用户名: 密码: 验证码:
长江口及邻近海域赤潮生消过程特征及其营养盐效应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,长江口及邻近海域已成为我国著名的赤潮高发区,该海域赤潮频发与其每年氮、磷等营养物质的排海通量不断增加密切相关。因此,确定我国长江口及邻近海域主要营养物质的来源、通量,了解其对赤潮发生规模的影响,确定营养盐在东海赤潮生消过程中的作用,是阐明当前该海域赤潮发生机制的重要科学问题。本文以长江冲淡水及陆源影响区为研究区域,以2002~2007年长江口及邻近海域多个航次现场调查资料为基础,系统计算了该海域各主要营养盐来源的排海通量;分析了该海域营养盐平面分布特征及季节变化特征,比较了赤潮高发区与非赤潮高发区营养盐水平的差异;分析了该海域赤潮生消过程的特征,并对营养盐输入通量和赤潮发生状况之间的关系进行了总结。得出的主要结论如下:
     1、长江口及邻近海主要营养盐来源及通量
     1)在长江口及邻近海域淡水和海水的混合过程中,SiO_3-Si具有很好的保守性,其浓度与盐度之间呈现出良好的直线关系,DIN和PO_4-P具有明显的补充作用,它们的浓度与盐度之间呈现出良好的曲线关系,该曲线符合MnMolecular方程式。
     2)长江营养盐排海通量变化主要受长江径流量影响,研究海域的营养盐通量存在明显的季节变化,输入高峰期在每年的5~8月,其中6月为高峰期;调查期间2002、2003和2005年长江营养盐输入通量较大,2006和2007年较小,2004年最小。
     3)长江是研究海区最大的营养盐来源,其DIN入海通量占排海总量的52%,PO_4-P占33%,SiO_3-Si占56%;东海外海交换对研究海域PO_4-P (27%)和SiO_3-Si(21%)入海通量有较大贡献;其它入海径流对DIN(17%)和SiO_3-Si(23%)入海通量有较大贡献;大气沉降对DIN(18%)入海通量也有较大贡献。此外,沉积物-海水界面的营养盐交换对研究海域的营养盐收支状况也起到重要作用。
     2、长江口及邻近海主要营养盐状况
     1)长江口及邻近海域DIN、PO_4-P、SiO_3-S的等值线在122.0~122.5°E之间存在较大的浓度梯度,且均表现为近岸向离岸方向逐渐降低的特点。冬春季节营养盐等值线与海岸线基本平行,营养盐高值区主要集中在长江口至浙江南部的狭长地带,夏秋季节营养盐等值线转变为以长江口和杭州湾为中心呈扇面状向外海扩展,营养盐高值区主要集中在舟山群岛以北的区域。
     2)影响长江口及邻近海域营养盐平面分布特征的主要因素是长江等陆源输入,营养盐高值区随长江营养盐排海通量的增加而外扩,随长江冲淡水的改向而转移,长江营养盐输入通量的多少及其扩散模式,直接影响该海区营养盐平面分布特征和富营养化程度的大小。
     3)长江口及邻近海域营养盐的浓度水平及季节变化模式取决于营养盐补充和浮游植物消耗之间的消长和平衡。夏季该海区浮游植物的爆发性生长与增殖导致了对营养盐的需求高于营养盐的补充,从而造成该海区各项营养盐平均浓度整体表现为秋季最高、夏季最低,秋冬季节普遍高于春夏季节的变化特征。
     4)研究海域赤潮高发区和非赤潮高发区S、PO_4-P、SiO_3-S和DIN存在显著性差异,赤潮发生区主要集中在营养盐浓度水平相对较高、变化范围较小的富营养化的区域。
     3、长江口及邻近海赤潮生消过程特征
     1)依据该海区赤潮发生的实际状况和叶绿素浓度变化将该海域硅藻或甲藻赤潮生消过程划分别划分成5个阶段:延滞期(叶绿素低于1.5μg·L~(-1))、孕育期、指数生长期(叶绿素低于10μg·L~(-1))、维持期(叶绿素高于10μg·L~(-1))和消散期(叶绿素低于10μg·L~(-1))。
     2)确定了该海区赤潮生消过程中各主要参量的变化特征:温盐:硅藻赤潮发生时低温低盐,甲藻赤潮发生时高温低盐;营养盐浓度:硅藻赤潮发生前各项营养盐浓度均较高,甲藻赤潮发生前各项营养盐浓度均较低,各项营养盐浓度随硅藻赤潮的发生、发展快速大幅度下降,随甲藻赤潮的发生、发展缓慢小幅度下降;营养盐补充:硅藻赤潮随高温高盐外海海水的入侵近岸而发生、发展并消散,甲藻赤潮随低盐度长江冲淡水的补充而发生、发展并消散;赤潮生消过程中各项营养盐浓度主要取决于该过程中各项营养盐的补充速度与浮游植物消耗速度。
     3)确定了2005年研究海区赤潮生消过程中各要素的时间变化特征:硅藻赤潮爆发前,研究海区温度盐度较低,营养盐浓度较高且处于富营养化状态,此后硅藻赤潮优先爆发,最后随PO_4-P和SiO_3-S浓度的快速降低,硅藻赤潮迅速消亡;甲藻赤潮爆发前,研究海区温度较高盐度降低,营养盐浓度整体较低,大规模甲藻赤潮爆发期间营养盐补充加大,长时间的维持期后,温度超过了甲藻适温范围,同时DIN含量降低到最低值,甲藻赤潮消亡。
     4)确定了长江营养盐输入通量年变化、季节变化与赤潮发生状况之间的关系:各项营养盐输入通量与赤潮规模之间具有良好的指数增长型曲线关系,营养盐通量的增加将导致研究海区赤潮爆发频率/面积呈指数增长。其中,DIN输入通量与赤潮规模相关性最好。
     5)确定了各航次长江营养盐输入通量与海区叶绿素平均浓度之间的关系:春夏季节研究海区叶绿素平均浓度的高低与长江营养盐输入通量的大小之间具有非常好的直线关系,营养盐输入通量的增加将导致该海区生物量的直线上升。
The Changjiang River Estuary and its adjacent area has become the frequentHarmful Algal Blooms (HAB) occurrence area of our country in recent years.Thehigh frequency of HAB in this area is closely related to the increment of nitrogenousand phosphorous fluxes drainaged to this area by many resources year after year.Therefore one of the most important tasks about researching mechanism of HAB inthis area is to study the main nutrient resources and their fluxes,recognize theirinfluences on the HAB scale and realize the role of nutrient during the process ofHAB in East China Sea (ECS).
     Based on the data of field investigations through cruises in the area influenced byChangjiang Diluted Water from 2002 to 2007,the nutrient fluxes to ECS from mainresources and their variation patterns were systematically calculated.Then thenutrient characteristic of spatial distribution and seasonal variation in this area wereanalyzed.The difference of nutrient level between frequent HAB occurrence area andrare HAB occurrence area was compared.The characteristic of the nutrient during theprocess of HAB is analyzed and the relationship between nutrient flux and HABoccurrence is summarized.The main results are as follows:
     1.The main nutrient resources and their fluxes in Changjiang River Estuary and itsadjacent area
     1) During the mixture process of freshwater and seawater in Changjiang RiverEstuary and its adjacent area,SiO_3-Si is of conservative characteristic according to thegood linear relationship between its concentration and salinity.While DIN and PO_4-Pis of complemental function.The relationship between concentration and salinity ofDIN and PO_4-P shows a well curve,which accords with the equation of MnMolecular.
     2) The Changjiang River nutrient flux varies with its runoff.There is an obviousseasonal variation of nutrient flux in studied area.The input fastigium period occursfrom May to August every year and June is the fastigium.During the wholeinvestigation period,the nutrient input fluxes of the year 2002,2003 and 2005 arerelatively high while those of 2006 and 2007 are relatively low.The nutrient inputflux reached the lowest level in year 2004.
     3) The main nutrient resource of the research area is the Changjiang River,whose DIN flux to ECS accounts for 52%,PO_4-P accounts for 33% and SiO_3-Siaccounts for 56% of the whole drainge.The nutrient flux exchange with the open seawater makes great contributions to the flux PO_4-P (27%) and SiO_3-Si (21%) of thisarea.Some other rivers runoff makes great contribution to the flux of DIN (17%) andSiO_3-Si(23%).The atmosphere deposition accounts for the DIN (18%) flux.Besidesthe sediment-water nutrient flux works well with the nutrient budgets in the researcharea.
     2.The nutrient condition of Changjiang River Estuary and its adjacent area
     1) The contour of DIN、PO_4-P、SiO_3-S in this area has a relatively largeconcentration grads between 122.0~122.5°E.In winter and spring,the nutrientcontour parallels with the coastline and the high value nutrient area mainly locating inthe long and narrow zone from Changjiang Estuary to south coastal area of Zhejiang.While in summer and autumn,the contour turns to a fan-shape extending to the opensea and the high value nutrient area mainly locates north area of Zhoushanarchipelago.
     2) The primary factor affecting the horizontal distribution characteristic ofnutrient in Changjiang River Estuary and its adjacent area is such terrestrial input asChangjiang River.The high concentration value of nutrient extends as the increase ofthe Changjiang nutrient flux and the eutrophic area transfers as the ChangjiangDiluted Water turns around.Therefore attempering the amount and pervading mode ofChangjiang nutrient flux will affect the nutrient horizontal distribution characteristicand the eutrophic condition of the research area.
     3) The nutrient concentration level and its seasonal variation pattern in theChangjiang River Estuary and its adjacent area depends on balance between nutrientsupplement and consume of phytoplankton.In summer,the explosive growth andreproduction of phytoplankton in this area cause the huge demand of nutrientexceeding the supplement,which can explain the variation characteristic of averagenutrient concentration in this area reaches the highest in autumn,the lowest insummer,relative higher in autumn and winter and lower in spring and summer.
     4) There is an obvious difference of the value of S、PO_4-P、SiO_3-S and DINbetween frequent HAB occurrence area and rare HAB occurrence area.FrequentHAB occurrence area is mainly located on those areas who have nutrient relativelyhigh concentration and lower variation range.
     3.The characteristic of HAB in Changjiang River Estuary and its adjacent area
     1) According to the HAB records and Chlorophyll a concentration variationmode in the research area,the process of blooms of Diatom or Dinoflagellate can becompartmentalized to 5 stages:lag phase(Chlorophyll a<1.5μg·L~(-1)),initiation stage,exponential phase(Chlorophyll a<10ug·L~(-1)),stationary phase (Chlorophyll a =10μg·L~(-1)) and dissipation phase (Chlorophyll a<10μg·L(-1)).
     2) The variation characteristic of several main parameters in the process of HAB is concluded.The bloom of diatom is initialized usually with low temperature and lowsalinity while the blooms of dinoflagellate usually with high temperature and lowsalinity.Before blooms of diatom,the nutrient concentration is relatively high whilelow before blooms of dinoflagellate.DIN、PO_4-P、SiO_3-S concentrations drop rapidlyduring the process of diatom bloom while slowly in dinoflagellate bloom..TheDiatom bloom would be initiation,exponential growth and dissipation with theinvasion of open seawater,while dinoflagellate bloom with the supplement ofChangjiang Diluted Water.During the whole process of HAB,the value of nutrientconcentration mainly depends on the phytoplankton's consuming speed and thesupplementing speed of nutrient.
     3) The temporal variation characteristic of each element during the process ofHAB in this area in 2005 is concluded.Before diatom blooms breakout,thetemperature and salinity is relatively low,the nutrient concentration is relatively highand in eutrophic condition.Then the diatom blooms would be prior occurred.Finallydiatom bloom would be dissipated quickly following with the sharp concentrationdecrease of PO_4-P and SiO_3-S.Before dinoflagellate bloom breakout,the temperatureis high and salinity and nutrient concentration are relative low.When dinoflagellatebloom occurs in large scale,the nutrient supplement increases.After a long retentionstage,dinoflagellate blooms dissipates when the temperature is too high fordinoflagellate and the DIN content reaches the lowest.
     4) The relationship of HAB condition and Changjiang nutrient flux's annualvariation and seasonal variation is concluded.There is a good exponential increasingcurve relationship between nutrient flux and HAB scale.The increment of nutrientflux will cause the exponential increase of frequency and area of HAB.The DIN inputflux has the best pertinency with HAB scale.
     5) The relationship of Changjiang nutrient flux in each cruise and averageconcentration of Chlorophyll a is concluded.In spring and summer,the averageconcentration of Chlorophyll a has a perfect lineal relationship with Changjiangnutrient flux.The increase of nutrient flux will cause the biomass linear increase inthis area。
引文
1. 蔡燕红,项有堂.舟山海域具齿原甲藻赤潮初探.海洋环境科学,2002,21(4):34~36.
    2. 曹欣中.浙江近海上升流季节变化过程的初步研究.水产学报,1986,10(1):51~69.
    3. 长江水利委员会.2002~2006.长江流域水资源公报(2001~2005年).
    4. 长江水利委员会.长江年鉴(2000~2005年).
    5. 陈炳章,王宗灵,李瑞香等.温度、盐度对具齿原甲藻生长的影响及其与中肋骨条藻的比较.海洋科学进展,2005,23(1):60~64.
    6. 陈慈美,包建军,吴瑜端.纳污海域营养物质形态及含量水平与浮游植物增殖竞争关系.海洋环境科学,1990,9(1):6~12.
    7. 陈水土,阮五崎.台湾海峡上升流区氮、磷、硅的化学特性及输送通量估算.1996,18(3):37~44.
    8. 陈松,廖文卓,骆炳坤等.九龙江河口区磷的转移和入海通量.台湾海峡,1996,15(2):137~142.
    9. 崔毅,陈碧鹃,陈聚法.黄渤海海水养殖自身污染的评估.应用生态学报,2005,16(1):180~185.
    10.段水旺,章申,陈喜保等.长江下游氮、磷含量变化及其输送量的估计.环境科学,2000,21(1):53~56.
    11.方倩.东海主要化学污染物排海总量.中国海洋大学硕士论文,36~42,2008.
    12.冯士笮,李凤岐,李少菁,主编.海洋科学导论.北京:高等教育出版社,1999.
    13.傅瑞标,沈焕庭.长江河口淡水端溶解态无机氮磷的通量.海洋学报,2002,24(4):34~43.
    14.高素兰.营养盐和微量元素与黄骅赤潮的相关性.黄渤海海洋,1997,15(2):59~63.
    15.顾德宇,汤荣坤,余群.大亚湾沉积物间隙水的无机磷硅氮营养盐化学.海洋学报,1995,17(5):73~80.
    16.顾宏堪,李国基.胶洲湾底质溶液中的氮和磷.海洋与湖沼,1979,10(2):103~111.
    17.顾宏堪,熊孝先,刘明星.长江口附近氮的地球化学I.长江口附近海水中的硝酸盐.山东海洋学院学报,1981,11(4):37~46.
    18.国家海洋局.1990~2008.1989~2007年中国海洋灾害公报.
    19.国家海洋局.1991~2008.1990~2007年中国海洋环境质量公报.
    20.国家海洋局,海洋监测规范,北京,海洋出版社(GB17378.7-1998),1998.
    21.国家海洋局.中华人民共和国国家标准-海水水质标准(GB3097-1997),1997.
    22.国家环保总局.1990~2008.中国环境质量公报(1989~2007).
    23.国家统计总局.2000~2005.中国农业统计公报(2001~2006).
    24.海洋综合调查办公室.渤海黄海东海海洋图集(化学卷).北京:海洋出版社,1991.
    25.海洋综合调查办公室.渤海黄海东海海洋图集(水文卷).北京:海洋出版社,1991.
    26.洪君超,黄秀清,蒋晓山等.嵊山水域中肋骨条藻赤潮发生过程主导因子分析.海洋学报,1993,15(6):135~141.
    27.洪君超,黄秀清,蒋晓山等.长江口中肋骨条藻赤潮发生过程环境要素分析-营养盐状况.海洋与湖沼,1994,25(2):179~184.
    28.洪君超,黄秀清,徐韧.长江口外及其邻近海区赤潮多发区的分析与探讨.暨南大学学报,1989,40~50.
    29.胡敦欣,韩舞鹰,章申.长江、珠江口及其邻近海域陆海相互作用.北京:海洋出版社,2001:10~26.
    30.胡明辉,杨逸萍,徐春林等.长江口浮游植物生长的磷酸盐限制.海洋学报,1989,11(4):439~443.
    31.黄良民,黄小平,宋星宇等,我国近海赤潮多发区域及其生态学特征.生态科学,2003,22(3):252~256.
    32.黄尚高,杨嘉东,暨卫东等.长江口水体活性硅、氮、磷含量时空变化及相互关系.台湾海峡,1986,5(2):114~132.
    33.黄小平,黄良民,谭烨辉等.近海赤潮发生与环境条件之间的间的关系.海洋环境科学,2002,22(4):63~69.
    34.黄晓航,史东梅,张京浦等.赤潮发生机理研究—海洋原甲藻的氮营养主理特征.海洋与湖 沼,1997,28(1):33~37.
    35.霍文毅,俞志明,邹景忠等.胶州湾中肋骨条藻赤潮与环境因子的关系.海洋与湖沼,2001,32(3):311~318.
    36.蒋风华,王修林,石晓勇等.Si在胶州湾海底沉积物-海水界面磷酸盐交换速率和通量研究.青岛海洋大学学报,2002,32(6):1012~1018.
    37.蒋风华,王修林,石晓勇等.胶州湾海底沉积物-海水界面磷酸盐交换速率和通量研究.海洋科学,2003,27(5):50~54.
    38.蒋凤华,王修林,石晓勇等.溶解无机氮在胶州湾沉积物-海水界面上的交换速率和通量研究.海洋科学,2004,28(4):13~18.
    39.蒋晓山,洪君超,王桂兰等.长江口赤潮多发区夜光藻赤潮发生过程分析.暨南大学学报,1992,13(3):134~138.
    40.李徽翡,赵宝人.渤、黄、东海夏季环流的数值模拟.海洋科学,2001,25(1):28~32.
    41.李金涛,赵卫红,杨登峰等.长江口海水盐度和悬浮体对中肋骨条藻生长的影响.海洋科学,2005,29(1):34~37.
    42.李克强,王修林,祝陈坚等.No.柴油水溶组分海洋浮游植物生态效应研究.环境科学,2007,28(2):304~308.
    43.李茂田,程和琴.近50年来长江入海溶解硅通量变化及其影响.中国环境科学,2001,21(3):193~197.
    44.李瑞香,朱明远,王宗灵等.东海两种赤潮生物种间竞争的围隔实验.应用生态学报,2003,14(7):1049~1054.
    45.李英,吕颂辉,徐宁等.东海原甲藻对不同磷源的利用特征.生态科学,2005,24(4):314~317.
    46.廖先贵,张湘君.渤海湾间隙水的地球化学特征.海洋学报,1984,6(5):615~625.
    47.林永水.近海富营养化与赤潮研究.北京:科学出版社,1997.
    48.林昱,陈孝麟等.围隔生态系内富营养引起赤潮的初步研究.海洋与湖沼,1992,23(3):312~317.
    49.林昱,庄栋法,陈孝麟等.初析赤潮成因研究的围隔实验结果.海洋与湖沼,1994,25(2):139~145.
    50.刘长安,李庆彪.关于逻辑斯谛(Logistic)模式的参数r.海洋湖沼通报,1988,9(4):70~75.
    51.刘昌岭,陈洪涛,任宏波等.2003.黄海及东海海域大气湿沉降(降水)中的营养元素.海洋环境科学,22(3):26~30.
    52.刘东艳,孙军,陈宗涛等.不同氮磷比对中肋骨条藻生长特件的影响.海洋湖沼通报,2002,1(2):40~44.
    53.刘敏,侯立军,许世远等.河口滨岸潮滩沉积物-水界面N、P的扩散通量.海洋环境科学,2001,20(3):19~23
    54.刘素美,张经,于志刚等.渤海莱洲湾沉积物-水界面溶解无机氮的扩散通量.环境科学,1999,20(2):12~16.
    55.刘素美,张经,陈洪涛.黄海和东海生源要素的化学海洋学.海洋环境科学,2000,19(1):68~75.
    56.刘素美,江文胜,张经.用成岩模型计算沉积物水界面营养盐的交换通量-以渤海为例.中国海洋大学学报,2005,35(1):145~151.
    57.刘新成,沈焕庭,黄清辉.长江入河口区生源要素的浓度变化及通量估算.海洋与湖沼,2002,33(5):332~340.
    58.刘先炳,苏纪兰.浙江沿岸上升流和沿岸锋面的数值研究.海洋学报,1991,13(3):305~314.
    59.陆斗定,张志道,楼毅等.浙江近海浮游植物与赤潮生物研究-台州列岛附近海域.海洋环境科学,1995,14(1):32~37.
    60.陆斗定,Gobel,王春生等,浙江海区赤潮生物监测与赤潮实时预测.东海海洋,2000,18(2):33~43.
    61.陆赛英,葛人峰,刘丽慧.东海陆架水域营养盐的季节变化和物理输运规律.海洋学报,1996,18(5):41~51.
    62.吕颂辉,李英.我国东海4种赤潮藻的细胞氮磷营养储存能力对比.过程工程学报,2006,16(3):339~444.
    94.汪亚平,潘少明,Wang H V.长江水沙入海的观测分析.地理学报,2006,61(1)35~46.
    95.王保栋.长江冲淡水的扩展及其营养盐的输运.黄渤海海洋,1998,16(2):41~47.
    96.王保栋,王桂云,郑昌洙等.南黄海营养盐的平面分布及其横向输运规律.海洋学报,1999,21(6):124~129.
    97.王保栋,陈爱萍,刘峰.1998年夏季长江特大洪水入海的化学水文学特征.海洋科学进展,2002a,20(3):44~51.
    98.王保栋,战闰,臧家业.长江口及其邻近海域营养盐的分布特征和输送途径.海洋学报,2002b,24(1):53~58.
    99.王桂兰,黄秀清,蒋晓山等.长江口中肋骨条藻赤潮的分布与特点.海洋科学.1993,3:51~55.
    100.王辉.东海和南黄海夏季环流的斜压模式.海洋与湖沼,1995a,27(1):73~78.
    101.王辉.东海和南黄海夏季环流的斜压模式.海洋学报,1995b,17(2):21~26.
    102.王晖.淮河干流水质断面污染物年通量估算.水资源保护,2004.6:37~39.
    103.王金辉.长江口3个不同生态系的浮游植物群落.青岛海洋大学学报,2002a,32(3):422~428.
    104.王金辉.长江口邻近水域的赤潮生物.海洋环境科学,2002b,21(2):37~41.
    105.王金辉.东海赤潮生物具齿原甲藻及其特征.浙江海洋学院学报,2003a,22(2):128~132.
    106.王金辉,黄秀清.具齿原甲藻的生态特征及赤潮成因浅析.应用生态学报,2003b,14(7):1065~1069.
    107.王金辉,黄秀清,刘阿成等.长江口及邻近水域的生物多样性变化趋势分析.海洋通报,2004,23(1):32~39.
    108.王寿松,冯国灿,夏综万等.大鹏湾夜光藻发生要素的结构分析.海洋与湖沼,1994,25(2):146~151.
    109.王修林,李克强.渤海主要化学污染物海洋环境容量.北京:科学出版社,2006.14~15.
    110.王修林,孙霞,韩秀荣等.2002年春、夏季东海赤潮高发区营养盐结构及分布特征的比较.海洋与湖沼,2004,35(4):323~331.
    111.王勇,焦念志.营养盐对浮游植物生长的上行效应的研究方法.海洋科学,2000,24(11):16~18.
    112.王正方,姚龙奎,阮小正.长江口营养盐分布与变化特征.海洋与湖沼,1983,14(4):324~332.
    113.王正方,张庆,吕海燕.温度、盐度、光照强度和pH对海洋原甲藻增长的效应.海洋与湖沼,2001,32(1):15~18.
    114.王正方.氮、磷、维生素和微量金属对赤潮生物海洋原甲藻的增殖效应.东海海洋,1996,14(3):33~38.
    115.吴洁,虞左明,钱天鸣钱.塘江干流杭州段水体氮污染特征分析.长江流域资源与环境,2003,12(6):552~556.
    116.项有堂,辛士河,王东衬等.东海黑潮区海水无机氮的分布特征及成因探讨.海洋通报,1994,13(1):35~43.
    117.谢健,李锦荣,吕颂辉等.夜光藻赤潮与环境因子的关系.海洋通报,1993,12(2):1~6.
    118.徐韧,洪君超,王桂兰等.长江口及其邻近海域的赤潮现象.海洋通报,1994a,13(5):25~29.
    119.徐韧.长江口及其邻近海域赤潮发生的特点及管理对策初探.海洋开发与管理,1994b,11(4):36~38.
    120.许建平.浙江近海上升流区冬季水文结构的初步分析.东海海洋,1986,4(3):18~23.
    121.许清辉,郭廷宗,林峰等.闽江口无机氮营养盐的行为及入海通量.厦门大学学报,1991,30(6):632~634.
    122.阎玲,李锦蓉.大鹏湾盐田海域环境因子变化与赤潮生物相互关系研究.海洋通报,1993,12(2):7~12.
    123.颜廷壮.浙江和海南东部沿岸上升流的成因分析.海洋学报,1992,14(3):12~18.
    124.杨东方,高振会,王培刚等.光照时间和水温对浮游植物生长影响的初步分析-以胶州湾为例,海洋科学,2002,26(12):18~22.
    125.杨东方,王凡,高振会等.长江口理化因子影响初级生产力的探索II.磷不是长江口浮游植物生
    63.毛汉礼,甘子钧,蓝淑芳.长江冲淡水及其混合问题的初步探讨.海洋与湖沼,1963,5(3):183~205.
    64.毛汉礼,任允武,万国铭.应用T-S关系定量分析浅海水团的初步研究.海洋与湖沼,1964,6(1):1~23.
    65.缪锦来,石红旗,李光友等.赤潮灾害的发展趋势、防治技术及其研究进展.安全与环境学报,2002,2(3):40~44.
    66.蒲新明,吴玉霖,张永山.长江口区浮游植物营养限制因子的研究Ⅰ.秋季的营养限制情况.海洋学报,2000,22(4):60~66.
    67.蒲新明,吴玉霖,张永山.长江口区浮游植物营养限制因子的研究Ⅱ.春季的营养限制情况.海洋学报,2001,23(3):57~66.
    68.戚晓红,刘素美,张经等.东海赤潮高发区沉积物中营养盐再生速率的研究.应用生态学报,2003,14(7):1112~1116.
    69.戚晓红,刘素美,张经.东、黄海沉积物-水界面营养盐交换速率的研究.海洋科学,2006,30(3):9~15.
    70.齐雨藻,楚建华,黄亦华.诱发海洋褐胞藻赤潮的环境因素分析.海洋通报,1993,12(2):30~34.
    71.齐雨藻,洪英,吕颂辉等.南海大鹏湾海洋褐胞藻赤潮及其成因.海洋与湖沼,1994,25(2):132~138.
    72.齐雨藻,黄长江,钟彦等.甲藻塔玛亚历山大藻昼夜垂直迁移特性的研究.海洋与湖沼,1997,28(5):458~467.
    73.齐雨藻.中国沿海赤潮.第一版,北京,科学出版社,2003:146~178.
    74.秦晓明,邹景忠.N,P,Fe-EDTA,Mn对赤潮生物锥状斯氏藻增殖影响的初步研究.海洋与湖沼,1997,28(6):594~598.
    75.丘耀文,王肇鼎,高红莲等.大亚湾养殖水域沉积物-海水界面营养盐扩散通量.热带海洋,1999,18(3):83~89.
    76.沈焕庭等著.长江河口物质通量.北京:海洋出版社,2001,176p.
    77.沈志良.三峡工程对长江口海区营养盐分布变化影响的研究.海洋与湖沼.1991,22(6):540~546.
    78.沈志良,古堂秀,谢肖勃.长江生源要素的输出通量.海洋科学,1991,(6):67~69.
    79.沈志良,陆家平,刘兴俊.黄河口附近海区沉积物间隙水中的营养盐.海洋学报,1991,13(3):407~411.
    80.沈志良,陆家平,刘兴俊等.长江口区营养盐的分布特征及三峡工程对其影响.海洋科学集刊,1992,33:107~129.
    81.沈志良.胶州湾营养盐的现状和变化,海洋科学,1997,1:60~64.
    82.沈志良.长江干流营养盐通量的初步研究.海洋与湖沼,1997,25(5):522~529.
    83.沈志良.三峡工程对长江口及附近海域营养盐的分布特征.海洋环境科学,1999,18(2):42~48.
    84.沈志良,刘群,张淑美等.长江和长江口高含量无机氮的主要控制因素.海洋与湖沼,2001,32(5):465~473.
    85.石峰,王修林,石晓勇等.东海沉积物-海水界面营养盐交换通量的初步研究.海洋环境科学,2004,23(1):5~8.
    86.石晓勇,王修林,韩秀荣等.长江口邻近海域营养盐分布特征及其控制过程的初步研究.应用生态学报,2003,14(7):1086~1092.
    87.宋金明.中国近海沉积物-海水界面化学.北京:海洋出版社,1997.
    88.苏纪兰.中国的赤潮研究.中国科学院院刊,2001,(5):339~342.
    89.苏纪兰,袁业立.中国近海水文.北京:海洋出版社,2005.22~28.
    90.孙敬慧.1997.我省主要河流入海通量估算.福建环境.14(1):17~18.
    91.孙霞.光照对东海赤潮高发区赤潮藻类生长的影响.中国海洋大学博士论文,p29,2008.
    92.孙霞,王保栋,王修林等.东海赤潮高发区营养盐时空分布特征及其控制要素.海洋科学,2004,28(8):28~32.
    93.孙云明,宋金明.海洋沉积物-海水界面附近氮、磷、硅的生物地球化学.地质评论,2001,47(55). 长的限制因子.海洋科学进展,2005,23(3):368-373.
    126.杨逸萍,胡明辉,陈海龙.九龙江口生物可利用磷的行为与入海通量.台湾海峡,1998,17(3):269-274.
    127.叶属峰,黄秀清,东海赤潮及其监视监测.海洋环境科学,2003,22(2):10~14
    128.叶仙森,张勇,项有堂.长江口海域营养盐的分布特征及其原因.海洋通报,2000,19(1):89-92.
    129.臧家业.东海黑潮区海水中磷酸盐的分布特征及成因探讨.黄渤海海洋,1991,9(2):36~45.
    130.张诚,邹景忠.尖刺拟菱形藻氮、磷吸收动力学及氮磷限制下的增殖特征.海洋与湖沼,1997,28(6):599~603.
    131.张传松,王修林,朱德弟等.营养盐在东海春季大规模赤潮形成过程中的作用.中国海洋大学学报,2007,37(6):1002~1006.
    132.张传松,王修林,石晓勇等.东海赤潮高发区营养盐时空分布特征及其与赤潮的关系.环境科学,2007,28(11):2416~2424.
    133.张二凤,陈西庆.长江大通-河口段枯季的径流量变化.地理学报,2003,58(2):231~238.
    134.张国森,陈洪涛,张经等.长江口地区大气湿沉降中营养盐的初步研究.应用生态学报,2003,14(7):1107~1111.
    135.张健.杭州湾丰水期主要污染因子的分布变化及成因.东海海洋,2002,20(4):35~41.
    136.张金良,于志刚,张经.大气的干湿沉降及其对海洋生态系统的影响.海洋环境科学,1999,18(1):70~76.
    137.张金良,于志刚,张经等.2000.黄海西部大气湿沉降(降水)中各元素沉降通量的初步研究.环境化学,19(4):32~36
    138.赵保仁.长江冲淡水的转向机制同题.海洋学报,1991,13(5):600~610.
    139.赵保仁,乐肯堂,朱兰部.长江口海域温、盐度分布的基本特征和上升流现象.海洋科学集刊,1992,33:15-26.
    140.赵保仁.长江口外的上升流现象.海洋学报,1993,15(2):108~114.
    141.赵保仁,任广法,曹德明等.长江口上升流海区的生态环境特征.海洋与湖沼,2001,32(3):327~333.
    142.赵传絪,倪正泉,朱德林等.东海区发展水产资源增养殖的设想.海洋水产养殖,1994,15:131~139.
    143.郑元甲,陈雪忠,程家骅等.东海大陆架生物资源与环境.上海:上海科学技术出版社,2003:78~115.
    144.中国海湾志编撰委员会.中国海湾志(第十四分册).北京:海洋出版社,1998.798~799.
    145.中国气象科学数据共享服务网.http://cdc.cma.gov.cn/
    146.周成旭,吴玉霖,邹景忠.夜光藻的营养动力学.海洋与湖沼,25(2):152~157.
    147.周名江,朱明远,张经.中国赤潮的发生趋势和研究进展.生命科学,2001,13(2):53~59.
    148.周名江,颜天,邹景忠.长江口邻近海域赤潮发生区基本特征初探.应用生态学报,2003,14(7):1031~1038.
    149.朱从举,齐雨藻,郭昌粥.铁、氮、磷、维生素B1和B12对海洋原甲藻的生长效应.海洋与湖沼,1994,25(9):168~172.
    150.朱德弟,潘玉球,许卫忆等.长江口外赤潮频发海区水文分布特征分析.应用生态学报,2003,14(7):1131~1134.
    151.朱根海,山本民次,大谷修司等.浙江舟山群岛邻近海域微、小型浮游植物与赤潮生物研究.东海海洋,2000,18(1):28~36.
    152.朱建荣,肖成猷,沈焕庭等.黄海冷水团对长江冲淡水扩展的影响.海洋与湖沼,1998a,29(4):389~394.
    153.朱建荣,肖成猷,沈焕庭.夏季长江冲淡水扩展的数值模拟.海洋学报,1998b,20(5):13~22.
    154.朱建荣,王金辉,沈焕庭等.2003年6月中下旬长江口外海区冲淡水和赤潮的观测及分析.科学通报,2005,50(1):59~65.
    155.朱建荣.夏季长江口外水下河谷西侧上升流产生的动力机制.科学通报,2003a,48(22):2488~2492.
    156.朱建荣,丁平兴,胡敦欣.2000年8月长江口外海区冲淡水和羽状锋的观测.海洋与湖沼,2003b,34(3):249~255.
    157.朱卓毅,张利华,周菊珍等.苏州河和黄浦江2002年春夏季营养盐变化.海洋环境科学,2004,23(4):19~23.
    158.邹栋梁.闽江口溶解态镉铜铅的行为及其与营养盐的关系.热带海洋,1996,15(1):74~49.
    159.邹娥梅,郭炳火,汤毓祥等.秋季南黄海水文特征及海水的混合与交换.海洋学报,1999,21(5):12~21.
    160.邹景忠,董丽萍,秦保平.渤海湾富营养化和赤潮问题初步探讨.海洋环境科学,1983,2(2):41~54.
    161.邹景忠,吴玉霖,洪君超等.中国沿海赤潮.北京:科学出版社,2003:104~207.
    162.Anderson L,Rydberg L.Trends in nutrient and oxygen conditions within the Kattegat:Effects on local Nutrient supply.Estuarine Coastal ShelfScinece,1988,26:559~579.
    163.Anderson D M,Garrison D J.The ecology and oceanography of harmful algal blooms.Limnol.Oceanogr.1997,42:1009~1305.
    164.Anderson D M,Glibert P M,Burkholder J M.Harmful algal blooms and eutrophication:nutrient sources,composition,and consequences.Estuaries,2002,25(4b):704~726.
    165.Andersen O K,Goldman J C,Caron D A,et al.Nutrient cycling in a microflagellate food chain:Ⅲ.Phosphorus dynarnics.Marine Ecology Progress Series,1986,31:47~53.
    166.Boynton W R,Garber J H,Summer R,et al.Inputs,transformation and transport of nitrogen and posphorus in Chesapeake Bay and selected tributaries.Estuaries,1995,18:285-314.
    167.Bricelj V M,Lonsdale D J,Aureococcus anophagefferens:Causes and ecological consequences of brown tides in U.S.mid-Atlantic coastal waters.Limnol.Oceanogr.1997,42(5):1023~1038.
    168.Carpenter E J.Nitrogenous nutrient uptake,primary production,species composition of phytoplankton in Carmans River estuary,LongIsland.Limnol Oceanogr.1985,30(3):513~526.
    169.Chen C T A,Ruo R,Pai S,et al.Exchange of water masses between the East China Sea and the Kuroshio off northeastern Taiwan.Continental Shelf Research 1995,15:19~39.
    170.Chen C T A.The Kuroshio intermediate water is the major source of nutrients on the East China Sea continental shelf.OceanolActa,1996,19:523~527.
    171.Chung S W,Jan S,Liu K K.Nutrient fluxs through the Taiwan Strait in spring and summer 1999J.Oceanogr.,2001,57(1):47~53.
    172.Cloern J E.Empirical Model of Skeletonema costatum Photosynthetic Rate,with Applications in the San Francisco Bay Estuaty.Advances in Water Resources,1978,1(5):267~274.
    173.Cullen,Horrigan S G.Effeets of nitrate on the diurnal vertieal migration,carbon to nitrogen ratio and the photosynthetic capacity of the dinoflagellate Gvmnodium slendens,Marine Biology,1981,62:81~89.
    174.Dagg M,Benner R,Lohrenz S,et al.Transformation of dissolved and particulate materials on continental shelves influenced by large rivers:plume processes.Cont.Shelf Res.,2004,24:833~858.
    175.Edmond J M,Spivack A,Grant B C,et al.Chemical dynamics of the Changjiang River estuary.Cont Shelf Res,1985,4:17~36.
    176.Falkowski P G,Barber R T,Smetacek V.Biogeochemical controls and feedbacks on ocean primary production.Chemistry and biology of the oceans.Science,1998,281:200~206.
    177.Fisher T R,Peele E R,Ammerman J W.et al.Nutrient limitation in Chesapeake Bay.Mar.Ecol Prog.Ser.1992,82:51~63.
    178.Flynn K J.How critical is the critical N:P ratio?J Phycol.2002,38:961~970.
    179.Foy R H,Rosell R.Fractionation of phosphorus and nitrogen loadings from a Northern Ireland fish farm.Aquaculture.1991,9(6):31~42.
    180.Foy R H,Rosell R.Loadings of nitrogen and phosphorus from a Northern Ireland fish farm.Aquaculture 1991,96:17~30.
    181.Funge S B.Nutrient budgets in intensive shrimp ponds implications for sustainability.A qvacvltme, 1998,164:117-133.
    182. Giblin A B. Benthic metabolism and nutrient cycling in Boston Harbor, Massachusetts. Estuaries, 1997,20(2):346-364.
    183. Goffart A, Catalano G, Hecq J H. Factors controlling the distribution of diatoms and Phaeocystis in the Ross Sea. J Mar Sys, 2000,27:161-175.
    184. Grasshoff K, Kremling K, Ehrhardt M. Methods of Seawater Analysis. Third Edition. Weinheim: WILEY- VCH Verlag GmbH, 1999:160-223.
    185. Hallam T G, Clark C E. Nonautonomous logistic equations as models of population in a deteriorating environment. Bioi, 1982, 93:303-311.
    186. Hallegraeff G M. A review of harmful algal blooms and their apparent global increase. Phycologia, 1993, 32(2):79-99.
    187. Harrison P J, Hu M H, Yang Y P, et al. Phosphate limitation in estuarine and coastal waters of China. 7. Exp. Biol .Ecol, 1990,140:79-87.
    188. Hecky R E, Kilham P. Nutrient limitation of phytoplankton in freshwater and marine environments: A review of recent evidence on the effects of enrichment. Limnol. Oceanogr. 1988, 33(4):796-822.
    189. Hodgkiss I J, Ho K C. Are changes in N:P ratios in coastal waters the key to increased red ide blooms? Hydrobiologia, 1997, 352:141-147.
    190. Iwasaki H., Physiological ecology of red tide flagellates. In: Biochemistry and Physiology of Protozoa, Academic Press, New York, 1979,1:357-393.
    191. Jaworski N A, Howarth R W, Hetling L J. Atmospheric deposition of nitrogen oxides out to landscape contributes to coastal eutrophication in the Northeast United States. Environmental Science &Technology, 1997, 31(7):1995-2004.
    192. Kiestensen E, Jensen M H, Andersen T K. The impact of polychaete borrows on nitrification and reduction in sediments. Exp. mar. Biol. Ecol. 1985, 85:75-91.
    193. Krom M D, Brenner S, Kress N. Phosphorus limitation of primary production in the Eastern Mediterranean Sea. Limnol. Oceanogr. 1991 36:424-432.
    194. Li M T, Xu K Q, Watanabe M, et al. Long-term variations in dissolved silicate, nitrogen, and phosphorus flux from the Yangtze River into the East China Sea and impacts on estuarine ecosystem. Estuarine, Coastal and Shelf Science, 2007, 71:3-12.
    195. Lindahl O. Dinoflagetta. Elsevier, New York, 1985, 231-232.
    196. Liu M, Xu S Y, Hou L J, et al. Phosphorous Forms in Sediments and Their Distribution in the Yangtze Estuary and Coastal Areas. Marine Science Bulletin, 2001, 3(2):55-62.
    197. Liu S M, Zhang J, Chen H T, et al. Nutrients in the Changjiang and its tributaries. Biogeochemistry, 2002, 62:1-18.
    198. Maclntyre H L, Geiger R J, Miller D C. Microphytobenthos: The ecological role of the garden of unvegetated, Shallow-water marine habitats. I. Distribution, abundance and primary production. Estuaries, 1996,19:186-201
    199. Meybeck M. Carbon, nitrogen and phosphorus transport by world rivers. American J. Sci., 1982, 288:401-450.
    200. Nelson D M, Brzezinski M A. Kinetics of silicic acid uptake by natural diatom assemblages in two Gulf Stream warm-core rings. Marine ecology progress series, 1990, 62(3):283-292.
    201. Officer C B, Ryther J H. The possible importance of silicon in marine eutrophication. Mar. Ecol. Prog. Ser., 1980, 3(1):83-91.
    202. Paerl H W. Coastal eutrophication and harmful algal blooms: Importance of atmospheric deposition and ground-water as "new" nitrogen and other nutrient sources. Limnol. Oceanogr. 1997,42:1154-1165.
    203. Redfield A C, Ketchum B H, Richards F A. The influence of organisms on the composition of seawater. 1963 In The Sea, Vol.2, edited by M.N. Hill, pp.26-77.
    204. Riegman R. Mechnism behind eutrophication induced novel algal blooms. Netherlands Inst Voor Onderzoek Cler Zee, 1991, 52, NIOZ-1991-9.
    205. Ryther J H, Dunstan W M. Nitrogen, phosphorus, and eutrophication in the coastal marine environment. Science, 1971, 171:1008-1013.
    206.Seitzinger S P,Kroeze C.Global distribution of nitrous oxide production and N inputs in freshwater and coastal ecosystems.Global Biogeochemical Cycles,1998,12:93~113
    207.Smith S.V.Phosphorus versus nitrogen limitation in the marine environment.Limnol.Oceanogr.1984,29(6):1149~160.
    208.Stumpf R P.Observation of sea surface temperature and winds associated with Florida,USA,red tides (Gvmnodium breve blooms).In:Harmful Algae,Reguera,Proeeedings of the Ⅷ international conference on harmful algae,1998,pp.145~148
    209.Su Y,Weng X.Water masses in China Seas.In Oceanology of China Seas,Vol.1.Kluwer Academic Publishers,Netherlands,1994,3~16.
    210.Sundareshwar P V,Morris J T,Koepfler E K,et al.Phosphorus limitation of coastal ecosystem processes.Science,2003,299:563~565.
    211.Sysan G.Hegarty,Tracy A.Villareal,Effects of light level and N:P supply ratio on the competition between Phaeocystis cf.Pouchetii(Hariot) Lagerheim (Prymnesiophyceae) and five diatom species,Journal of Experimental Marine Biology and Ecology,1998,226:241~258
    212.Tang,R.,Dong,H.,Wang,F.1990 Biogeochemical behavior of nitrogen and phosphate in the Changjiang estuary and its adjacent waters.In Biogeochemical Study of the Changjiang Estuary.China Ocean Press,Beijing,pp.322~334.
    213.Thingstad T F,Krom M D,Mantoura R F.Nature of phosphorus limitation in the ultraoligotrophic eastern Mediterranean.Science,2005,309:1068~1071.
    214.Tian R C,Hu F X,Martin J M.Summer nutrient fronts in the Changjiang (Yangtze River) estuary.Estu.Coast.Shelf Sci.,1993,37:27~41.
    215.Townsend,D.W.,Cammen,L.,Holligan,P.M.,et al.,Causes and consequences of variability in the timing of spring phytoplankton blooms.Deep-Sea Research,1994,41:747~765.
    216.Tovar A,Moreno C,et al.Environmental implications of intensive marine aquaculture in earthen ponds.2000,Mar Poll Bull,40(11):981~998
    217.Treguer P,Nelson D.M.,VAN Bennekon A.J.et al.The silica balance in the world ocean:a re-estimate.Science,1995,268:375~379.
    218.Van Bennedom A,Wetsteijin F J.The winter distribution of nutrients in the Southern Bight of the North Sea and in the estuaries of the Scheldt and Rhine.Neth.J.Sea Res.1990,25:75~87
    219.Wang B D,Wang X L,Zhan R.Nutrient conditions in the Yellow Sea and the East China Sea.Estu.Coast.Shelf Sci.,2003,58:127~136.
    220.Wang B D.Cultural eutrophication in the Yangtze River plume:history and perspective.Estuarine,Coastal and Shelf Science,2006,69(3-4):471~477.
    221.Wang S L,Chen C T A.Bottom water in the middle of the northern East China Sea in summer is the remnant winter water.Continental Shelf Research,1998,18:1573~1580.
    222.Wong G T F,Gong G C,Liu K K,et al.Excess nitrate in the East China Sea.Estuarine,Coastal Shelf Science,1998,46:411~418.
    223.Zhang J.Atmospheric wet deposition of nutrient:Correlation with biological blooms in northwest Pacific Coastal Zones.Ambio,1994,23(8):464~468.
    224.Zhang J.Nutrient elements in large Chinese estuaries.Continental ShelfRes,1996,16:1023~45.
    225.Zhang J,Liu S M,Ren J L.Nutrient gradients from the eutrophic Changjiang (Yangtze River) Estuary to the oligotrophic Kuroshio waters and re-evaluation of budgets for the East China Sea Shelf.Progress in Oceanography,2007,74:449~478.
    226.Zhang Y,Zhu L,Zeng X,et al.The biogeochemical cycling of phosphorus in the upper ocean of the East China Sea.Estuarine.Coastal and Shelf Science,2004,60:369~379.
    227.Zhu M Y,Li R X,Mu X Y,et al.Harmful algal blooms in China seas,Ocean Research,1997,Special,19(2):173~184.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700