用户名: 密码: 验证码:
冬小麦—夏玉米产量性能动态特征及其主要栽培措施效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冬小麦—夏玉米一年两熟是黄淮海平原主要种植模式。小麦、玉米分别是典型的旱作C3与C4作物。研究两作物产量形成过程特点和高产产量性能指标以及两作周年优化配置对指导两作物周年一体化高产具有重要意义。本研究于2006—2008年连续两年对河北廊坊、2006—2007年河南温县及2007—2008年河南焦作两作物不同品种(冬小麦:藁城8901、烟农19、轮选987、豫麦49和FS230;夏玉米:益农103、郑单958、登海601和农华0379)、不同密度及不同播期与收获期的产量性能公式MLAI×D×MNAR×HI=EN×GN×GW中的7项指标动态进行系统测定并建模分析,结果表明:
     1.在主要产量性能参数动态模型中,两作物的群体叶面积动态和冬小麦茎数动态均符合方程y= (a+bx)/ (1+cx+dx2);干物重和粒重动态模拟模型均为Logistic曲线y= a / (1+be-cx);而生育期动态模型符合方程y=(ab+cxd)/ (b+xd)曲线特征。并且模型的主要参数明显受品种类型、种植密度、生育期长短及播种收获期的影响,因而可通过这些主要栽培措施调节参数变化,进而对最终产量产生调节效应。
     2.品种类型、种植密度和播种/收获时期对两作物产量性能均具有调控效应。高产品种主要表现在群体平均叶面积指数(MLAI)、生育期天数(D)、穗数(EN)、粒重(GW)和收获指数(HI)的明显提高。增加种植密度,群体MLAI和EN相应提高,而平均净同化率(MNAR)、穗粒数(GN)和GW减小。冬小麦推迟播种期MLAI、EN和GN降低,但MNAR、HI和GW显著提高;夏玉米推迟收获期MLAI、HI、D和GW均显著提高。
     3.两作物不同产量层次的产量性能变化指标相同,变幅不同。冬小麦从高产(6000 kg hm-2)上升到超高产水平(9509 kg hm-2),及夏玉米从高产(8349kg hm-2)上升到超高产水平(13050kg hm-2),MLAI、D、EN、GW和HI均明显提高。其中冬小麦各项指标分别增加51.6%、20.6%、16.7%、23.6%和3.0%。夏玉米分别加了38.7%、21.6%、27.4%、13.2%和24.5%。这意味着实现超高产应走结构性增产为主协同功能性增产同步提高之路。
     4.冬小麦晚播,夏玉米晚收的栽培技术体系具有明显的增产效果。该体系的产量性能特点为:小麦晚播MNAR、HI和GW显著提高;夏玉米晚收MLAI、HI、D和GW均显著提高。“双晚”资源利用效率特点为,周年光能资源籽粒生产效率提高2.22%~10.86%,≥10℃有效积温生产效率提高0.47%~11.56%,周年产量提高519~2575 kg hm-2。在黄淮平原,不增加任何生产成本,适当推迟冬小麦播期和夏玉米收获期是实现该地区周年高产高效的有效技术途径。
The winter wheat (Triticum aestivum L.)–summer maize (Zea mays L.) rotation is the main crop system for whole-year high yield in North China plain. Quantifying the two crops yield performance are badly needed for whole year yield increasing. On the basis of the quantitative analysis formula of yield performance MLAI×D×MNAR×HI= EN×GN×GW, different cultivars of winter wheat (Gaocheng 890, Yannong19, Lunxuan 987, Yumai 49, and FS230) and summer maize(Yinong 103, Zhengdan 958, Denghai 601 and Nonghua 0379) were used in field experiments with three different densities and different sowing time and harveat time in Hebei Langfang in 2006-2008, Henan wen couty 2006-2007 and jiaozuo 2007-2008 respectively, and the yield performance parameters and the dynamic process of the two crops for different yield level were quantified. And the main results were as follows:
     1. With the five yield performance parameters dynamic simulation models for two crops of winter and summer maize, leaf area index and ear number dynamic accorded with the same equation of y= (a+bx)/ (1+cx+dx2), and the Logistic equation y= a / (1+be-cx) could make a good estimation of dry matter accumulation and grain weight dynamic well, but the duration dynamic conformed to y= (ab+cxd)/ (b+xd). Whereas, the values of the above equations had differences among different cultivars, densities, duration and sowing with harvest time and so on.
     2. The yield performance parameters varied with different densities, cultivars, sowing and harvest time. With the plant density increasing, mean eaf area index (MLAI) and ear number (EN) increased significantly, but the mean net assimilation rate (MNAR), grain number (GN) and grain weight (GW) decreased relatively, which means the yield performance parameters play the collaborative effect on high yield realization. Also higher yield cultivars with higher MLAI, duration (D), EN, GW and harvest index (HI) than the normal yield level.Meanwhile, delaying the sowing time of winter wheat, the MLAI, EN and GN decreased, MNAR, HI and GW were significantly promoted. Similarly, the MLAI, HI, D, andGW of summer maize significantly increased with late harvest.
     3. The yield performance of winter wheat and summer mazie varied significantly with different yield levels. The yield performance of MLAI, D, EN, GW and HI increased 51.6%, 20.6%, 16.7%, 23.6% and 3.0% respectively when the yield of winter wheat increased from high yield 6000 kg ha-1 to higher yield 9509 kg ha-1. Similarly, the above parameters increased 38.7%, 21.6%, 27.4%, 13.2% and 24.5% respectively when the yield of summer maize increased from high yield 8349 kg ha-1 to higher yield 10530 kg ha-1. In conclusion, the two effective approaches,“structural exploration”and“functional exploration”were were put forward in exploring crop production potential.
     4. The double late-cropping system with winter wheat–summer maize is important for whole-year higher yields. The yield performance quantitative parameters of the double late-cropping system showed that MNAR, HI, and GW were significantly promoted of winter wheat in the double late-cropping system. Similarly, the MLAI, HI, D, GW of maize significantly increased in the double late-cropping system. The light and temperature use efficiency were 2.22%–10.86% and 0.47%–11.56% higher in the double late-cropping system with 442–2575 kg ha?1 of additional yield than the control. Without any increase cost, based on late sowing of winter wheat, early-maturing wheat cultivars are suggested to be used in the double cropping system in North China, resulting in longer grain-filling period of the following maize crop and ultimately higher yield.
引文
1.蔡建中,王余龙,何杰升.水稻产量构成因素与群体干物质生产的关系及其对产量的影响.江苏农学院学报, 1989, 10(4): 9~12
    2.陈恩谦.水稻不同生育时期对全生育期的影响研究.农业网络信息, 2006, 6: 163~164
    3.曹宏鑫,董玉红,王旭清.不同产量水平小麦最适叶面积指数动态模拟模型研究.麦类作物学报, 2006, 26 (3): 128~131
    4.曹宏鑫,张春雷,李光明,张保军,赵锁劳,汪宝卿,金之庆.油菜生长发育模拟模型研究.作物学报,2006,32(10):1530~1536
    5.曹靖生.玉米不同株型结构源库关系研究.全国首届青年农学学术年会论文集.北京:中国科学技术出版社, 1992, 173~178
    6.曹显祖,朱庆森.水稻品种的源库特征及其类型划分的研究.作物学报, 1987, 13 (4): 265~272.
    7.常丽英,汤亮,曹卫星.水稻地上部单位器官物质分配过程的定量模拟.中国农业科学, 2008, 41(4): 986~993
    8.陈传永,董志强,赵明.低温冷凉地区超高产春玉米群体生长分析研究.玉米科学, 2007, 15(3): 75~79
    9.陈传永,侯玉虹,李刚,朱平,董志强,赵明.密植高产条件下玉米植株可溶性糖含量及其产量关系分析.玉米科学,2008,16(4):77~81
    10.陈国平,尉德铭,刘志文,赵仕孝,杨洪友.夏玉米的高产生育模式及其控制技术.中国农业科学,1986,1:33~40
    11.崔俊明.玉米籽粒发育的生理特性研究.河南农业大学学报, 1995, 29(2):116~120
    12.车少静,智利辉,冯立辉.气候变暖对石家庄冬小麦主要生育期的影响及对策.中国农业气象, 2005, 26 (3): 180~183
    13.崔彦宏,罗蕴玲,李伯航.紧凑型夏玉米群体光合特性与产量关系分析.玉米科学, 1994, 2(2): 52~57
    14.邓若磊,张树华,郭程瑾.春季施氮方式对小麦子粒灌浆的调控及其生理机制.植物营养与肥料学报, 2008, 14(1): 1~8
    15.丁四兵,朱碧岩,吴冬云.温光对水稻抽穗后剑叶衰老和籽粒灌浆的影响.华南师范大学学报(自然科学版), 2004, 1(5):117~128
    16.杜永,王艳,王学红,孙乃立,杨建昌.黄淮地区不同粳稻品种株型、产量与品质的比较分析.作物学报,2007,33 (7):1079~1085
    17.段巍巍,李慧玲,肖凯,李雁鸣.密度对玉米光合生理特性和产量的影响.玉米科学,2007,15(2):98~101
    18.代西梅,尚玉磊,赵保凤,姜丽娜,李春喜.不同分蘖特性小麦内源激素变化动态及其与分蘖发生关系的研究.河南师范大学学报(自然科学版), 2000, 28(3): 78~82, 114
    19.范福仁,莫惠栋,秦泰辰.胡雪华玉米密植程度研究.1963, 2(4): 381~398
    20.范仲学,王璞,梁振兴.玉米胚乳细胞发育研究进展.核农学报.2001, 15 (2):121~124
    21.付雪丽,赵明,周宝元,崔国美,丁在松.小麦、玉米粒重动态共性特征及其最佳模型的筛选与应用.作物学报,2009,35(2):309~316
    22.高亮之,黄耀,金之庆.水稻最适群体动态的决策模型.水稻栽培计算机模拟优化决策系统.北京:中国农业科技出版社. 1992,105~115
    23.高聚林,刘克礼,张永平.不同栽培措施对旱作春小麦叶面积和光合势的影响.麦类作物学报, 2003, 23(4): 66~70
    24.高亮之,金之庆,黄耀.水稻计算机模拟模型及其应用之一:水稻钟模型—水稻发育动态的计算机模型.中国农业气象, 1989, 10 (3): 3~10
    25.高玉山,窦金刚,刘慧涛,孙毅,任军,闫孝贡.吉林省半干旱区玉米超高产品种、密度与产量关系研究.玉米科学,2007,15(1):120~122
    26.高煜珠,王忠,孙进来.关于光呼吸与光合作用关系的研究:不同类型植物光呼吸与光合强度之间的关系.作物学报, 1985, (2):81~88
    27.高云晖,宋长青.关中西部小麦测土平衡施肥技术参数及其应用.土壤肥料, 2002, 5: 29~32
    28.龚月桦,刘迎洲,高俊凤.小麦品种901及其杂交母本的籽粒灌浆过程分析.中国农业科学, 2004, 37(9): 1288–1292
    29.郭晓维,赵春江,梁振兴.不同冻水和起身水组配下的冬小麦物质积累与分配.华北农学报, 1999,14 (4): 68~77
    30.国家统计局国际统计信息中心.世界农业统计资料.世界农业.1999, (5): 59~60
    31.韩萍,赵化春.作物化控工程研究与应用概况.玉米科学, 2001, 9: 79~85
    32.韩利,戴剑锋,罗卫红.氮素对温室黄瓜开花后干物质分配和产量影响的模拟研究.农业工程学报. 2008, 24(6): 206~213
    33.何萍,金继运,林葆.钾营养对春玉米叶片衰老过程中激素变化与活性氧代谢的影响.植物营养与肥料学报,1998,4(2):123~130
    34.侯满平,郝晋珉,丁忠义,孟鹏.黄淮海平原资源低耗生态农业模式研究.中国生态农业学报,2005,13(1):189~191
    35.侯美亭,毛任钊,吴素霞.黄淮海平原不同生态类型区农业可持续发展策略研究.干旱地区农业研究,2006,24(3):156~159
    36.胡昌浩,董树亭,岳寿松.高产夏玉米群体光合速率与产量关系的研究.作物学报, 1993, 19(1): 63~69
    37.胡焕焕,刘丽平,李瑞奇,李慧玲,李雁鸣.播种期和密度对冬小麦品种河农822产量形成的影响.麦类作物学报,2008,28(3):490~495
    38.胡健,杨连新,周娟,王余龙,朱建国.开放式空气CO2浓度增高(FACE)对水稻灌浆动态的影响.中国农业科学,2007,40(11):2443~2451
    39.黄策,王天铎.水稻群体物质生产过程的计算机模拟.作物学报, 1986, 2(1): 1~8
    40.黄冲平,张放,王爱华.马铃薯生育期进程的动态模拟研究.应用生态学报, 2004, 15(7): 1203~1206
    41.黄建晔,杨连新,杨洪建,刘红江,董桂春,朱建国,王余龙.开放式空气C O2浓度增加对水稻生育期的影响及其原因分析.作物学报, 2005, 31(7): 882~887
    42.黄锦文,梁康迳,梁义元.不同类型水稻籽粒灌浆过程内源激素含量变化的研究.中国生态农业学报, 2003,11(2):11~13
    43.黄俊岳,季武云.小麦产量构成因素及增产途径的探讨.河南农业科学, 1981,12: 1~3
    44.黄智鸿,王思远,包岩,梁煊赫,孙刚,申林,曹洋,吴春胜.超高产玉米品种干物质积累与分配特点的研究.玉米科学,2007,15(3):95~98
    45.姜青珍,张建平,李雁鸣.水分影响小麦光合物质生产模拟模型的初步研究.河北农业大学学报,1999,22(2):27~31
    46.蒋钟怀.营养元素对高油1号玉米生长发育及籽粒品质影响的研究.中国农业科学, 1990, 23(3): 37~43
    47.李秉柏,方娟.棉花生育期模拟模型的研究.棉花学报, 1991, 3 (2): 59~68
    48.李潮海,赵亚丽,王群,栾丽敏,李宁.遮光对不同基因型玉米叶片衰老和产量的影响.玉米科学,2005,13(4):70~73
    49.李洪梅,白洪立,王西芝,孟淑华,王立功,张娟.不同收获时期对夏直播玉米产量影响的试验.农业科技通讯, 2008, 6: 80~82
    50.李军营,徐长亮,谢辉. CO2浓度升高加快水稻灌浆前期籽粒的生长发育进程.作物学报. 2006, 32(6): 905~910
    51.李三爱,居群,池宝亮.作物生产潜力研究进展.中国农业气象,2005,26:106~111
    52.李绍长,陆嘉惠,孟宝民.玉米子粒胚乳细胞增殖与库容充实的关系.玉米科学, 2000, 8(4): 45~~47
    53.李绍长,白萍,吕新,刘淑云,董树亭.不同生态区及播期对玉米籽粒灌浆的影响.作物学报,2003,29(5):775~778
    54.李素娟,陈继康,陈阜,李琳,张海林.华北平原免耕冬小麦生长发育特征研究.作物学报,2008,34(2):290~296
    55.李霞,焦德茂,戴传超.转育PEPC基因的杂交水稻的光合生理特性.作物学报, 2001, 27(2): 137~143
    56.李雁鸣,张永丽,肖凯.不同组合杂种小麦群体光合优势特点的研究.华北农学报, 2003, 18 (2): 39~42
    57.李志勇,王璞,魏亚萍.不同施肥条件下夏玉米的干物质积累、产量及氮肥利用效率.华北农学报, 2003,18 (4): 91~94
    58.梁太波,尹燕枰,蔡瑞国.大穗型小麦品种强、弱势籽粒淀粉积累和相关酶活性的比较.作物学报, 2008, 34(1): 150?156
    59.梁卫理.作物高产高效与合理投入.农业现代化研究. 1995, 16(5): 325~327
    60.廖桂平,官春云.甘蓝型冬油菜(Brassica napus)干物质积累、分配与转移的特性研究.作物学报,2002,28 (1):52~58
    61.林文雄,吴志强,梁义元.气候条件对杂交水稻籽粒灌浆的影响.中国农业气象,1992,13(2):4~8
    62.林忠辉,项月琴,莫兴国.夏玉米叶面积指数增长模型的研究.中国生态农业学报, 2003,11(4): 69~72
    63.凌启鸿,张洪程,蔡建中.水稻高产群体质量及其优化控制探讨.中国农业科学, 1993, 26 (6): 1~11
    64.凌启鸿.作物群体质量.上海:上海科学技术出版社, 2000
    65.刘洪,李慧君,宇振荣.黄淮海平原棉花生长模拟模型.中国农业气象,2008,29 (1) :62~66
    66.刘景辉.中国粮食安全技术对策研究.中国农业大学博士论文, 2002年
    67.刘胜利,孔新,任林昌.新大豆2号高产生育动态及生理生化指标的研究.新疆农业科学, 2005, 42 (4): 44~47
    68.刘桃菊,殷新佑,戚昌瀚.气候变化与水稻生长发育及产量形成关系的模拟研究.应用生态学报, 2005, 16 (3): 486~490
    69.刘铁梅,曹卫星,罗卫红.小麦叶面积指数的模拟模型研究.麦类作物学报, 2001, 21 (2): 38~41
    70.刘万代,尹钧,朱高纪.剪叶对不同穗型小麦品种干物质积累及籽粒产量的影响.中国农业科学, 2007, 40(7): 353~1360
    71.刘霞,穆春华,尹燕枰.花后高温、弱光及其双重胁迫对小麦籽粒内源激素含量与增重进程的影响.作物学报, 2007, 33 (4): 677~681
    72.刘晓冰,李文雄.源库改变对小麦籽粒蛋白质、淀粉含量和产量的影响.东北农业大学学报. 1996, 27(4): 321~325
    73.刘章勇,梅楠,郁明谏.冬小麦子粒增重过程的模拟模型研究.湖北农业科学, 1997, 3: 14~18
    74.刘中一.论我国粮食问题及其发展战略对策.中国粮食发展战略对策.农业出版社,1990, 14~24
    75.刘景辉.中国粮食安全技术对策研究.中国农业大学博士论文, 2002年
    76.柳家友,董家璞,张运栋,闫书安.玉米叶向值、叶片面积与产量关系的研究初报.河南农业科学,1994,5: 4~6
    77.娄成后,高等植物的命脉~维管系统之谜.植物生理学通讯, 1992, 28(1):1~10
    78.鲁雪林.植物内源激素与水稻穗粒数的关系研究.安徽农学通报, 2006, 12(8): 38
    79.陆增根,戴廷波,姜东,荆奇,吴正贵,周培南,曹卫星.氮肥运筹对弱筋小麦群体指标与产量和品质形成的影响.作物学报,2007, 33(4): 590~597
    80.骆世明,陈春焕,刘振宇.水稻高产栽培的计算机模拟研究.山东农业大学学报, 1992, 23(增刊): 87~94
    81.雒温生,晁召飞,何义珍.小麦高产田套种夏玉米适宜播期与收获期的研究.河南科技学院学报, 2007, 25(2): 18~20
    82.马超,王德民,史红志.不同地力条件下小麦垄作栽培对产量构成因素的影响.山东农业科学, 2007(4): 71~73
    83.马冲,邹仁峰,苏波,张健,陈举林.不同熟期玉米籽粒灌浆特性的研究.作物研究,2000,4(6):17~19
    84.马国胜,薛吉全,路海东.播种时期与密度对关中灌区夏玉米群体生理指标的影响.应用生态学报, 2007, 18 (6): 1247~1253
    85.马勇.不同生态类型春小麦品种籽粒灌浆特性及库源关系的探讨.麦类作物, 1998, 18(6): 45~48
    86.孟凡德,马林,石书兵.不同耕作条件下春小麦干物质积累动态及其相关性状的研究.麦类作物学报, 2007, 27 (4): 693~698
    87.孟亚利,曹卫星,周治国.基于生长过程的水稻阶段发育与物候期模拟模型.中国农业科学, 2003, 36(9): 1362~1367
    88.孟亚利,曹卫星,柳新伟,周治国,潘洁.水稻光合生产与干物质累积的动态模拟.生物数学学报,2004,19(2):205~212
    89.莫惠栋.穗数~密度的理论曲线方程及其分析.作物学报, 1964: 3(3): 327
    90.倪纪恒,罗卫红,李永秀,戴剑锋,金亮,徐国彬,陈永山,陈春宏,卜崇兴,徐刚.温室番茄叶面积与干物质生产的模拟.中国农业科学,2005,38(8):1629~1635
    91.裴雪霞,王姣爱,党建友.播期对优质小麦籽粒灌浆特性及旗叶光合特性的影响.中国生态农业学报, 2008, 16(1): 121~128
    92.戚昌瀚.水稻生长日历模拟模型研究综合报.江西农业大学学报, 1992, 14(3): 218~223
    93.乔玉辉,宇振荣.冬小麦叶面积动态变化规律及其定量化研究.中国生态农业学报. 2002, 10(2): 83~85
    94.任国珍,张平臣.玉米平衡施肥试验研究.杂粮作物, 2001, 21(2): 32~33
    95.任小龙,贾志宽,韩清芳,韩娟.半干旱区模拟降雨下沟垄集雨种植对夏玉米生产影响.农业工程学报,2007,23(10):45~50
    96.任正隆,李尧权.氮肥对半湿润区不同基因型冬小麦籽粒灌浆特性的影响.中国农业科学,1981,6:12~20
    97.山仑,邓西平,张岁岐.春小麦对有限灌溉的生理生态反应.农业用水有效性研究,北京:科学技术出版社, 1992, 75
    98.申丽霞,王璞,张红芳.施氮对夏玉米不同部位籽粒灌浆的影响. 2005, 31(4): 532~534
    99.时晓伟,王淑芬,王继忠,王辉,贾永国.小麦早熟高产品种子粒灌浆特性分析.华北农学报,2005,20(6):4~7
    100.宋继娟,柳金来,腾文星.玉米群体光合性能与气象因素及产量的关系. 1996, 4(4): 60~74
    101.宋珍霞,高明,关博谦,许安定,代先强.硼对烤烟干物质积累和养分吸收的动态模拟.植物营养与肥料学报,2006,12(4):565~570
    102.孙成明,庄恒扬,杨连新等. FACE水稻生育期模拟.生态学报, 2007, 27(2): 613~619
    103.孙锐,彭畅,丛艳霞,赵明,董志强.不同密度春玉米叶面积系数动态特征及其对产量的影响.玉米科学, 2008, 16(4): 61~65
    104.汤亮,朱艳,刘铁梅.油菜生育期模拟模型研究.中国农业科学, 2008, 41(8): 2493~2498
    105.汤亮,朱艳,孙小芳,曹卫星.油菜光合作用与干物质积累的动态模拟模型.作物学报, 2007,33 (2):189~195
    106.陶龙兴,王熹,黄效林.内源IAA对杂交稻强、弱势粒灌浆增重的影响.中国水稻科学, 2003, 17(2): 149~155
    107.田纪春,邓志英,胡瑞波.不同类型超级小麦产量构成因素及籽粒产量的通径分析.作物学报, 2006, 32 (11): 1699~1705
    108.田奇卓,于振文,潘庆民,刘万代,张三坤.冬小麦超高产栽培群、个体发展动态指标的研究.作物学报,1998,24(6):859~864
    109.佟屏亚,程延年.不同株型玉米叶面积消长动态的研究.北京农业科学,1994,12(6):1~4
    110.佟屏亚.小麦玉米两作吨粮综合技术研究.北京农业科学,1993,11(3):1~6
    111.王爱华,黄冲平.马铃薯生育期进程的计算机模拟模型研究.中国马铃薯, 2003, 17(2): 74~78
    112.王道波,周晓果,李会龙.光温水耦合对农作物干物质积累影响的数学模型.中国农业气象, 2005, 31(4): 31~39
    113.王宏广.中国粮食安全.北京:中国农业出版社, 2005
    114.王光华,刘晓冰,杨恕平.生殖生长期源库改变对大豆籽粒产量和品质的影响.大豆科学, 1999, 1 6(3) : 2 3 6~2 4 1
    115.王纪华,王树安,梁振兴.玉米花、粒退化的时空分布及其生理机理研究.作物高产、高效生理学研究进展.北京:科学出版社, 1994
    116.王纪华,王树安,赵冬梅等.玉米穗轴维管解剖结构及含水率对籽粒发育的影响.玉米科学, 1994, 2 (4): 41~43
    117.王嘉宇,范淑秀,徐正进,陈温福.几个不同穗型水稻品种籽粒灌浆特性的研究.作物学报,2007,33(8):1366~1371
    118.王空军,董树亭,胡昌浩.我国玉米品种更替过程中根系生理特性的演进Ⅱ.根系保护酶活性及膜脂过氧化作用的变化.作物学报, 2002, 28(3): 384~388.
    119.王空军,胡昌浩,董树亭.我国不同年代玉米品种开花后叶片保护酶活性及膜质过氧化作用的演进.作物学报, 1999, 25 (6): 700~706
    120.王玲,谢德体,刘海隆.玉米叶面积指数的普适增长模型.西南农业大学学报, 2004, 26 (3): 303~306, 311
    121.王庆成,牛玉贞,王忠孝.源~库比改变对玉米群体光合和其它性状的影响.华北农学报, 1997, 12 (1): 1~6
    122.王瑞军,李世清,王全九,郑纪勇,樊军,李生秀.半干旱农田生态系统春玉米叶面积及叶生物量模拟的比较研究.中国生态农业学报,2008,16(1):139~144
    123.王世之.小麦生长发育及产量形成的研究~从产量构成因素关系看小麦合理密植.植物学报, 1973, 15(1): 81~92
    124.王维,蔡一霞,蔡昆争.水分胁迫对贪青水稻籽粒充实及其淀粉合成关键酶活性的影响.作物学报. 2006, 32(7): 972~979
    125.王维,张建华,杨建昌.适度土壤干旱对贪青小麦茎鞘贮藏性糖运转及籽粒充实的影响.作物学报, 2004, 30(10): 1019~1025
    126.王文静.不同穗型冬小麦籽粒灌浆期源库强度及其与淀粉积累的关系.作物学报, 2004, 30(9): 916~921
    127.王秀珍,黄敬峰,李云梅.水稻叶面积指数的高光谱遥感估算模型.遥感学报, 2004, 8(1): 81~88
    128.王艳杰,杜吉到,郑殿峰.大豆不同群体几种主要性状与产量关系的研究.2007, 26(2): 185~189
    129.王珍,武志海,徐克章.玉米群体冠层光合速率与叶面积指数关系的初步研究.吉林农业大学学报,2001,23(2):9~12, 16
    130.王振华,张新,刘文成.不同生态条件对高淀粉玉米品种郑单18生长发育及产量的影响.农艺科学, 2004, 20(1): 98~99, 137
    131.王志敏,王璞,李绪厚.冬小麦节水省肥高产简化栽培理论与技术.中国农业科技导报, 2006, 8 (5): 38~44
    132.王志敏,王树安,苏宝林.小麦穗粒数的调节.作物高产、高效生理学研究进展.北京:科学出版社, 1994
    133.王志强,周晓明,申占保,王明东,李琳.播期对不同专用型小麦籽粒灌浆特征参数和产量的影响.河南农业科学,2003,4: 4~6
    134.尉德铭,陈国平.夏玉米收获期和小麦播种期组配在全年粮食生产中的效应.北京农业科学,1992,10(2): 6~9
    135.魏其克,李红霞.肥力对冬小麦营养体内光合产物积累运转及产量的影响[J ].干旱地区农业研究, 1996, (4): 12~16
    136.吴成春,李合松,王学华.米粉专用稻稻米直链淀粉含量的化学调控.湖南农业大学学报(自然科学版), 2007, 33(5): 513~517
    137.吴金花,焦峰,郑树生.不同氮肥水平影响下的水稻灌浆特性分析.黑龙江八一农垦大学学报, 2007, 19(2): 8~12
    138.吴孔明,刘孝纯.棉花生育的积温模型.华北农学报, 1996, 11 (2): 74~80
    139.吴少辉,高海涛,张学品.播期对不同习性小麦品种籽粒灌浆特性的影响.麦类作物学报, 2004, 24 (4): 105~107
    140.吴伟明,程式华.水稻根系育种的意义及前景. Significance and prospects of breeding for root system in rice.中国水稻科学, 2005, 19 (2): 174~180
    141.吴占鹏.作物产量与密度的理论曲线方程.辽宁农业科学, 1986, 5: 18~21
    142.伍维模,郑德明,董合林,金伟.南疆棉花干物质和氮磷钾养分积累的模拟分析.西北农业学报,2002,11(1):92~96
    143.肖淑招,张桂宗,孟宪钺.冬小麦灌浆速度模式研究.农业气象,1986,7(4):9~13
    144.辛吉武,郭江勇,杨小利.陇东黄土高原冬季积温对冬小麦生育期的影响.干旱地区农业研究. 2007, 25(4): 85~89
    145.徐恒永,赵君实.高产冬小麦的冠层光合能力及不同器官光合产物分配.作物学报, 1995, 21(2): 204~209
    146.徐庆章,王忠孝,王庆成.玉米增库促源及增穗保叶高产栽培理论与实践.玉米科学, 1994, 2(2): 27~29
    147.许大全,沈允钢.光合作用与作物产量.作物高产、高效生理学研究进展.北京:科学出版社, 1994
    148.薛菁芳,汪景宽,李双异.长期地膜覆盖和施肥条件下玉米生物产量及其构成的变化研究.玉米科学, 2006, 14(5): 66~70
    149.薛香,吴玉娥,陈荣江,韩占江,郜庆炉.小麦籽粒灌浆过程的不同数学模型模拟比较.麦类作物学报,2006,26(6):169~171
    150.薛珠政,卢和顶,林建新.种植密度对玉米单株和群体效应的影响.玉米科学, 1999, 7(2): 52~54
    151.严定春,朱艳,曹卫星.水稻栽培适宜品种选择的知识模型.南京农业大学学报, 2004,27(4):20~25
    152.严美春,曹卫星,李存东.小麦发育过程及生育期机理模型的检验和评价.中国农业科学, 2000, 33 (2): 43~50
    153.阎素红,蔡忠民,杨兆生.不同肥力对晚播小麦开花后地上器官干物质积累运转及产量的影响.麦类作物学报, 2000, 20 (3): 46~49
    154.杨华应.玉米健壮素增产效果及使用技术.云南农业科技, 1989, 6
    155.杨建昌,王国忠,王志琴.旱种水稻灌浆特性与灌浆期籽粒中激素含量的变化.作物学报, 2002, 28(5): 615~621
    156.杨建昌,彭少兵,顾世梁.水稻灌浆期籽粒中3个与淀粉合成有关的酶活性变化.作物学报, 2001, 27(2): 157~164
    157.杨倩,张惠君,谢甫绨.不同来源大豆品种生育期结构与产量关系的研究.大豆科学, 2008, 27(6): 973~978
    158.杨守仁.水稻源与坑的辩证关系.北京:农业出版社, 1980, 176~185
    159.杨秀兰,牛一川,康辉.不同播种密度对地膜小麦重要农艺性状的影响.干旱地区农业研究,2007,25(6): 70~73
    160.易镇邪,王璞,陶洪斌,鲁来清,于国建.氮肥基/追比对华北平原夏玉米生长发育与水、氮利用的影响Ⅰ.夏玉米生长发育与水分利用效率.中国生态农业学报,2007,15(6):65~68
    161.殷宏章,雷宏椒,王天铎.稻麦群体研究论文集.上海科学技术出版社, 1961
    162.殷新佑.水稻发育温度效应的非线性模型及其应用.作物学报, 1994, 20 (6): 692~700
    163.于强,陆佩玲,刘建栋,傅抱璞,姚克敏.作物光温生产力模型及南方水稻适宜生长期的数值分析.自然资源学报, 1999, 14 (2): 163~168
    164.于振文,张学华.高产小麦产量构成因素的分析.山东农业科学, 1982(3): 16~20
    165.袁继超,刘从军,朱庆.播期对水稻籽粒灌浆特性的影响.西南农业学报, 2004, 17(2): 164~168
    166.张宾,赵明,董志强,陈传永,孙锐.作物产量“三合结构"定量表达及高产分析.作物学报, 2007, 33(10): 1674~1681
    167.张宾,赵明,董志强,李建国,陈传永,孙锐.作物高产群体LAI动态模拟模型的建立与检验.作物学报, 2007, 33(4): 612~619
    168.张耗,杜永,杨建昌.水稻超高产栽培的途径与技术.农艺科学, 2007, 23(8): 136~140农学
    169.张建华,李迎春,余行杰.作物物候规律的模拟研究.作物学报, 2000, 26 (5): 635~639
    170.张立祯,曹卫星,张思平.基于生理发育时间的棉花生育期模拟模型.棉花学报, 2003, 15 (2): 97~103
    171.张录达,蒋钟怀.玉米籽粒灌浆与积温的非线性动态模型.中国农业大学学报. 1998, 3(1): 45~49
    172.张强,陈明昌,程滨.系统测土施肥技术在冬小麦上的应用效果.山西农业科学, 2000, 28(2): 3~6
    173.张晓龙.小麦品种籽粒灌浆研究.作物学报, 1982, 8(2): 87~93
    174.张旭东,蔡焕杰,付玉娟,王健.黄土区夏玉米叶面积指数变化规律的研究.干旱地区农业研究,2006,24 (2):25~29
    175.张亚洁,许德美,孙斌,刁广华,林强森,杨建昌.种植方式对陆稻和水稻籽粒灌浆及垩白的影响.中国农业科学,2005,39(2):257~264
    176.张永丽,肖凯,李雁鸣.种植密度对杂种小麦C6~38/Py85~1旗叶光合特性和产量的调控效应及其生理机制.作物学报,2005,31(4):498~505
    177.张正翼,龚万灼,杨文钰,等.套作模式下不同大豆品种(系)主要农艺性状与产量的关系.大豆科学, 2007, 26(5): 680~686
    178.赵步洪,张文杰,常二华.水稻灌浆期籽粒中淀粉合成关键酶的活性变化及其与灌浆速率和蒸煮品质的关系.中国农业科学, 2004, 37(8): 1123~1129
    179.赵明,付金东.玉米高产性能定量化分析及其技术途径.玉米科学, 2008, 16(4): 8~12,16
    180.赵明,李建国,张宾,董志强,王美云.论作物高产挖潜的补偿机制.作物学报,2006,32(10):1566~1573
    181.赵明,王树安,李少昆.论作物产量研究的“三合结构”模式.北京农业大学学报, 1995, 21(4): 359~364
    182.赵志全,高尔明,黄丕生.源库质量与作物超高产栽培及育种.河南农业大学学报, 1999, 33(3): 226~230
    183.郑广华.农作物光合性能的研究.山东农业科学,1963, 21~31
    184.郑广华.植物栽培生理.济南:山东科学技术出版社, 1980
    185.郑国清.浅论对水稻发育期模型的认识.中国农业气象, 1999, 20 (2 ): 31~34
    186.郑洪建,董树亭,王空军,胡昌浩,郭玉秋,张吉旺.生态因素对玉米子粒发育影响及调控的研究.玉米科学,2001,9(1): 69~73
    187.郑有飞,万长建,宗雪梅.小麦生育期计算机模拟系统初步研究.南京气象学院学报, 1998, 21(3): 377~382
    188.朱庆森,曹显祖,骆亦其.水稻籽粒灌浆的生长分析.作物学报, 1988,14(3): 182~193
    189.朱庆森,曹显祖,杨建昌.江苏中籼品种产量源库关系与株型演进特征的研究.稻麦研究新进展.南京:东南大学出版社, 1991
    190.朱庆森,曹显祖,骆亦其.水稻籽粒灌浆的生长分析.作物学报,1988,14(3):182–193
    191.朱艳,曹卫星,周治国,田永超.冬小麦生长适宜动态指标的知识模型.中国农业科学,2004,37(1):43~50
    192.邹江石,吕川根.水稻高产育种实践与思考.作物学报, 2005, 31 (2): 254~258.
    193.左大康,王懿贤,陈建绥.中国地区太阳总辐射的空间分布特征.气象学报, 1963, 33(1): 78~96
    194. Aggarwal P K, Kropff M J, Cassman K G, ten Berge H F M. Simulating genotypic strategies for increasing rice yield potential in irrigated, tropical environments. 1997, 51, 5~17
    195. Arkebauer T J, Norman J M, Sullivan C Y. From cell growth to leaf growth. III. Kinetics of leaf expansion. Agron J, 1995, 87, 112~121
    196. Baker, C H, Horrocks R D, Goering C E. Use of the Gomperta function for predicting corn leaf area. Trans. ASAE 1975, 18,323~326
    197. Brancourt-Hulmel M., Doussinault G, Lecomte C, et al. Genetic improvement of agronomic traits of winter wheat cultivars released in France from 1946 to 1992. Crop Sci. 2003. 43: 37-45
    198. Goudriaan J, Monteith J L.A mathematcal function for crop growth based on light interception and leaf area expansion. Annals of Botany.1990, 66: 695~701
    199. Guang cen He , Hiroshi Suzuki . A method to remove the outer layer of rice endosperm without damaging starch granules. Cereal Chem, 1988 ,65(4) : 307~312
    200. Hunt R Parsons I T. A computer program for deriving growth functions in plant growth analysis. J Appl Ecol 1974, 11, 297~397
    201. Overman A R, Wilkinson S R. Extended logistic model of forage grass response to applied nitrogen, phosphorus, and potassium. Trans Am Soc Agric Eng, 1995, 38: 103~108
    202. Pinto, Influence of endosperm cell number on kernel size and weight in maize, Dissertation Abstracts International, B Sciences and Engineering. 1986, 46 (11) :36~53
    203. Purcino A A C, Silva M R, Andrade S R M, 2000. Grain filling in maize: the effect of nitrogen nutrition on the activities of nitrogen assimilating enzymes in the pedicel~placenta~chalaza region. Maydica, 45:95~103
    204. Reynolds M P, Hobbs P R, Braun H J. Challenges to international wheat improvement. J Agric Sci, 2007, 145: 223~227
    205. Aggarwal P K, Kropff M J, Cassman K G, ten Berge H F M. Simulating genotypic strategies for increasing rice yield potential in irrigated, tropical environments. 1997, 51, 5~17
    206. Austin R B. Physiological limitation to cereal yields and ways of reducing them by breeding. In: Hurd, R. G., Biscoe P V. Dennis C.(eds.) Opportunities for increasing crop yields.1980, London:Pitman, 3~19
    207. Axel García García, Durval Dourado~Neto, Maria del Valle Basanta, Ramiro Fernando López Ovejero, JoséLaércio Favarin. Logistic rice model for dry matter and nutrient uptake. Scientia Agricola, 2003, 60(3): 481~488
    208. Baker C H, Horrocks R D, Goering C E. Use of the Gompertz function for predicting corn leaf area. Trans. ASAE, 1975,18:112~121
    209. Bavec M., Vukovic K, Grobelnik M S, Rozman ?, Bavec F. Leaf area index in winter wheat: response on seed rate and nitrogen and application by different varieties. Journal of central European Agriculture, 2007, 8(3): 337~342
    210. Birch C J , Hammer G L , Rickert K G. Dry matter accumulation and distribution in five cultivars of maize (Zea mays): relationships and procedures for use in crop modeling. Aust J Agric Res, 1999, 50: 513~527
    211. Birch C J, Hammer G L, Rickert K G. Immproved methods for predicting individual leaf area andleaf senescence in maize( Zea mays L.). Aust, J Agric Res, 1998, 49, 249~262
    212. Board J E, Tan Q. Assimilation capacity effects on soybean yield components and pod number. Crop Science, 1995, 35: 845~851
    213. Bouman B M A, Van Laar H H. Description and evaluation of the rice growth model ORYZA 2000 under nitrogen~limited conditions. Agricultural Systems, 2006, 87(3): 249~273
    214. Brdar M D, Marija M, Kraljevic B, Borislav D, Kobiljski. The parameters of grain filling and yield components in common wheat (Triticum aestivum L) and durum wheat (Triticum turgidum L. var. durum). Central European J Biology, 2008, 3(1): 75~82
    215. Brooking I R. Effects of temperature on kernel growth rate of maize grown in a temperate maritime environment. Field Crops Res. 1993, 35: 135~145
    216. Carberry P S. Test of leaf~area development in CERES~Maize: a correction. Field crops res, 1991, 27:159~161
    217. Charles C. Mann. Future food: bioengineering: genetic engineering aim to soup up crop photosynthesis. Science. 1999, 283 (5400): 314~316
    218. Cober E R, Morrison M J , Ma B, e t a 1. Genetic improvement rate of short—season soybean increase with plant population. Crop Science, 2005, 4 5: 1029~1034
    219. Coventry D R, Reeves T G, Brooke H D, Cann D K. Influence of genotype, sowing date, and seeding rate on wheat development and yield. Australian Journal of Experintenta1 Agriculture, 1993, 33: 751~757
    220. Dafid A R, James H O, Charles P. Soybean germplasm evaluation for length of the seed filling Period. Crop Science, 1982, 22: 319~322
    221. Dale R F, Coelho D T, Gallo K P. Prediction of daily green leaf area index for corn. Agron J , 1980, 72, 999~1005
    222. Daynard T B, Tanner I W, Duncan WG. Duration of the grain filling period and its relation to grain yield in corn (Zea mays L.). Crop Sci, 1971, 11: 45–48
    223. Dumphy EJ, Hanway JJ, Green DE. Soybean yield in relation to days between specific developmental stages. Agronomy Journal, 1979, 71: 917~921
    224. Echarte L, Andrade F H, Sadras V O, Abbate P. Kernel weight and its response to source manipulations during grain filling in Argentinean maize hybrids released in different decades. Field Crops Research, 2006, 96: 307~312
    225. Evans, L T. Crop Evaluation, Adaptation and Yield. Cambridge: Cambridge University Press, 1993
    226. Fischer, R A , Number of kernels in wheat crops and the influence of solar radiation and temperature, J Agric Sci., 1985,105: 447~461
    227. Fischer R A.. Understanding the physiological basis of yield potential in wheat. J Agric Sci, 2007, 145: 99~114
    228. Gifford R M, Evans L T. Photosynthesis, carbon partition and yield. Annu. Rev. Plant Physiol, 1981, 32: 485~509
    229. Ginzburg L R, Golenberg E M. Lectures in theoretical population biology. Prentice~Hall,Englewood Cliffs NJ.1985, 89~119
    230. Goudriaan J, Monteith J L.A mathematcal function for crop growth based on light interception and leaf area expansion. Annals of Botany.1990, 66: 695~701
    231. Habekotte B. A model of the phonological development of winter oilseed rape (Brassica napus L.). Field Crop Research, 1997, 54: 127~136
    232. Hanft, J. M, Reed, A. J, Jones, R. J. Effect of 1~aminocyclopropane~1carvoxylic acid on maize kernel development in vitro. Journal of plant Growth Regulation, 1990, 9(2): 89~94
    233. Hannah L C, Greene T W, Muntz K, 1998. Maize seed weight is dependent on the amount of endosperm ADP~glucose pyrophosphorylase. J Plant Physiol, 152: 649~652
    234. Huxley J S. Problems of relative growth. Johns Hopkins University Press, Baltimore, 1993, 45~68
    235. Jones C A, Kiniry J R. CERES~Maize: A simulation model of maize growth and development.1986, A and M university press, college station, TX
    236. Jones D B, Peterson M L, Geng S. Association between grain filling rate and duration and yield components in rice. Crop Sci, 1979, 19: 641~644
    237. Jones R J, Brenner M L. Distribution of abscisic acid in maize kernel during grain filling. Plant Physiol, 1987, 83: 905~909
    238. Jones R J, Roessler J, Ouattar. Thermal environment during endosperm cell division in maize: effects on number of endosperm cells and starch granules. Crop Sci, 1985, 25: 830–834
    239. Jones R J, Schreibe B M, Roessler J. Kernel sink capacity in maize: genotypic and maternal regulation. Crop Sci, 1996, 36: 301–306
    240. Keating B A, Wafula B M, Waitiki J M. Development of a modeling capability for maize in semi~arid eastern Kenya. ACIAR Proc, 1992, 41: 26~33
    241. Kiniry J R, Majo D J, Lizaurralde R C, Major D J, Izaurralde R C, Williams J R, Gassman P W, Morrison M, Bergentine R, Zemn R P. Epic model parameters for cereal, oilseed and forage crops in the northern great plains region. Canadian Journal of Plant Science, 1995, 75: 679~688
    242. Kirham M B, Kanemasu E T. Crop~water relations, New York, John Wiley and Sons, 1983, 481
    243. KristóI, Gyuris K, Torma M, Hódi Szél M, Petróczi I M. Investigation of sowing date and seeding rate on the yield of winter wheat. Cereal Research Communications, 2007, 35: 685~688
    244. Lionel J M, Sylvain P. Leaf area establishment of a maize (Zea Mays L.) field crop under potassium deficiency. Plant and Soil, 2004, 265: 75~92
    245. Lizao J I, Batchelor W D, Westgate M E. A leaf area model to simulate cultivar~specific expansion and senescence of maize leaves. Field Crop Research, 2003,80: 1~17
    246. Loomis R S, Williams W A. Maximum crop productivity: An estimate. Crop Science, 1963, 3: 67~72
    247. Loomis, R. S., Amthor, J. S. Yield potential, plant assimilatory capacity, and metabolic efficiencies. Crop Sci. 1999, 39:1584~1596
    248. Loss S P, Kirby E J M, Siddique K H M, Perry M W. Grain growth and development of old and modern Australian wheats, Field Crops Res, 1989, 21,131~146
    249. Lotka A J. Elements of physical biology. Willians﹠Wilkins, Baltimore,1925.
    250. McDonald G K, Sutton B G, Ellison F W. The effect of sowing date, irrigation and cultivar on the growth and yield of wheat in the Namoi River Valley, New South Wales. Irrigation Science, 1984, 5: 123~135
    251. McKenzie R H, Middleton A B, Bremer E. Fertilization, seeding date, and seeding rate for malting barley yield and quality in southern Alberta. Can J Plant Sci, 2005, 85: 603–614
    252. MeMaster G S, Wilhelm W W. Growing degree days: One equation, two interpretations. Agric For Meteorol, 1997, 877: 291~300.
    253. Overman A R, Wilkinson S R. Extended logistic model of forage grass response to applied nitrogen, phosphorus, and potassium. Trans Am Soc Agric Eng, 1995,38:103~108
    254. Pearl R. The biology of population growth. Alfred A Lnopf, New York, 1925, 21~25
    255. Prioul J L, Reyss A, Schwebel D N, 1990. Relationships between carbohydrate metabolism in ear and adjacent leaf during grain filling in maize genotypes. Plant Physiol Biochem, 28 :485~493
    256. Rácz F, Kása S, Hadi G. Daily changes in the water content of early and late maturing grain maize varieties in the later stages of over~ripening. Cereal Research Communications, 2008, 36(4): 583~589
    257. Reddy K S. Corn responses to post~tasseling nitrogen deprivation and to various ammonium/nitrate rations. Agronomy Journal, 1981, 83(1): 201~203
    258. Reynolds M P, Calderini D F, Condon A G, Rajaram S. Physiological basis of yield gains in wheat associated with the LR19 translocation from Agropyron elongatum. Euphytica, 2001, 119: 137~141
    259. Reynolds M P, Hobbs P R, Braun H J. Challenges to international wheat improvement. J Agri Sci, 2007, 145: 223~227
    260. Richards, R A. Selectable traits to increase crop photosynthesis and yield of grain crops. Journal of Experimental Botany, GMP Special Issue. 2000, 52: 447~458.
    261. Salazar M R, Jones J W, Chaves A, Cooman. A model for the potential production and dry matter distribution of Cape gooseberry (Physalis peruviana L.). Scientia Horticulturae. 2008, 115: 142–148
    262. Sankaran V M, Aggarewal P K, Sinha S K. Improvement in wheat yields in northern India since 1965: measured and simulated trends. Field Crops Res, 2000, 66,141~149
    263. Slafer, G .A .,Andrade, F. H., Changes in physiological attributes of the dry matter economy of bread wheat through genetic improvement of grain yield potential at different regions of the world: A review, Euphytica, 1991, 58: 37~49
    264. Smith W., Jr Haimon H., Jr Harrell. Ontogenetic model of cotton yield. Crop Science, 1976, 16 (1): 30~36
    265. Stewart D W, Dwyer L M. A model of expansion and senescence of individual leaves of field~grown maize ( Zea mays L.) Can J Plant Sci, 1994, 74, 37~42
    266. Sun H Y, Zhang X Y, Chen S Y, Pei D, Liu C M. Effects of harvest and sowing time on the performance of the rotation of winter wheat–summer maize in the North China Plain. IndustrialCrops and Products. 2007, 25: 239~247
    267. Thomposon D W. On growth and form: the complete revised edition. Dover, New York.1992, 67~94
    268. Tollenaar M., Lee E A. Yield potential, yield stability and stress tolerance in maize. Field Crops Research. 2002, 75: 161~169
    269. Turner N C, Drought resistance and adaptation to water deficits in crop plants, In Harry Mussall: Stress Physiology in Crop Plants, New York, John Willey and Sons, 1979, 343
    270. Watson, D. J. The dependence of net assimilation rate on leaf area index. Ann. Bot. N. S. 1958, 22: 37~54
    271. Yamauchi M., Physiological basis of higher yield potential in F1 hybrids. In: Virmani, S. S. (ed.), Hybrid rice Technology: New Developments and Future Prospects. International Rice Research Institute, Los Ba?os, Philippines, 1994: 71~80.
    272. Yan W, Hunt L A. An equation for modeling the temperature response of plants using only the cardinal temperatures. Annals of Botany, 1999, 84:607~614
    273. Yang H S, Dobermann A, Lindquist J L, Walters D T, Arkebauer T J, Cassman K G. Hybrid~maize~a maize simulation model that combines two crop modeling approaches. Field Crops Research, 2004, 87(2-3): 131~154
    274. Yang J C, Su B L, Wang Z Q, Zhu Q S. Characteristics and physiology of grain filling in intersubspecific hybrid rice. Chinese Agricultural Sciences, 1999, 1: 61~70.
    275. Yang J, Zhang J, Wang Z, Zhu Q, Wang W. Horm oneal changes in the grains of rice subjected to water stress during grain filling. Plant Physiol, 2001, 127: 315~323
    276. Yin X Y, Jan G D, Egbert A. A flexible sigmoid function of determinate growth. Annals of botany, 2003, 91, 361~371
    277. Yin X Y, Krepff M J, Aggarwal P K. Optimal preflowering phenology of irrigated rice for high yield potential in three Asian environments: a simulation study. Field Crops Research, 1997, 51: 19~27
    278. Yu Q, Liu J D, Zhang Y G, Li J. Simulation of rice biomass accumulation by an extended logistic model including influence of meteorological factors. Int J biometeorol. 2002, 46: 185~191
    279. Zeide B. Analysis of growth equations. Forest Science, 1993, 39, 594~616
    280. Zhao M, Li L L , Guan D M, Wang Z M, Ding Z S. Theories of yield formation and ways of high yield in crop. In : Proc Int Symp“World Food Security”, Kyoto , 1999, 143~146
    281. Zheng, H E . Effect of high temperature stress on transportation and distribution of C. assimilate sin grain filling period of winter wheat J China Agr Univ, 1999, 4(1): 73~76

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700