用户名: 密码: 验证码:
基于动态过程模型的土壤源热泵系统运行优化控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国的建筑能耗在社会总能耗的比例逐渐提高,在建筑的全寿命周期内,建筑运行能耗在建筑节能中处于重要的地位,重点是提高采暖、空调系统的能源利用率。土壤源热泵系统以节能、环保、可靠性高等优点,被称为是21世纪最具有发展前途的建筑节能技术之一,在世界范围内迅速发展和广泛应用。作为一项复杂的系统工程,土壤源热泵系统得到深入的研究,研究的领域主要集中在土壤换热器传热特性的模拟计算、提高传热性能、土壤源热泵系统运行特性的试验研究和土壤换热器的设计方法等,这些研究主要对系统的设计提供理论上的指导。尽管可以通过输入少量的电能获得较高的能量输出,然而在运行时,不论周围环境和设备本身特性如何变化,如果始终使土壤源热泵系统维持在最优状态运行,最大限度地挖掘系统的节能潜力,将能够大幅提高系统的性能,这就需要实现真正的优化控制。对于优化控制的关键是从本质上分析与能量特性有关的动态特性,基于此,本文针对土壤源热泵系统的优化控制进行了深入的理论和实验研究。
     土壤源热泵系统在运行过程中持续受到外界环境的扰动,而优化控制结构的设计和实现则强烈依赖于扰动的特性,对于土壤源热泵系统,按照扰动的频率可以分为两类:一类是与优化过程无关的快扰动;另一类是慢扰动,这类扰动将影响土壤源热泵系统运行的经济性指标。在充分分析土壤源热泵系统优化控制的可行性、特点及优化控制中所面临问题的基础上,基于大系统的分层递阶控制结构进行控制任务的分解与协调,提出适用于土壤源热泵系统的优化控制结构,该结构由调节层、优化层和自适应层组成,其中调节层抑制不可控的快扰动,并使控制变量维持在设定值;优化层根据经济性指标和相应的模型计算调节层的设定值;自适应层则适时地修正优化层的模型参数。这样的优化控制结构为进一步研究土壤源热泵系统的优化控制创建了理论框架。
     在基于模型的优化控制方法中,系统的过程模型是实现优化的基础,而系统过程模型由部件模型组成。土壤源热泵系统由地上的水-水热泵机组和土壤换热器组成,其动态模型作为自适应层的模型结构,对应的稳态模型为优化层提供必要的约束条件。对于水-水热泵机组,由蒸发器、冷凝器、节流机构和压缩机组成,蒸发器和冷凝器采用分段集中参数的方法建立动态参数模型,与压缩机和膨胀阀的稳态模型相结合,建立了完全由系统状态变量和输入变量表示的水-水热泵机组的数学模型。将仿真结果和试验数据进行比较,验证了模型的正确性。
     作为土壤源热泵系统的重要组成部分——土壤换热器,通过载能流体与水-水热泵机组相互耦合、相互影响。在深入分析土壤换热器模型的基础上,从有限长线热源模型出发,建立热渗耦合作用下的土壤换热器动态数学模型,采用格林函数法得到解析解表达式,通过解析解的分析,纯导热情况下的解析解只是一个特例。对于钻孔内部的传热过程,采用能量平衡法,建立钻孔内单U和双U支管内载能流体的温度分布模型,得到温度分布的解析解表达式,进而能够确定进出换热器温度。
     在水-水热泵机组和土壤换热器动态参数模型的基础上,提出利用实际存在的操作波动造成的系统动态变化过程辨识模型中的参数,根据辨识结果对优化层进行校正,使数学模型和实际系统由于失配造成的误差最小。根据最大似然估计将参数辨识问题转化为有约束的非线性规划问题,避免了复杂的数学推导,并可以把参数所具有的先验知识作为约束条件结合在这一框架之中。通过理论分析,证明了所建立的土壤源热泵系统模型存在唯一解及参数的可辨识性。对于循环水泵能耗模型,采用慢时变递推最小二乘法进行辨识。
     在全局搜索算法Scatter Search和局部搜索算法SQP的基础上,提出了一种新型的混合算法SS-SQP。通过分别采用Scatter Search算法、GAS算法和SS-SQP算法对水-水热泵机组模型参数进行辨识,结果表明SS-SQP算法充分发挥了Scatter Search算法和SQP算法各自的特点,使搜索性能获得了较大的提升。
     根据所提出的土壤源热泵系统的优化控制结构,将水-水热泵机组、循环水泵和土壤换热器模型耦合,从全局系统的角度建立土壤源热泵系统的运行优化模型,确立了目标函数、约束条件和控制变量。由于各部件之间相互耦合、相互作用,变量之间存在复杂的约束关系,属于有约束的多变量非线性问题。通过对优化模型的仿真计算,分析了钻孔壁温、回水温度和负荷率对最优运行工况的影响,并与定流量工况进行了比较。结果表明无论是在制冷模式还是制热模式,采用优化控制能够降低系统的总能耗,系统COP得到提高。
     对土壤源热泵统进行了实验研究,实测得到土壤的初始温度和土壤的综合导热系数,并验证土壤源热泵系统模型的正确性。在运行过程中,将各控制环路的设定值重置为优化值,对比优化前后的系统能耗及运行效果,结果表明采用优化控制后,系统运行稳定、可靠,系统的能耗降低,从而验证运行优化控制的可行性及可靠性,为土壤源热泵控制系统的设计和运行管理提供了重要的参考。
The proportion of building energy consumption to total social energy consumption is increasing gradually. In the total life cycle of building, the operation energy consumption has an important role in building energy saving. Enhancing utility efficiency of HVAC is crucial to building energy saving. Ground source heat pump system (GSHPS), which has advantages of energy saving, environmental protection and high reliability, is regarded as an air conditioning technique having the greatest developmental future in the 21st century. So GSHPS is developed rapidly and applied widely all over the world. As a complex system engineering, it attracts more attention and many in-depth researches are implemented in the last decades. However, most of the studies focus on heat transfer of geothermal heat exchangers, enhancing heat transfer performance, designing method, simulation and testing of GSHPS and are mainly used as theoretical guidance in the designing of GSHPS. If continuously maintaining the GSHPS running at its optimum operating condition, despite the changes of environmental condition and equipment behavior, and digging the energy saving potential to the greatest extent, it is possible to achieve an important performance improvement. Continuous tracking and driving the process to its best operating conditions are termed as optimizing control. The essence of optimal control for GSHPS is to analyze dynamic characteristic with respect to energy. So Theoretical and experimental study on GSHPS optimal control is carried out in this dissertation
     GSHPS is continuously subjected to a variety of disturbances during operation. Design and implementation of optimizing control are strongly depended on the characteristics of the disturbances. The process disturbances of GSHPS are divided in two categories:one is fast varying disturbances which are irrelevant for the long term optimization of the process; another is relatively slow varying disturbances which have a significant impact on the optimum economic performance of the GSHPS. Thus the multilayer approach of hierarchical control theory based on the control task decomposion can be used to synthesis the control structure to reduce the mathematical complexity. Based on the analysis of feasibility and characteristics, a multilevel hierarchical control structure scheme for GHSPS including regulatory layer, optimization layer and dynamic adaptive layer is proposed. The regulatory layer takes care of the control tasks of keeping the controlled variables at given set-points, and suppress the influence of the "fast varying" uncontrolled disturbances. The optimization layer takes care of the optimizing control tasks, where the objective is to determine optimum set-points based on an appropriate performance criterion and a mathematical process model. The purpose of the adaptive layer is to compensate for model-induced errors by adjusting the model parameters. This control structure supplies the theoretic frame to further research.
     Process model of GSHPS is the foundation to realize the optimal control. GSHPS consist of water-to-water heat pump and geothermal exchanger (GHE), whose dynamic model act as the model structure in parameter identification phase. And corresponding steady model supplies necessary constraint condition for optimal layer. Water-to-water heat pump consists of evaporator, condenser, expansion valve and compressor in more detail. The spatially distributed heat exchanger including evaporator and condenser are partitioned into spatial zones in the model formulation stage, and lump parameter method model spatial zones based on the first principle. Coupled with compressor and expansive valve of steady model, an apace state model described by state variable and input variable is established. To verify the validity of modeling procedure of heat pump, the simulation outputs were compared with the corresponding values reported in reference papers and the results validate the accuracy of the model.
     GHE couple with water-to-water heat pump through energy carrier media and affect each other mutually. Under the assumption of the finite line source and considering the heat conduction and heat advection effect, mathematical GHE model is established. The analytical solution of temperature-field distribution is obtained by utilizing Green function method. The analytical solution under the condition of pure heat conduction is a special case. In the internal of bore well the thermal conduction of single U-tube and double U-tube is modeled and temperature distribution along the vertical of bore well is obtained using energy balance principle, thus the input and out temperature of GHE can be calculated.
     To achieve faster convergence to the optimum operating region, and to cope with persistent disturbances, a nonlinear non-steady-state process model is identified in the identification phase by change manipulative to make mismatch error between model and real system minimum. The identification result is transfer to optimal layer to revise optimal model to make optimal solution approach to the genuine optimal solution. According to the maximum likelihood estimate method, the parameter identification transform nonlinear program problem. Avoid complicated mathematical deduction. And a priori parameter information is included in the minimization criterion, thus this makes the estimation problem more robust with respect to missing process excitations and over-parameterization. Furthermore, by theory analysis the GSHPS model exit uniqueness solution and parameter identifiability are proved。
     Based on the improved scatter search algorithm and the local search SQP algorithm that fit continuity space optimization, a new mixing algorithm SS-SQP is proposed. Comparing to SS and GAS, the result of parameter identification shows that this new mixing algorithm can improve computing efficiency.
     According to the above optimal control structure, the operation optimal model for the global system is established, which the objective function, constraint condition and manipulate variable is defined. Each of the components is coupled and influence interactively. Optimization problem of GSHPS is nonlinear in both objective function and constraint conditions. The updated steady-state part of the process model is used to optimize the economic performance of the process, where new optimum set-points are calculated for the regulatory control system. Through simulating, effecting factors of bore well temperature, return water temperature and load ratio are investigated. Whenever operating under the heating or cooling mode, the total energy consumption can be decreased by the optimal control compared to constant water volume, and the system COP can be improved.
     Finally, experimental studies on GSHPS are carried out. Comprehensive thermal conductivity coefficient and initial temperature of soil are obtained. And then the GHSPS model is verified. To demonstrate the feasibility and reliable of optimal control, the set values in control loops are adjusted to their optimal values. Then the total system energy consumption is compared with that before optimization, and the result shows that the total energy consumption decreases after optimization, and the GSHPS can operate reliable and stably.
引文
[1]原国家经贸委资源节约与综合利用司赴美节能培训班.美国的“能源之星项目”.节能与环保,2003,(10):10~12.
    [2]刘涛,林汝谋,金红光.能源利用与环境领域的基础研究.中国科学基金,2003,(1):30~33.
    [3]高世宪.日本能源领域新举措及对我国的启示.中国能源,2003,(4):30~33.
    [4]Kostantions D. Patlitzianas,Argyris G. Kagiannas,et al欧盟可再生能源现状、未来发展与挑战.能源工程,2003,(5):29~32.
    [5]史立山.中国能源现状分析和可再生能源发展规划.可再生能源,2004,(5):1~4.
    [6]王庆一.中国能源现状与前景.中国煤炭,2005,31(2):22~28.
    [7]朱训.全面建设小康社会与中国能源战略.科技与产业,2003,3(10):12~20.
    [8]何柞麻.解决中国能源短缺问题的重要途径.福州大学学报,2005,(1):5~8.
    [9]陈清泰.中国能源战略与政策.中国对外贸易,2004,(10):79~83.
    [10]付融冰,张慧明.中国能源的现状.能源环境保护,2005,19(1):8~12.
    [11]龙惟定.试论建筑节能的新观念.暖通空调,1999,29(1):31~35.
    [12]胡平放,向才一旺,丁学俊,等.中国建筑能耗现状特征.1998,15(2):39~43.
    [13]郎四维,龙惟定,林海燕,等.公共建筑节能设计标准宣贯辅导教材.北京:中国建筑工业出版社,2005.
    [14]中华人民共和国建设部.贯彻落实科学发展观大力发展节能与绿色建筑http://www.cin.gov.cn/green/yj/.
    [15]江亿,薛志峰.北京市建筑用能现状与节能途径分析.暖通空调,2004,34(10):13~16.
    [16]魏积义,严卫国,姚忠民.中国建筑能耗现状与节能潜力.沈阳建筑工程学院学报,1994,10(2):185~190.
    [17]龙惟定.试论我国暖通空调业的可持续发展.暖通空调,1999,29(3):25~30.
    [18]郁永章主编.热泵原理与应用.北京:中国建筑工业出版社.1988.
    [19]蒋能照.空调用热泵技术及应用.北京:机械工业出版社,1997.
    [20]魏唐棣.空调节能的绿色思路.重庆建筑大学学报,1999,21(6):109~112.
    [21]付祥钊.长江流建筑节能探讨.重庆建筑大学学报,1997,19(6):78~83.
    [22]Shi zhigang. Experimental Research on seawater source heat pump air-conditioning system,The 3rd Asian Conference on Refrigeration and Air-conditioning,Korea,2006:643~646
    [23]陈文勇.蒸发器过热度稳定性机理与智能控制.西安交通大学博士论文,1998.
    [24]Austin S B. Chilled water system optimization. ASHRAE Journal,1993, (7):26~32.
    [25]孟彤彤,林波荣,朱颖心.部分负荷下一次泵水系统变流量性能研究.暖通空
    调,2002,32(6):108~110.
    [26]柳晓雷,王德林,方肇洪.垂直埋管地源热泵的圆柱面传热模型及简化计算.山东建筑工程学院学报,2001,16(1):47~51.
    [27]D Deerman,S.P Kavanaugh. Simulation of vertical U-tube ground coupled heat pump systems using the cylindrical heat source solution. ASHRAE Trans.1991,97(1):287-295.
    [28]H S Carslaw,J C Jaeger. Conduction of heat in solid. Seconded. Oxford University Press,Great Britain,1959:261~65.
    [29]P Eskilson.Thermal analysis of heat extraction boreholes. University of Lund,Sweden,1987.
    [30]V C Mei,C J Emerson.New approach for analysis of ground-coil design for applied heat pump systems.ASHRAE Trans,1985,91 (2):1216~1224.
    [31]V C Mei,V D Baxter. Performance of a ground-coupled heat pump with multiple dissimilar U-tube coils in series.ASHRAE Trans,1986,92(2):22~25.
    [32]G Hellstrom.Ground heat storage,Thermal analysis of duct storage systems. University of Lund,Sweden,1991.
    [33]Cenk. Yavuzturk,Jeffrey D. spitler, et al. A transient two-dimensional finite volume model for the simulation of vertical U-tube ground heat exchangers.ASHRAE Trans,1999,105(2):465~474.
    [34]Cenk.Yawzturk,Jeffrey D. spitler. A short time step response factor model for vertical ground loop heat exchangers.ASHRAE Trans,1999,105(2):475~484.
    [35]S P Rottmayer,W A.Beckman,J.W Mitchell.Simulation of a single vertical U-type ground heat exchanger in an infinite medium. ASHRAE Trans,1997,103(2):651~658.
    [36]Per Eskilson.Numerical study of radial and vertical mesh division for a single heat extraction borehole. University of Lund,Sweden,1986..
    [37]Monte K Dobson.Modified analytical method for simulating cyclic operation of vertical U-tube ground coupled heat pumps.ASME-JSES-JSME International Solar Energy Conference,1995:69~76.
    [38]Gu Y,O'Neal D L.Development of an equivalent diameter expression for vertical U-tube in ground coupled heat pumps.ASHRAE Trans,1998,104(2):347~355.
    [39]Ingersoll L R, H. J Plass.Theory of the ground pipe heat source for the heat pump.Heating,Piping & Air Conditioning,1948,(7):119~122..
    [40]Hart D P,Couvillion R.Earth coupled heat transfer.Publication of the National Water Well Association,1986.
    [41]Bose J E.Earth coil/heat pump research at the Oklahoma State University,Proceedings of the 6th Annual Heat Pump Technology Conference,1982.
    [42]Bose J E,Parker J D, Mcquiston F C. Design/data manual for closed-loop ground coupled heat pump systems,Atlanta:ASHRAE,1985.
    [43]Caneta Research Inc.Commercial/institutional ground-source heat pump engineering manual. ASHRAE,1995.
    [44]Stephen P Kavanaugh, Kevin Rafferiy.Ground-source heat pumps-design of geothermal systems for commercial and institutional buildings. ASHRAE,1997.
    [45]Steve Kavanqugh. Ground source heat pumps. ASHRAE Journal,1998,40(10):31~35.
    [46]James E Bose.Geothermal heat pumps introductory guide.Oklahoma State University Ground Source Heat Pump Publications,1997.
    [47]Spitler J.D.,X. Liu,S.J.Rees,C. Yavuzturk.Simulation and optimization of ground source heat pump systems.8th International Energy Agency Heat Pump Conference.Las Vegas. May 30-June 2,2005.
    [48]Khan,M.Modeling,Simulation and optimization of ground source heat pump systems.M.S.Thesis,Oklahoma State University,2004.
    [49]Sepehr Sanaye, Behzad Niroomand.Thermal-economic modeling and optimization of vertical ground-coupled heat pump. Energy Conversion and Management,2009,(50):1136~1147.
    [50]ZhaoY,Shigang Z,Xun L.Cost-effective optimal design of ground water source heat pumps.Appl Therm Eng,2003,23:1595~1603.
    [51]Javad Marzbanrad, Ali Sharifzadegan, Ahmad Kahrobaeian.Thermodynamic Optimization of GSHPS Heat Exchangers. Int. J. of Thermodynamics,2007,10(3):107~112.
    [52]Phetteplace.G,W.Sullivan.Performance of a hybrid GCHP system.ASHRAE trans,1998,104(1):763~770.
    [53]Chiasson, A. D.,C. Yavuzturk. Assessment of the viability of hybrid geothermal heat pump systems with solar thermal collector. ASHRAE Trans,2003,109(2):487~500.
    [54]Hern S. Design of an experimental facility for hybrid ground source heat pump systems. M.S. Thesis,Oklahoma State University,2004.
    [55]Jason E. Gentry,Jeffrey D. Spitler,aniel E. Fisher and Xiaowei Xu, Simulation of hybrid ground source heat pump systems and experimental validation.7th International Conference on System Simulation in Buildings,Liege,December 11~13,2006.
    [56]Yavuzturk.C.,J.D.Spitler.Comparative study of operating and control strategies for hybrid ground source heat pump systems using a short time step simulation model.ASHRAE Trans,2000,106(2):192~209.
    [57]崔萍,刁乃仁,方肇洪.地热换热器间歇运行工况分析.山东建筑工程学院学报,2001,16(1):52~57.
    [58]Heyi Zeng,Nairen Diao,Zhaohong Fang.Efficiency of vertical geothermal heat exchangers in the ground source heat pump system,The first international symposium on thermal science and engineering, beijing,2002.
    [59]曾和义,刁乃仁,方肇洪.竖直埋管地热换热器的稳态温度场分析.山东建筑工程学院学报,2002,17(1):1~6.
    [60]曾和义,方肇洪.U型管地热换热器中介质轴向温度的数学模型.山东建筑工程学院学 报,2002,17(1):7~11.
    [61]H Y Zeng,N R Diao,Z H Fang.A Finite Line-source model for boreholes in geothermal heat exchangers.Heat Transfer-Asian Research,2002,31(7):558-567.
    [62]Heyi Zeng,Nairen Diao,Zhaohong Fang.Efficiency of vertical geothermal heat exchangers in the ground source heat pump system, Journal of Thermal Science,2003,12(1):77~81.
    [63]Nairen Diao,Ping Cui,Zhaohong Fang.The thermal resistance in a borehole of geothermal heat exchangers.Proc.12th International Heat Transfer Conference,2002.
    [64]曾和义,刁乃仁,方肇洪.地源热泵竖直埋管的有限长线热源模型.热能动力工程,2003,18(1):53~57.
    [65]曾和义,方肇洪.双U型埋管地热换热器的传热模型.山东建筑工程学院学报,2003,18(1):11~17.
    [66]曾和义,刁乃仁,方肇洪.竖直埋管地热换热器钻孔内的热阻.煤气与热力,2003,23(3):134~138.
    [67]刘宪英,陈建平,胡鸣明,等.地源热泵地下竖埋套管换热器传热模型.全国暖通空调学术年会学术论文集,北京:中国建筑工业出版社,2000.
    [68]刘宪英,胡鸣明,丁勇.地源热泵冬季供暖测试及传热模型.暖通空调,2000(1):11~14.
    [69]胡鸣明.浅埋套管式地源热泵地下传热模型及冬季供热实验研究.重庆建筑大学硕士论文,1999.
    [70]丁勇.浅埋套管式地源热泵夏季实验研究及传热模型.重庆大学硕士论文,2000.
    [71]张喜明,于立强.土壤源热泵垂直埋管周围温度场数理模型.节能技术,2001,19(4):3~6.
    [72]魏唐棣,胡鸣明,丁勇,等.地源热泵冬季供暖测试及传热模型.暖通空调,2000,30(1):12~14.
    [73]李元旦,魏先勋.水平埋地管换热器夏季瞬态工况的实验与数值模拟.湖南大学学报,1999,27(2):32~35.
    [74]李梵,于立强,张晶明.U型垂直埋管式热泵制热制冷性能的实验研究.建筑热能通风空调,2000,20(3):14~17.
    [75]于立强,张开黎,李梵.垂直埋管地源热泵系统实验研究.全国暖通空调制冷2000年学术年会学术文集,北京:中国建筑工业出版社,2000.
    [76]刘宪英,丁勇,胡鸣明.浅埋竖管换热器地热源热泵夏季供冷试验研究.暖通空调,2000,30(4):1-4.
    [77]于明志,方肇洪,李明钧.土壤冻结对对地热换热器的传热影响.山东建筑工程学院学报,2001,16(1):42~46.
    [78]毕月虹,陈林根.太阳能-土壤热源热泵的性能研究.太阳能学报,2000,21(2):52~55.
    [79]余延顺,廉乐明.寒区太阳能-土壤源热泵系统太阳能保证率的确定.热能动力工程.2002,17(7):393~395.
    [80]余延顺,廉乐明.寒区太阳能-土壤源热泵系统运行方式的探讨.太阳能学报.2003,24(1):111~115.
    [81]Chiasson,A.D,C,Yavuaturk. Assessment of the viability of hybrid geothermal heat pump system with solar thermal collector.ASHRAE Trans.2003,109(2):487~500.
    [82]旷玉辉.太阳能热泵(SAHP)供热系统的研究与开发.青岛建筑工程学院硕士学位论文,2001.
    [83]余延顺.寒区太阳能-土壤源热泵系统运行工况模拟研究.哈尔滨工业大学硕士论文,2001.
    [84]Metz.P.D.The use of ground-couple tanks in solar-assisted heat pump system. Journal of solar energy engineering.1982,104(4):366~372.
    [85]M.inalli.Design parameter for solar heating system with underground cylindrical tank.energy.1982,23(12):1015~1027.
    [86]孟华,龙惟定,王盛卫.中央空调系统优化控制研究的发展及现状.建筑热能通风空调,2002,21(6):29~32.
    [87]H.Zimmer.Chiller control using on-line allocation for energy conservation. In:ISA Annual Conference Proceedings.1976,5-22.
    [88]Liptak B.G.Optimizing plant chiller systems,instrumentation technology,Sep.19.
    [89]C. Chun,N. Norden.Computer optimization of refrigeration systems in a textile plant:a case history. Automatica,1982,18(6):675~683.
    [90]D.Thielman. Chiller optimization by energy management control systems. ASHRAE Journal,1983,(11):156~169.
    [91]L.Enterline,A.Sommer,A. Kaya. Chiller optimization by distributed control to save energy. Advances in instrumentation,1983,38(2):1137~1150.
    [92]A.Lau,W. BeckmanJ. Mitchell.Development of computerized control strategies for a large chilled water plant.ASHRAE Trans,1985,91 (1):766~780.
    [93]R. Hackner,J. Mitchell,W. Beckman.HVAC system dynamics and energy use in buildings-part Ⅰ.ASHRAE Trans,1984:KC-84-09.
    [94]R.Hackner,J.Mitchell,W. Beckman.HVAC system dynamics and energy use in buildings-part Ⅱ.ASHRAE Trans,1985,91(1),523~535.
    [95]G.Johnson.Optimization techniques for a centrifugal chiller plant using a programmable controller. ASHRAE Trans,91 (2),1985,835~847.
    [96]J.Braun.Methodologies for the design and control of central cooling plants.Ph.D.Thesis.University of Wisconsin-Madison,1988.
    [97]J.Braun,S.Klein,W.Beckman,J.Mitchell.Methodologies for optimal control of chilled water systems without storage.ASHRAE Trans,1989,95(1):652~662.
    [98]J.Braun,G.Diderrich.Near-optimal control of cooling towers for chilled-water systems.ASHRAE Trans,1990,96(2):806~816.
    [99]S.Austin.Chilled water system optimization.ASHRAE Journal,1993,35(7):50~56.
    [100]J.MacArthur.A novel predictive strategy for cost-optimal control in buildings.ASHRAE Trans, 1993,99(1):1025~1036.
    [101]B.C.Ahn,J.W.Mitchell. Optimal control development for chilled water plants using a quadratic representation.Energy and Buildings,2001,33(4):371~378.
    [102]Larsen, L. F. S., C. Thybo, J. Stoustrup,et al. A method for online steady state energy minimization,
    with application to refrigeration systems. Conference on Decision and Control. Paradise Island, Bahamas.2004.
    [103]Curtiss P.S.,Artificial neural networks for use in building systems control and energy management,Ph.D.Dissertation,University of Colorado-Boulder.1992.
    [104]K.F. Fong, V.I. Hanby b, T.T. Chow.HVAC system optimization for energy management by evolutionary programming,Energy and Buildings,2006,38(3) 220~231.
    [105]Pape,F.L.F.,J.W.mitchell,W.A.Beckman. Optimal control and fault detection in heating, ventilating, and air-conditioning systems, ASHRAE Trans,1991,97(l):729~745.
    [106]Ulleberg,O.Emulation and control of heating, ventilation, and air-conditioning systems. Master thesis, university of Wisconsin-Madison,1993.
    [107]W.Kirsner,chilled water plant design, Heating, Piping and Air Conditioning,1996,68(11):73~78.
    [108]Lu Lu,W.J. Cai, Y C Soh. HVAC system optimization-condenser water loop. Energy Conversion and Management,2004,45(4):613~630.
    [109]Shengwei Wang, Zhenjun Ma and Xinhua Xu.. Development of supervisory control strategy for online control of central cooling water systems.2007,:1139~1326.
    [110]Sun J,Reddy A Optimal control of building HVAC&R systems using complete simulation-based sequential quadratic programming (CSB-SQP). Building and Environment,2005,40(5):657~669.
    [111]钟玮.我国建筑中央空调能耗现状及全面节能措施.重庆大学硕士论文,2004.
    [112]杨昭,张世钢,孙政,等.地下水源热泵的最优化研究.太阳能学报,2002,23(6),687~690.
    [113]姚晔,连之伟,何英伟,等.住宅楼集中供冷系统的优化运行工况.上海交通大学学报,2005,39(8):1157~1260.
    [114]孟华,王盛卫,龙惟定.空调水系统实时在线优化控制预测模型的研究.同济大学学报(自然科学版),2006,34(5):670~674.
    [115]李洪斌,彭建国,陈晓,等.水-水源热泵系统优化控制模型的建立与分析,建筑热能通风空调,2006,25(3):3~7,30.
    [116]徐新华.离心式制冷机系统优化控制策略研究.建筑热能通风空调,2007,26(1):15~17,24.
    [117]晋欣桥,李晓峰,惠广海,等.中央空调水系统控制的优化分析.系统仿真学报,2003,15(8):1113~1115.
    [118]晋欣桥,李晓峰,惠广海,等.楼宇空调变水量冷媒水系统实时优化控制.上海交通大学学报,2003,37(7):1128~1132.
    [119]刘金平,麦粤帮,刘雪峰.中央空调系统变水温和变水量协调优化控制研究,建筑科学,2007,23(6)76~79.
    [120]殷平.空调大温差研究(4):空调冷水大温差系统经济分析.暖通空调,2001,31(1):68~72.
    [121]张建一.制冷装置冷却水系统的节能运行研究.集美大学学报(自然科学版),2001,2(3):228~230.
    [122]余平三.制冷系统的节能优化运行.制冷,2002,21(2):82~85.
    [123]赵加宁,周巧航,施雪华.空调用制冷系统的节能潜力分析.哈尔滨商业大学学报(自然科学版),2002,18(3):353~357.
    [124]许远超,中央空调水系统优化控制策略研究,南京理工大学硕士论文,2005.
    [125]B.A.Flake.Parameter Estimation for Multiresponse Nonlinear Chilled-Water Plant Models. ASHRAE Trans,1997,97(1):470~485.
    [126]ASHRAE Handbook,Applications.American Society of Heating, Refrigerating, and Air Conditioning Engineers, Atlanta,Chapter40,1999.
    [127]Shengwei Wang, Burnett John.Online Adaptive control for optimizing variable-speed pumps of indirect water-cooled chilling systems. Applied Thermal Engineering,2000,(21):1083~1103.
    [128]孟华,王盛卫,龙惟定.空调水系统实时在线优化控制预测模型的研究,同济大学学报(自然科学版),2006,34(5):670~674.
    [129]P.Spethmann.Optimized control of multiple chillers.ASHRAE Trans,1985,91(2):848~856
    [130]Cumali Z. Global optimization of HVAC system operations in real time. ASHRAE Trans, 1988,94(1):1729~1744.
    [131]M.A.Cassia.Optimizing chiller plant energy savings using adaptive DDC algorithms. ASHRAE Trans,1988,94(2):1937~1946.
    [132]R.T.Olson,J.Liebman.Optimization of a chilled water plant using sequential quadratic programming.Engineering Optimization,1990,15(3):171~191.
    [133]R.T.Olson,A dynamic procedure for the optimal sequencing of plant equipment plant 1: algorithm fundamentals. Engineering Optimization,1993,Vol.21(11),63~78.
    [134]R.T.Olson,A dynamic procedure for the optimal sequencing of plant equipment plant Ⅱ: validation and sensitivity analysis. Engineering Optimization,1994,22(3):163~183.
    [135]Svensson, M. S.Model-based optimizing control of a water-to-water heat pump unit., identification and control.1996,17(4),261~278.
    [136]T.Hartman,Optimizing all-variable speed systems with demand based control.Automated Buildings, 2002(3):45~49.
    [137]T.Hartman,All-variables peed chilled water distribution systems:optimizing distribution efficiency.Automated Buildings,April,2002.
    [138]N.Nassif, Stanislaw Kajl, Robert Sabourin, Optimization of HVAC control system strategy using two-objective genetic algorithm,2005,11(3):459-486.
    [139]J.Xu, Peter B. Luh, William E. Blankson. An Optimization-Based Approach for Facility Energy Management with Uncertainties. HVAC&R Research,2005,11(2):215~237.
    [140]罗启军,戴汝平.空调系统控制的一种动态优化技术.建筑热能通风空调,2003,22(3):39~42.
    [141]何厚键.中央空调水系统的建模与优化研究.沈阳工业大学硕士论文,2005.
    [142]杨晓平.暖通空调优化控制技术研究.沈阳工业大学硕士论文,2005.
    [143]徐幼斌,朱华斌.模块式水源热泵机组的集散控制系统研究.流体机械,2003,31(2):60~62.
    [144]雷飞,袁旭东.大型小区水源热泵系统的集中控制.华中科技大学学报:城市科学版,2002,19(2):37~41.
    [145]张国强,周天泰,林章,等.基于ANN吸收式冷水机组模型的遗传算法最优控制.建筑热能通风空调,2005,24(6):1~5,8.
    [146]薛志方,史琳.水源热泵系统节能运行控制研究,流体机械,2006,34(6):46~50.
    [147]Lefkowitz I. Multilevel approach applied to control system design. Transactions of the ASME,1966,(6):134~145.
    [148]Morari, M., Y. Arkun, G. Stephanopoulos. Studies in the synthesis of control structures for chemical processes; part Ⅰ:formulation of the problem, process decomposition and the classification of the control tasks, analysis of the optimizing control structures. AIChE J.,1980,26,220~232.
    [149]Edgar, T. F. and D. M. Himmelblau. Optimization of chemical processes,(2nd edn). McGraw-Hill,2001.
    [150]Skogestad, S. Plant wide control:the search for the self-optimizing control structure. Journal of Process Control,2000,10,487~507.
    [151]W. Findeisen, F. Bailey, M. Brdy's, K. Malinowski, P. Tatjewski, A. Wo'zniak. Control and coordination in hierarchical systems. Number 9, Wiley IIASA International Series on Applied Systems Analysis. John Wiley & Sons, New York.1980.
    [152]曲云霞,地源热泵系统模型与仿真.西安建筑科技大学博士论文,2004.
    [153]Barrett A. Flake,Parameter estimation and optimal supervisory control of chilled water plants,University of wisconsin-madison,1998.
    [154]张亚乐,徐博文,方崇智.基于稳态模型的常压蒸馏塔在线优化控制.石油炼制与化工,1997,28(10):48~52.
    [155]Edgar, T. F. and D. M. Himmelblau. Optimization of chemical processes,(2nd edn). McGraw-Hill,2001.
    [156]He X D. liu sheng,asada haruhiko H.,Modeling of vapor compression cycles for multivariable feedback control of HVAC system,Journal of Dynamix systems,Measurement, and control,1997,(119):183~191
    [157]陈文勇.蒸发器过热度稳定性机理与智能控制,西安交通大学博士伦文,1999
    [158]葛云亭.房间空调器系统仿真模型研究.清华大学博士论文,1997
    [159]朱瑞琪,谢家泽,吴业正.制冷系统的综合优化控制模型.西安交通大学学报,2002,36(5):461~464
    [160]丁国良,张春路著.制冷空调装置智能仿真.北京:科学出版社,2002
    [161]翁文兵,王瑾竹,蒋能照.电子膨胀阀的制冷剂流量特性的试验研究.流体机械,1998,26(10):58~61
    [162]J W MacArthur, E W Grald,prediction of cyclic heat pump performance with a fully distributed model and a comparison with experimental data,ASHRAE Trans,part2,1987,93:1159~1178
    [163]J W MacArthur, E W Grald. Unsteady Compressible Two-phase Flow Model for Predicting Cyclic Heat Pump Performance and a Comparison with Experimental Data. International Journal of Refrigeration,1989,12(1):29~41
    [164]E W Grald, J W MacArthur,,A moving-boundary formulation for modelling time-dependent two-phase flows,Int.J.Heat and Fluid Flow,1992,13(2):226~272
    [165]Svensson M.C.,Studies on on-line optimizing conrol,with application to a heat pump,Ph.D thesis,the university of trondheim,1994
    [166]彦启森主编.空气调节用制冷技术.北京:中国建筑工业出版社,1980
    [167]Svensson M.C.,Studies on on-line optimizing conrol,with application to a heat pump,Ph.D thesis, university of trondheim,1994
    [168]满意.地源热泵复合系统的研究.山东建筑大学硕士论文,2007
    [169]Bose J E, Parker J D, McQuiston F C. Design/data manual for closed-loop ground-coupled heat pumpsystems. Atlanta ASHRAE,1985
    [170]Caneta Research Inc., Commercial/institutional Ground-Source Heat Pump Enginnering Manual,ASHRAE, Atlanta, Ca,1995.
    [171]Bose J E, Close loop/geothermal heat pump systems:installation guide. Oklahoma, International Ground Source Heat Pump Association,1996
    [172]Mei V C and Baxter V D, Performance of a ground-coupled heat pump with multiple dissimilar U-tube coils in series.ASHRAE Trans,1986,92 Part 2:22~25
    [173]Yavuzturk C, Spitler J D and Rees S J, A transient two-dimensional finite volume model for the simulation of vertical U-tube ground heat exchangers. ASHRAE Trans,1999,105(2):465~474.
    [174]Yavuzturk C, Spitler J D and Rees S J, A transient two-dimensional finite volume model for the simulation of vertical U-tube ground heat exchangers. ASHRAE Trans,1999,105(2):465~474.
    [175]H Y,Diao N It,Fang Z H. A Finite Line Source Model for Boreholes in Geothermal Heat Exchangers. Heat Transfer-Asian Research,2002,31 (7):558~567
    [176]Eskilson P, Claesson J, Simulation model for thermally interacting heat extraction boreholes, Numerical Heat Transfer,1988,13:149~165
    [177]梁昆森.数学物理方法.北京:高等教育出版社,1998
    [178]贾力,方肇洪,钱兴华.高等传热学.北京:高等教育出版社,2003
    [179]俞昌铭译.热传导.北京:高等教育出版社,1983
    [180]刁乃仁.地热换热器的传热问题研究及其工程应用,清华大学博士论文,2004
    [181]李新国,赵军,周倩.U型垂直埋管换热器管群周围土壤温度数值模拟,太阳能学报,2004,25(5):703~707
    [182]Eskilson P.,Thermal analysis of heat extraction boreholes.Ph.D thesis,university of Lund,Sweden,1987
    [183]Hellstrom G. Ground heat storage:thermal analysis of duct storage systems Ph.D. Department of
    Mathematical Physics,University of Lund,Sweden.1991.
    [184]江亿.用变速泵和变速风机代替调节用风阀水阀,暖通空调,1997,27(2):66~71
    [185]狄洪发,陈亚芹.水泵变频调节技术与节能分析.建筑科学.2004,20(z1)
    [186]RishelJ B.HVAC pump handbok.New York:McGraw-Hill,1990
    [187]Brandemuehl M.J,Gabel S,Andresen I.HVAC 2 toolkit:a toolkit for secondary HVAC system energy calculation. AAtlanna,GA:American society of heating,refrigerating and Air conditioning engineers
    [188]孙德敏,张志刚,薛美盛,等.自适应在线稳态优化方法及其在丙烯腈装置上的应用.自动化学报.1998,24(1):73~80
    [189]李言俊,张科.系统辨识理论及应用.北京:国防工业出版社,2002
    [190]刘良宏,黄华江,畅延青,等.利用非线性规划技术的固定床反应器在线过程辨识,化工学报,1998,49(2):176~184
    [191]D. Faller, U. Klingmuller, J. Timmer. Simulation methods for optimal experimental design in systems Biology, Simulation,2003,79(12):717-725
    [192]G. Seber, C. Wild. Nonlinear regression. John Wiley and Sons, New York.1989
    [193]李绪泉.轿车空调系统多变量控制特性及其实时控制的研究.上海交通大学博士论文,2004
    [194]李守巨,刘迎曦.改进遗传算法在非线性热传导参数识别中的应用.工程力学,2005,22(3):72~75,87
    [195]李宏,焦永昌,张莉.求解全局优化问题的混合智能算法.计算机工程与应用,2006,42(16):9~11,16
    [196]王建平,程声通.遗传单纯形混合算法在复杂环境模型参数识别中的应用.水利学报,2005,36(6):674~679
    [197]F. Glover. Heuristics for integer programming using surrogate constraints. Decision,Sciences,1977, 8:156~166
    [198]M. Laguna and R. Martf. Neural network prediction in a system for optimizing simulations,Transaction on Operations Engineering,2000,5:22~37.
    [199]A. CorberAn, E. Femandez, M. Laguna and R. Martf. Heuristic solutions to the problem of routing school buses with multiple objectives, Journal of the Operational Research Society,2001,53(4): 427~435.
    [200]R.P. Beausoleil. Multi-objective scatter search applied to non-linear multiple criteria optimization, European Journal of Operational Research,2005,8:523~589.
    [201]V. Campos, F. Glover, M. Lagua. An experimental evaluation of a scatter search for the linear ordering problem, Journal of Global Optimization,2001,21:397~414
    [202]Glover F.,A template for scatter search and path relinking. In:D Corne M Dorigo and F Glover(eds.) New ideas in optimisation. McGraw-Hill,1999
    [203]M.Rodriguez-Fernandez, Pedro Mendes, Julio R. Banga. A hybrid approach for efficient and robust parameter estimation in biochemical pathways, BioSystems 2006,83:248~265
    [204]陈芝久等著,制冷系统热动力学.机械下业出版社,1998
    [205]Tassou,S.A.and H.O.Al-Nizari. Investigation of the Effects of thermostatic and Electronic Expansion Valves on the Steady-State and Transient Performance of Commersial Chillers. Int.J.Refrig, 1993,16(1):49~56
    [206]何大阔.精苯精馏过程稳态建模及塔系操作优化的研究.东北大学博士学位论文,2002
    [207]葛云亭.间空调器系统仿真模型研究.清华大学博士学位论文,1997
    [208]Sevsson M C, Model-based optimizing control of a water-to-water heat pump unit. Modeling, identification and control,1996,17(4):279~295
    [209]丁国良,张春路,赵力.制冷空调新工质-热物理性质的计算方法与实用图表上海交通大学出版社,2003
    [210]陈在平,杜太行.控制系统计算机仿真与CAD-MATLAB语言应用.天津:天津大学出版社,2001,1~2
    [211]Kyle A. Manske. Performance Optimization of Industrial Refrigeration Systems.,Master dissertion, University of Wisconsin-Madison,USA,1999
    [212]徐菱红,王凌云.集中空调冷却水系统的节能运行.暖通空调,2000,30(3):82~84
    [213]孙一坚.关于集中空调冷却水系统节能运行-评节能不能因小失大.暖通空调,2003,33(2):39
    [214]黄文厚,李娥飞,潘云钢.一次泵系统冷水机组变流量控制方案.暖通空调,2004,34(4):65~69
    [215]Ng A W M,Perera B J C. Selection of genetic algorithm operators for river water quality model calibration. Engineering Applications of Artificial Intelligence,2003,16(5):529~541
    [216]柳建祥,李显利,彭小勇,等.土壤热工性能测试及应用分析.南华大学学报(自然科学版),2007,21(1):68~70
    [217]庄迎春,孙友宏,谢康和.直埋闭式地源热泵回填土性能研究.太阳能学报,25(2):216~210

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700