用户名: 密码: 验证码:
矿井封闭火区救灾辅助决策系统研发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿井火灾是三大灾害之一,又是引起瓦斯爆炸的主要原因,特别是封闭火区后,由于缺少有效监测手段或方法不当极易造成二次复燃和瓦斯爆炸事故。当矿井采取封闭火区灭火方法时,由于其特殊性,救灾工作难度非常大。因此,除了迅速成立救灾指挥机构、组织救灾队伍外,还必须紧紧依靠科学有效的救灾辅助决策系统。
     矿井封闭火区救灾辅助决策系统研发,是我国矿山安全及矿山救护的一项急需解决的新课题,也是封闭火区救灾技术的主导研究方向。对丰富和完善矿井火灾救灾技术和煤矿安全生产起到主要指导作用。
     本文是国家十一五科技支撑计划项目主要研究内容,本人是该项目的主要负责人。继承并创新了沈阳研究院多年来在矿井火灾防治及救灾方面研究成果,并借鉴了国内外的成功经验,结合我国煤矿的地质赋存条件和开采条件,进行了矿井封闭火区救灾辅助决策技术理论分析和试验研究,取得了如下主要研究成果:
     (1)首次研发了基于3D-GIS平台的车载封闭火区救灾辅助决策系统。系统具有井下近距离火源点预测、密闭区温度场实时监测、密闭区发生火灾危险程度实时预测、密闭区发生瓦斯爆炸危险程度实时预测、封闭火区救灾专家方法库及专家决策技术。
     (2)首次提出了集取气、分析及爆炸三角形显示预警等多种功能为一体的,用于矿井火灾封闭火区救灾,具有瓦斯爆炸早期预测功能的束管监控分站技术。并建立了数学模型予以软件、硬件实现。克服现有束管监控,布管困难、连接费时,不能满足火灾抢险救灾的需求。
     (3)首次提出了用于煤矿井下隐蔽火源点探测和密闭区温度场实时监测的分布式光纤测温系统,并通过建立数学模型及软硬件设计进行研发。
     (4)为了实现快速救灾及解决现场救灾中的重复布线和便于系统维护,设计了阻燃、抗静电并集取气、通讯、信号传输(模拟信号,数字信号,光信号)于一体的新型管缆,实现了灾区救灾管缆的快速铺设。
     (5)系统在研发过程中勇于创新,取得了多项国家专利。经过国家正规防爆检测中心对井下设备进行本安防爆性能试验,产品合格。在煤矿进行了联机试验,取得了预期的结果。
     论文的研究成果,不仅为煤矿封闭火区救灾技术提供了理论依据和技术手段,而且对我国非煤矿山应急救灾具有重要的参考价值。
Fire is one of the three major disasters in coal mine, and also is the main reason of gas explosion, especially in closed fire area, due to the lack of effective monitoring or improper methods are very vulnerable to recrudescence and gas explosion. When the mine adopts closed fire zone, because of its specificity, big difficulty of rescue work. Therefore, in addition to the rapid establishment of relief command organization, organize rescue teams, but also must closely rely on the scientific and effective disaster relief auxiliary decision system.
     The disaster relief auxiliary decision system in mine closed fire area development is a new topic that China's mine safety and mine rescue urgently need to solve, and also is a leading direction of closed fire zone disaster relief technology, which plays a major role in enriching and improving coal mine fire rescue technology and safety production.
     This is the main research project of the National Eleventh-Five Year Research Program of China, I am the main person in charge of the project. Inherit and innovate Fire Prevention and Control in the mine and rescue research results of Shenyang Research Institute, and reference successful experiences at home and abroad. Combined with China's coal mining geological and mining conditions, the disaster relief auxiliary decision system technology is theoretical analyzed and experimental studied, the main research results obtained as follows:
     (1) The disaster relief auxiliary decision platform in mine closed fire area is built based 3D-GIS for the first time. It contains underground fire at close combustion source prediction, temperature field in closed areas real-time monitoring, fire hazard level in closed areas real-time prediction, gas explosion hazard level in closed areas real-time prediction, disaster relief experts method base in closed areas and expert decision-making functions.
     (2) The beam tube monitoring substation technology is proposed first, which unifying taking gas, analysis and an explosion early warning triangle displayed, and using in rescue in closed area, with the gas explosion early prediction function. The mathematical model is established, and a complete hardware and software are developed, which overcome the shortcomings of the existing beam tube monitoring, setting tube difficulty, connection time-consuming, cannot satisfy the rapid emergency rescue and disaster relief in closed area.
     (3) First proposed for underground distributed fiber optic temperature measurement system used for the detection of the coal mine hidden fire source and real-time monitoring of closed areas of the temperature field, and the mathematical model is established, the hardware and software design is researched.
     (4) In order to realize the rapid rescue and solve the on-site disaster relief in the duplication of wiring and ease of system maintenance, designed the flame retardant, antistatic and set to take gas, communications, signal transmission (analog signals, digital signals, optical signals) in one of the new tube cables, achieved the rapid lay of disaster relief tube cable.
     (5) In the process of research and development, the system is innovative, achieve many national patents. Through the National Regular Explosion-proof Testing Center, tested the safety and explosion-proof performance on the underground equipment, The product is qualified. The system in the coal mines is online tested and achieves the desired results.
     The results of study, not only provide a theoretical basis and techniques for the relief technology of the coal closed fire area, but also have an important reference value on the emergency rescue of non-coal mines in China.
引文
[1]范天吉著.矿井防灭火综合技术手册(第一卷)[M].吉林:音像出版社,2003,10,1-15.
    [2] Banerjee S C. Spontaneous combustion of coal and mine fire, New Delhi: Oxford & IBH Publishing Co. Pvt. Ltd. 1985.
    [3] Bhattacharjee R M and Tikader M. Fires in Jharia Coalfield vis-à-vis legislative provisions, In Proceedings on mine environment and ventilation, Indian School of Mines, Dhanbad 2001.
    [4] Graham J I.The absorption of oxygen by coal, Part V:The influence on temperature on rates of absorption by different parts of the Barsley Bed.Trans Inst Mine Eng.1915,(48):521-549.
    [5] Memmi J. Cooking Centralia: A recipe for disaster, Geotimes, 2000, 45 (9): 26-27
    [6] Singh B.Assessment of status and control of underground coal mine fire, CMRI Report,1990.
    [7] Singh V K and Dixit J P. Recent trends and developments in mine fire prevention with special reference to Indian coalmines, The Indian mining and Engineering journal, 2001,40(12):31-34.
    [8] DLR, Coal Fire Research–A Sino– German Initiative,World map of coal fires,German Aerospace Center, Oberpfaffenhofen, November 10, Germany 2005.
    [9]付文俊.矿山抢险救灾指挥车系统的设计与应用[J].煤矿安全,2006年,(12):39-42
    [10]王省身、张国枢.矿井火灾防治[M].北京:中国矿业大学出版社, 1990,4,27-29
    [11]范天吉著.矿井防灭火综合技术手册(第二卷)[M].吉林:音像出版社,2003,10, 831-846.
    [12]范天吉著.矿井防灭火综合技术手册(第二卷)[M].吉林:音像出版社,吉林:音像出版社,2003,10, 979-988.
    [13]郭弘.李沁平教授谈虚拟现实技术的应用前景[N].微电脑世界周刊,2002 (Z2)
    [14]郭良浩.新建铁路线路数字化设计平台的研究[J].铁道勘查.2006,32(5):20-25.
    [15]苏林.铁路线路三维设计研究与开发[J].铁道勘查.2007(2):77-78,93.
    [16]王金委,曾学贵.铁路线路设计中三维可视化辅助设计系统研究[J],铁路航测.2002(3):11-14.
    [17]蒋红斐,詹振炎.铁路线路三维可视化设计实现方法研究.中国铁道科学.2003,24(5):56-60.
    [18] Wang Hongwu,Dogn Shihai.A view-dependent dynamic multiresolution terrain mode[J].Journal of Computer-Aided and Computer Graphics.2000.12(8):575-579.
    [19] Nathan A Carr,Jone C.Hart Meshed atlases for real-time procedural solid texturing[J].ACM Transactions on Graphics,2002,21(2):106-131.
    [20]段旭华.矿山救灾与地面消防[M].北京:煤炭工业出版社,2008 ,12,69-98
    [21]刘维庸等.专家系统技术在矿井火灾救灾中的应用[J].煤炭学报,1994(6):242-249
    [22] CMI. On hazards in coalmines, Yearly report, Central Mining Institute(CMI), Katowice, Poland 1995.
    [23] Denby B and Ren T X. A knowledge-based decision support system for spontaneous combustion control,The Mining Engineer,Vol. 151No. 366 1992:253-258.
    [24] Dhar B B. Keynote address on status of mine fires-Trends and challenge,In Proceedings of the confer-ence on Prevention and Control of Mine and Industrial Fires–Trends and Challenges, Calcutta,India,21-22 December 1996 :1-8.
    [25]李兴东.矿井火灾救灾案例库系统的研制[J].中国矿业,2002 (11):68-70
    [26]李兴东.矿井火灾救护模拟演练系统的研制[J].矿业安全与环保,2001 (10):11-12
    [27]王三明等,化工过程防灾决策支持系统研究与实现[D],2002 ,5,21-28
    [28]江兵,白勤虎,何精梅.煤矿危险源分类分级与预警[J].中国安全科学学报,1999,9(4).
    [29]李舒伶,任志玲.矿井火灾时期风流控制系统的研究[J].辽宁工程技术大学学报(自然科学版),1999,(1).
    [30]张健民等.中国地下煤火研究与治理[M].北京:煤炭工业出版社,2008 ,6,117-141
    [31]黄学玉.可同时测量高温发射率及温度系统。红外技术,1999,9.
    [32]林瑶,张得欣.如何正确选择红外测温仪,红外技术与传感器,1999,(10).
    [33]张敬贤,李玉丹,金伟其.微光与红外成像技术,北京理工大学出版社,1995. ,15(11).
    [34]谭永杰.中国煤田自燃灾害及其防治对策[J].煤田地质与勘探,200,28 (6): 8– 10.
    [35]罗新荣,夏宁宁,贾真真.煤矿重大危险源辨识理论与方法.黑龙江科技学院学报,2006,16(2).
    [36]孙斌,李树刚,常心坦,等.火灾危险源评价与预测技术探讨.陕西煤炭,2001,(2).
    [37]铁杰.关于煤田火灾灭火标准的探讨[J].新煤科技,1985,(2):1.
    [38]张建民,煤层自燃三维动态监测方法研究[D].北京:中国矿业大学北京校区,1998。
    [39]祁明星,万兆昌.陕北煤田火区磁探工作方法及效果.物探与化探,1987(8).
    [40]逄焕东,姜福兴,张兴民.微地震监测技术在矿井灾害防治中的应用[J].金属矿山,2004,(12)
    [41]谭海樵,王海棠,季景贤.面向地下煤火热场模型的遥感技术体系探讨[J].国土资源遥感,2002,(3):54– 57.
    [42] Fisher, W.and Knuth ,W.,Detection and delineation of subsurface coal fires by aerial infrared scanning,Geological Society America 1968,(115):67-68
    [43] Greene G W,Moxham R M and Harvey A H.Aerial infrared surveys and borehole temperature measure-ments of coal mine fires in Pennsylvania,In Proceedings of the 6th International ERIM Symposium on Re-mote Sensing of Environment,University of Michigan. Ann Arbor,Michigan,U.S.A. October 13-16 1969[C]:517-525.
    [44] Guan H Y. Applications of remote sensing techniques in coal geology,Acta Geologica Sinica,1989,(2):253-269.
    [45] Loclizaition of Fire Sourse in the Ming Excavation on the Base of Temperature Measurments. Achives of Min-ing Sciences, 1987,(32) 2.
    [46] Loveson V J and Dhar B B. Satellite remote sensing survey over some environmentally critical areas in coalfields of Damodar Basin, India, In Proceedings of First World Mining Environment Congress, New Delhi , Iindia, Decenber 11-14, 1995 : 223-234.
    [47] Zhang J Z.Spatial and statistical analysis of thermal satellite imagery for extraction of coal fire related anomalies,PhD thesis,Technical University Vienna,Vienna,Austria 2004.
    [48] Zhang X.Coal fires in northwest China-Detection,monitoring,and prediction using remote sensing data.
    [49]韩中庚.数学建模方法及其应用[M].北京:高等教育出版社,2009,6,5-10
    [50] Richard Haberman.Appiied Partial Differential Equations[M].北京:机械工业出版社,2007 ,2,1-30
    [51]王明权.非接触隐蔽火源探测技术实用手册中[M].北京:国科技文化出版社,2005,10,623-638
    [52]林瑞泰.热传导理论与方法.天津大学出版社,1992。
    [53]胡汉平.热传导理论[M].北京:中国科学技术大学出版社,2010,1,l15-128
    [54] Steven C.Chapra.工程数值方法[M].北京:清华大学出版社,2007,12,887-895
    [55]王学贺、刘伟.离散正则化方法在煤矿井下隐蔽火源反演中应用[J].上海第二工业大学学报,2008(9):190-215
    [56]程建春.数学物理方程及其近似解法[M].北京:科学出版社[M],2006,12,351-404
    [57]田立平.数学物理方程及其反问题研究[M].北京:机械工业出版社,2010,1,87-125.
    [58]杨文采.地球物理反演的理论与方法.北京.地质出版社,1997.
    [59]黄光远,刘小军.数学物理反问题.山东:山东科学技术出版社,1993.
    [60]王学贺.离散正则方法一维热传导方程寻源反问题中的应用[J].燕山大学学报,2008(1):87-90
    [61] Slavecki R J. Detection and location of subsurface coalfires, In Proceedings of the 3rd International Symposium on Remote Sensing of Environment, Michigan Institute of Science and Technology, University of Michigan, Ann Arobor, Michigan, U.S.A, October 14-16,1964:537-547.
    [62]彭亚绵、安敏.数学物理反问题不适定性理论研究[J].科技信息,2007(5):150-152
    [63]李功胜,马逸尘.热传导反问题中非线形热源的存在性。数学物理学报,2000,1。
    [64]张宇鑫.基于遗传算法的混凝土三维非稳态温度场反分析[J].计算力学学报2004(6):238-245
    [65]张凌云.单一介质热源激发极化法探测的数学模型[D].太原理工大学,2005.
    [66]张洪流.流体流动与传热[M].北京:化学工业出版社,2005,8,160-173
    [67]杨序刚,吴琪淋.拉曼光谱的分析与应用[M].北京:国防工业出版社,2008,11,5-63.
    [68] Al-Mohanadi M R,ROSS J N,Brignell J E.Optically powered and intelligent sensors[J].Sensors and Actua-tors.1997(A60):142-146
    [69] Makoto Miyamaoto,Kazuo Ueno.High Intensity Xenon Pulse Light Source For Flourescence Exicitation.SPIE[J].1997(2982):425-429
    [70] Schade W,Bublitz J.On-site Laser Probe for the Detection of Petrobleum Products in Water and Soil.En-viron.Sci.Technol[J].1996(30) :1451-1458
    [71] Lawson E E, Barry B W, Williams A C. Biomedical applications of Raman spectroscopy. J Raman Spectrosc, 1997,28:111.
    [72] Guan Yifu, Lewis E N, Levin I W. Biomedical Applications of Raman Spectroscopy:Tissue Differentiation and Potential Clinical Usage.In‘Analytical appkication of Raman spectronscopy’.Ed by Pelletier M J. New York: Blackwell Science,1999.
    [73] Xue Gi. Fourier transform Raman spectroscopy and its application fro the analysis of polymeric materials .Prog Polym Sci, 1997,22:313.
    [74]王玉田,郑龙江等.光纤传感技术及其应用[M].北京:北京航空航天大学出版社,2009,1,284-308
    [75]廖延彪、黎敏等.光纤传感技术与应用[M].北京:清华大学出版社,2009
    [76] MiuraT, Thomas G J. Raman spectroscopy of proteins and their assemblies.In:Subcellular Biochemistry. Eds by Biseas B B, Roy S. New York : Plenum Press,1995.
    [77] Levin I W, Lewis E N. Applications of Fourier transform Raman spectroscopy to biological assemblies. San Diego: Academic P ress, 1995.
    [78]邓军,徐精彩,陈晓坤.煤自燃机理及预测理论研究进展[J],辽宁工程技术大学学报,2003,22(4):455-459.
    [79]张国枢,戴广龙.煤炭自燃理论与防治实践[M].北京:煤炭工业出版社,2002.
    [80]邓军,徐精彩,文虎.采空区自然发火动态数学模型研究[J],湘潭矿业学院学报,1998,13(1):11-16.
    [81]邓军,徐精彩,文虎.汝箕沟2-2煤层露头自燃特性研究[J],西安矿业学院学报,1999,19(1):1-4.
    [82]樊新杰,曹代勇,时孝磊,等.内蒙古西部乌达矿区煤层自燃的控制因素[J],地质通报,2006,25(4):487-491.
    [83]樊新杰,曹代勇,胥哲.地质构造条件对煤层自然地影响分析[J],煤炭工程,2007,(1):58-60.
    [84]郭兴明,徐精彩,邓军,等.地温对煤层自燃危险性的影响研究[J]。西安交通大学学报,2000.34(11):23—26。
    [85]尉茂河.关于煤层自燃的内外因分析及其预防对策[J].煤矿安全,1998,(2):30-33.
    [86]马砺.超长综放面煤层自燃火灾防治技术研究[D].西安科技大学,2004.
    [87]李崇山.易燃煤层自热氧化特征的理论分析[J].矿业研究与开发,2000,20(3):43—46.
    [88]刘宝民,王泰.红庙煤矿自燃火灾的综合防治[J].北京工业职业技术学院学报,2004,3(1):38—40.
    [89] V.弗罗尔.防止煤堆自燃的试验研究J].煤质技术,2000, (5):32– 36.
    [90] Dziurzynski W, Tracsz J and Trutwin W .Simulation of mine fires,In Gillies,A.D.S.(Ed.),Proceed-ings of the FourthInternational Mine Ventilation Congress,Brisbane,Australia,3-6 July 1988:357-363.
    [91] Fierro V,Miranda J L. Romero C, Andres J M, Arriaga A and Schmal D. Model predictions and experi-mental results on self-heating prevention of stockpiled coals,Fuel, 2001,(80):125-134.
    [92] Fierro V, Miranda J L, Romero C,Andres J M, Arriaga A,Schmal D and Visser G H.Prevention of spon-taneous combustion in coal stockpiles-Experimental results in coal storge yard,Fuel Processing Technolo-gy 1999,(59):23-34.
    [93] Fierro V,Miranda J L. Romero C, Andres J M, Arriaga A and Schmal D. Model predictions and experi-mental results on self-heating prevention of stockpiled coals,Fuel, 2001,(80):125-134.
    [94] Graham J I.The normal production of carbon monoxide in coal mines,Trans Inst Mine Eng.1921,(60):222-234.
    [95] Gray B F,Sexton M J,Halliburton B and Macaskill C.Wetting-induced ignition in cellulosic materials.Fire Safety Journal, 2002(37):465-479.
    [96] Voracek V. Current planning procedures and mine practice in the field of prevention and suppression of spontaneous combustion in deep coal mines of the Gzech part of upper Silosia coal basin, In Proceedings of the 27 th International Conference of Safety in Mines, New Delhi, India, February 20– 22, 1997 (C) : 437– 441.
    [97]罗海珠,梁运涛.煤自然发火预测预报技术的现状与展望[J].中国安全科学学报,2003,13(3):76—78.
    [98]李树刚,徐精彩.地面储煤堆自燃规律的实验研究[J].阜新:辽宁工程技术大学学报(自然科学版),2000,(6):229—231.
    [99] Smith A C, Rumancik W P and Lazzara C P. SPONCOM-A computer program for the prediction of the spontaneous combustion potential of an underground coal mine. In Proceedings of the 26th International Conference of Safety in Mines Research Institutes, Katowice, Poland, September 4-8, 1995,(4):39-51.
    [100] Lohrer C, Schmidt M and Krause U. A study on the influence of liquid water and water vapor on the self-ignition of lignite coal–Experiments and numberical simulations, Journal of Loss Prevention in the Process Industries,2005 ,(18): 167-177.
    [101] Smith A C, Miron Y and C P Lazzara. Large-scale studies of spontaneous combustion of coal, USBM Report Investigations 9346, 1991.
    [102] Voracek V. Current planning procedures and mine practice in the field of prevention and suppression of spontaneous combustion in deep coal mines of the Gzech part of upper Silosia coal basin, In Proceedings of the 27 th InternationalConference of Safety in Mines, New Delhi, India, February 20– 22, 1997 (C) : 437– 441.
    [103] Wang H, Dlugogorski B Z and Kennedy E M. Theoretical analysis reaction regimes in low– temperature oxidation of coal. Fuel 78 1990: 1073– 1081.
    [104]徐精彩,邓军,文虎.采煤工作面采空区可能发火区域分析[J].西安矿业学院学报,1998,18(1):13-16.
    [105]兖州集团有限公司.煤炭自燃早期预测预报与火源探测技术[M].北京:煤炭工业出版社,2002.
    [106]陈立文。煤层自燃危险程度识别的研究[J]。矿业安全与环保,1992,[5]
    [107]田小龙.近距离煤层群自燃火灾防治技术的研究与应用[D].太原理工大学,2006.
    [108]徐仁亚.超长综放工作面煤炭自然发火的防治与控制体系研究[D].山东科技大学,2004.
    [109]运宝珍、刘洪.瓦斯灾害防治技术[M].北京:煤炭工业出版社,2007,9,66-99.
    [110]史宗保.煤矿安全实用检查方法[M].北京:煤炭工业出版社,2009,3,143-158.
    [111]李学诚.煤矿瓦斯灾害防治及利用技术手册[M].北京:煤炭工业出版社,2005,11,111-138.
    [112]鲜学福,王宏图,姜德义,等.我国煤矿矿井防灭火技术研究综述[J].中国工程科学,2001,(12).
    [113]张从力,刘元敏,刘荣厚,等.一种新型火灾检测定位技术的试验研究[J].矿冶安全与环保,1997,(05).
    [114]潘科,秦华礼,郑晓云,等.基于气味探测技术的矿井输送机胶带火灾监测[J].安全与环境学报,2007,(1).
    [115]张洪润.传感器技术大全[M].北京:航空航天出版社,2007,10,410-494.
    [116]张洪润.传感器应用电路200例[M].北京:航空航天出版社,2006,8。
    [117]徐钊.基于CAN总线的煤矿监测监控系统研究[N].中国矿业大学学报,2004,4:421-423.
    [118]饶运涛,邹继军,郑勇芸.现场总线CAN原理与应用技术[M].北京:北京航空航天大学出版社,2003.
    [119]成继勋.煤矿用现场总线标准的研究[N].煤炭学报,2001,12:657-662.
    [120]冯冬芹,黄文君.工业通信网络与系统集成[M].北京:科学出版社,2005.
    [121]陆奎,李飞.基于MODBUS的煤矿综放工作面控制系统[N].北京工业职业技术学院学报,2003,2:41-43.
    [122]赵小虎,张申,谭得健.基于矿山综合自动化的网络结构分析[J].煤炭科学技术,2004,8:15-18.
    [123]张守祥,王汝琳,郭慧玲.基于PON技术的矿井监控通信系统[J].工矿自动化,2004,2:35-37.
    [124]冯玉林,黄涛,金蓓弘.网络分布计算和软件工程[M].北京:科学出版社,2003.
    [125]田林红.王达昱,王兴举.现场总线技术在危险性环境中的应用[J].电气防爆,2005,3:37-39.
    [126]周世琼.基于AT89818的10M/100M以太网交换机设计[J].单片机与嵌入式系统应用,2004,3:55-57.
    [127] Landmark Project.Longwall Automation [J].Proposal to ACR Board,2005,10:8-10.
    [128] David C Reid.Industrial Ethernet A common communication protocol in longwall automation [EB/OL].[2005-07].http://www.longwallautomation.org.
    [129] Lamport L.Concurrent Reading and Writing of Clocks [J].ACM Trans,1990,8.
    [130] M.Kumar.Video-server designs for supporting very large numbers of concurrent user [J].IBM Journal of Research and Development,1998,2:225,230.
    [131]黄继昌.常用电子元器件[M].北京:人民邮电出版社,2009,9,819-847.
    [132]王显政.煤矿安全监控、监测系统[M].北京:煤炭工业出版社,2007,9,1-82.
    [133]高尚青.矿用智能防灭火钻孔温度测量仪的开发与研制[D].太原理工大学,2005.
    [134]张明德,孙小菡.光纤通信原理与系统.4版.南京:东南大学出版社,2009.
    [135]廖延彪,黎敏,张敏,等.光纤传感技术与应用.北京:清华大学出版社,2009.
    [136] Govindarajan M, Forrest S R, Cheng L, et al. Optically powered optoelectronic switch with polarization routing. IEEE Photonics Technology Letters. 1991,3(7):669-672.
    [137] Kuntz W, Morse R. Optically insulated smart sensors: principles for operation supply. Sensors and Actuators. 1991, A27:497-505.
    [138] Hill K O, Fuji Y, Jonson D C, et al. Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication. Appl. Phys. Lett. , 1978, 32:647-649.
    [139]王平.光纤通信.2版.北京:电子工业出版社,2008.
    [140] Meltz G, Morey W W Glenn H. Formation of Bragg gratings in optical fibers by a transverse holographic method. Opt. Lett. , 1989, 14:823- 825.
    [141] Morey W W, Meltz G, Glenn W H. Fiber Bragg grating sensors. In Proc. SPIE Fiber Optics & Laser Sensors VII, 1989, 1169:98-107.
    [142] Morey W W, et al. Bragg-grating temperature and strain sensors. In Proc. OFS’89, Paris, France, 1989:526.
    [143]谭思亮,邹超群.VisualC++串口通讯工程开发实例导航[M].北京:人民邮电出版社2002,12。
    [144]易思蓉.基于虚拟环境系统的铁路选线设计技术[J],中国铁路.2001(1):45-46。
    [145]蒲浩,宋占峰,郑顺义.道路三维场景的实时动态显示技术[J],交通运输工程学报.2003,3(1):52-56。
    [146]郭玲,王建宇.真实感3D重建中的纹理映射技术[J],中国图像图形学报.2007,12(10):1881-1884。
    [147]孙家广.计算机图形学基础教程[M].北京:清华大学出版社,2005,2。
    [148]徐青.地形三维可视化技术[M].北京:测绘出版社,2000:142-149。
    [149]何健鹰,徐强华,游佳.基于OpenGL的一种三维拾取方法[J],计算机工程与科学.2006,28(1):45-47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700