos, E. Liakou, and A. P. Feresidis, "Decoupling antenna elements of PIFA arrays on handheld devices," Electronics Letters, vol.44, pp.1442-U101, Dec 4 2008.
    [78]F. G. Zhu, J. D. Xu, and Q. Xu, "Reduction of mutual coupling between closely-packed antenna elements using defected ground structure," Electronics Letters, vol.45, pp.601-U7, Jun 4 2009.
    [79]R. G. Vaughan and J. B. Andersen, "Antenna Diversity in Mobile Communications," IEEE Transactions on Vehicular Technology, vol.36, pp.149-172, Nov 1987.
    [80]A. S. Konanur, K. Gosalia, S. H. Krishnamurthy, B. Hughes, and G. Lazzi, "Increasing wireless channel capacity through MIMO systems employing co-located antennas," IEEE Transactions on Microwave Theory and Techniques, vol.53, pp.1837-1844, Jun 2005.
    [81]Y. Gao, C. C. Chiau, X. Chen, and C. G. Parini, "Modified PIFA and its array for MIMO terminals," lee Proceedings-Microwaves Antennas and Propagation, vol.152, pp.255-259, Aug 2005.
    [82]Y. Gao, X. D. Chen, Z. N. Ying, and C. Parini, "Design and performance investigation of a dual-element PIFA array at 2.5 GHz for MIMO terminal," IEEE Transactions on Antennas and Propagation, vol.55, pp.3433-3441, Dec 2007.
    [83]Z. D. Liu, P. S. Hall, and D. Wake, "Dual-frequency planar inverted-F antenna," IEEE Transactions on Antennas and Propagation, vol.45, pp.1451-1458, Oct 1997.
    [84]R. J. Garbacz, "A generalized expansion for radiated and scattered field," IEEE Trans. Antennas Propagat., vol. AP-19, pp.662-668,1971.
    [85]R. F. Harringt and J. R. Mautz, "Computation of Characteristic Modes for Conducting Bodies," IEEE Transactions on Antennas and Propagation, vol. Ap19, pp.629-&, 1971.
    [86]M. Cabedo-Fabres, E. Antonino-Daviu, A. Valero-Nogueira, and M. F. Bataller, "The theory of characteristic modes revisited:A contribution to the design of antennas for modern applications," IEEE Antennas and Propagation Magazine, vol.49, pp.52-68, Oct 2007.
    [87]S. N. Makarov, Antenna and EM modeling with Matlab. New York: Wiley-Interscience,2002.
    [88]U. Bulus, C. T. Famdie, and K. Solbach, "Equivalent circuit modeling of chassis radiator," in German Microw. Conf. (GeMIC2009), Munich,2009.
    [89]C. A. Balanis, Antenna theory:analysis and design,2nd ed. New York:Wiley,1997.
    [90]A. Erentok and R. W. Ziolkowski, "An efficient metamaterial-inspired electrically-small antenna," Microwave and Optical Technology Letters, vol.49, pp. 1287-1290, Jun 2007.
    [91]A. Erentok and R. W. Ziolkowski, "Metamaterial-inspired efficient electrically small antennas," IEEE Transactions on Antennas and Propagation, vol.56, pp.691-707, Mar 2008.
    [92]L. M. Feldner, C. T. Rodenbeck, C. G. Christodoulou, and N. Kinzie, "Electrically small frequency-agile PIFA-as-aPackage for portable wireless devices," IEEE Transactions on Antennas and Propagation, vol.55, pp.3310-3319, Nov 2007.
    [93]C. W. Jung, Y. J. Kim, Y. E. Kim, and F. De Flaviis, "Macro-micro frequency tuning antenna for reconfigurable wireless communication systems," Electronics Letters, vol. 43, pp.201-202, Feb 15 2007.
    [94]S. L. S. Yang, A. A. Kishk, and K. F. Lee, "Frequency reconfigurable U-slot microstrip patch antenna," IEEE Antennas and Wireless Propagation Letters, vol.7, pp.127-129, 2008.
    [95]D. Peroulis, K. Sarabandi, and L. P. B. Katehi, "Design of reconfigurable slot antennas," IEEE Transactions on Antennas and Propagation, vol.53, pp.645-654, Feb 2005.
    [96]A. C. K. Mak, C. R. Rowell, R. D. Murch, and C. L. Mak, "Reconfigurable multiband antenna designs for wireless communication devices," IEEE Transactions on Antennas and Propagation, vol.55, pp.1919-1928, Jul 2007.
    [97]K. R. Boyle and P. G. Steeneken, "A five-band reconfigurable PIFA for mobile phones," IEEE Transactions on Antennas and Propagation, vol.55, pp.3300-3309, Nov 2007.
    [98]Z. Zhou and K. L. Melde, "Frequency agility of broadband antennas integrated with a reconfigurable RF impedance tuner," IEEE Antennas and Wireless Propagation Letters, vol.6, pp.56-59,2007.
    [99]S. J. Wu, C. H. Kang, K. H. Chen, and J. H. Tarng, "Study of an Ultrawideband Monopole Antenna With a Band-Notched Open-Looped Resonator," IEEE Transactions on Antennas and Propagation, vol.58, pp.1890-1897, Jun 2010.
    [100]S. Blanch, J. Romeu, and I. Corbella, "Exact representation of antenna system diversity performance from input parameter description," Electronics Letters, vol.39, pp.705-707, May 1 2003.
    [101]A. Stjernman, "Relationship between radiation pattern correlation and scattering matrix of lossless and lossy antennas," Electronics Letters, vol.41, pp.678-680, Jun 9 2005.
    [102]P. Hallbjorner, "The significance of radiation efficiencies when using S-parameters to calculate the received signal correlation from two antennas," IEEE Antennas and Wireless Propagation Letters, vol.4, pp.97-99,2005.
    [103]I. Salonen, C. Icheln, and P. Vainikainen, "The dependency of pattern correlation on mutual coupling and losses in antenna arrays," Microwave and Optical Technology Letters, vol.47, pp.145-147, Oct 20 2005.
    [104]Y. A. S. Dama, R. A. A. Alhameed, D. Zhou, S. M. R. Jones, M. B. Child, and P. S. Excell, "Calculation of the spatial envelope correlation between parameters including conducting losses," presented at the Antennas and Propagation Conference (LAPC), Loughborough,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700