用户名: 密码: 验证码:
岩溶地区地基处理关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
广东粤北地区的韶关、清远、肇庆等地,作为岩溶相当发育的地区,存在较多的工程隐患,因此,迫切要求找到合适的基础形式和地基处理方式。在华南理工大学亚热带建筑科学国家重点实验室重点项目的资助下,就这一问题,华南理工大学土木与交通学院对岩溶地区地基处理关键技术进行了深入的研究,并在粤北地区进行了一系列的试验、测试和观测。
     采用单桩压板试验确定复合地基承载力,忽视了群桩对复合地基受力性能的影响,无法合理确定桩土承载能力的发挥情况。在进行考虑上下部相互作用的结构分析时,由于计算机的限制往往难以进行,提出符合工程实际的、便于计算分析的方法显得尤为重要。而且,在对筏基的实测中发现,筏板钢筋的应力测量值明显小于计算值,说明原有计算模型存在不足且偏于保守,所以要求设计方法应能更真实地反映筏板中钢筋的实际受力情况。同时,随着复合地基在抗震地区的广泛应用,对结构与复合地基之间动力相互作用的研究也十分迫切。本文采用理论分析与试验研究相结合的方法,以实际工程为背景,围绕刚性桩复合地基-筏基-上部结构体系进行了深入的研究,主要研究内容及创新性工作有以下几个方面:
     1)进行了24个复杂岩溶地质条件下的单桩复合地基载荷试验。结果表明,桩间土的承载能力发挥较早,在特征值荷载时桩土很难达到各自的设计值;无垫层,当土层承载力较高时,只要基础与垫层接触紧密,土体仍可发挥一定的承载力;砂石垫层厚100mm,特征值荷载下的桩间土平均应力为0.31MPa,桩-土应力比约19,土承担荷载比为46.5%,桩、土承载力发挥系数分别约为0.72、1.78。砂石垫层厚300mm,特征值荷载下桩间土平均应力约为0.38Mpa,桩-土应力比14.6,土承担荷载比为61%。分析表明该种处理方案可行。
     2)通过与单桩复合地基压板试验对比,验证了所采用的土体弹塑性模型、接触关系和所选参数的正确性,可以较为准确地分析刚性桩复合地基的受力、变形性能。在此基础上,研究了群桩复合地基载荷板的尺寸效应,得到了大尺寸压板的最终沉降估算公式,垫层厚度为100mm,基础边长为30m、40m、50m的最终沉降为16.7mm、17.5mm、18.1mm,垫层厚度为300mm,基础边长为30m、40m、50m的最终沉降为32.4mm、34.5mm、36.1mm,与实测值吻合。分析了群桩复合地基的宏观本构关系,结果表明,随着桩数的增多压板沉降增大,土体承载能力发挥度减小。垫层厚为100mm、200mm、300mm,特征值荷载作用下,49桩复合地基的平均沉降约是单桩复合地基平均沉降的1.6、2.18、2.2倍,此时,土应力分别为单桩复合地基土应力的46%、65%、78%;加载初期,单、多桩的刺入相差不大,随荷载增加群桩的刺入量比单桩大,垫层厚度为100mm、200mm、300mm,特征值荷载下单桩的刺入量分别为3.9mm、6.8mm、8.4mm,49桩的刺入量分别为6.8mm、18.7mm、19.2mm。群桩在达到49个,以及垫层达到300mm后,桩土应力、基础沉降、刚性桩的刺入等变化很少,褥垫层的调节作用趋于稳定。
     3)根据试验和群桩有限元分析,结合工程经验,提出了针对该类复合地基的二折线弹簧宏观本构模型,特征值荷载对应的沉降为12mm,极限荷载对应的沉降为40mm。借助SAP2000可以利用该模型进行考虑上部结构与复合地基相互作用的基础受力分析,特征值荷载对应的基础沉降从4mm到20mm进行变化,除个别地方的筏板弯矩变化幅值接近9%,其它地方变化都很小。结果表明,该方法既可以考虑上部结构刚度对基础的影响,又可以反应土体一定程度的非线性特性和基础的整体沉降。
     4)建立地基的实体单元模型,考虑筏板与垫层之间的摩擦,借助ABAQUS进行考虑上部结构与复合地基相互作用的弹塑性分析。结果表明,在弹塑性计算中荷载设计值下,截面应力分布较均匀,截面最大拉应力约为1.63Mpa,钢筋最大应力约80Mpa;荷载标准值下钢筋最大应力为48Mpa,计算结果与实测值吻合较好,验证了本文分析方法的正确性。通过计算分析,与常用方法的计算结果比较表明,地基反力模式、筏板与垫层之间的摩擦是影响筏板内力计算结果的主要因素。地基反力在筏板边缘剧增,最大值达到平均值的3.5倍,极易造成地基局部区域的提前破坏。最后,分析了地基土变形模量、褥垫层厚度、褥垫层模量、筏板厚度等参数对筏板内力及变形的影响。结果表明,地基反力和筏板应力与筏板同地基相对刚度有关。
     5)采用有限元与无限元耦合的方法,建立动力相互作用三维整体模型,进行了动力弹塑性时程分析。通过与普通桩筏基础的时程分析结果对比,研究了刚性桩复合地基-上部结构体系的抗震性能。结果表明,7度小震时,复合地基没有减震作用;7度大震时,桩基中桩体弯矩、剪力最大值是刚性桩复合地基中桩体弯矩、剪力最大值的1.8倍,褥垫层产生了较大的塑性变形和相对基底的滑移,具有一定的耗能减震作用,并且复合地基中筏基及上部结构的动力响应约是桩基体系中对应量的90%,减震系数在0.8-0.9之间。
     本论文的研究成果已应用于广东粤北地区的碧湖苑、时代美居、翠湖花园等工程项目建设中,取得良好效果。
The karst geology situation of Guangdong Province is very complicated and of greatdisadvantage of engineering, especially in the northern area such as Shaoguan, Qingyuan,Zhaoqing. As a result, a more suitable foundation style and way of ground treatment isurgently needed. The School of Civil engineering and transportation of South ChinaUniversity of technology has conducted a series of experiments and engineering practices inthe northern area of Guangdong Province under the financial support provided by Key Projectof the State Key Laboratory of Subtropical Building Science South China University ofTechnology.
     Nowadays the bearing capacity of composite foundation is determined by the single-pilestatic loading test which ignores the pile-group effect and is not able to offer the forcedistribution suitably. And the interaction between the superstructure and the foundation isdifficult to be considered because of the restriction of computers. So further research shouldbe done to simplify the analyzing method to make it feasible. Moreover the field experimentalresults show that there is a remarkable difference between the experimental stress of raft steelrebar and the calculated value, and the measured values are smaller. It is indicated that theCalculation Model exists insufficiently and the design method is conservative. So the designmethod should give a more accurate steel rebar stress in the raft. Furthermore, with the wideuse of composite foundation technology in earthquake region, it is urgent to study thedynamic interaction of composite foundation and superstructure. This thesis adopts themethod of theoretical analysis and experiments to study the bearing and settlementperformance of the rigid-pile composite ground-raft foundation-superstructure system, with apractical engineering background. The main contents and innovative works are listed asfollows:
     1) The results of twenty-four load tests of single-pile composite foundation incomplicated karst geology show that the bearing capacity of soil between piles exerts earlyand it’s difficult for both pile and soil to reach their design value under the characteristic load.With0mm thick sand-gravel cushion and high soil’s bearing capacity, part of the soil’sbearing capacity still works as long as the foundation is in close contact with the soil. With100mm thick sand-gravel cushion, under the characteristic load, the mean stress of soil is0.31MPa, the pile-soil stress ratio is about19, the load bearing ratio of soil is46.5%, and thebearing capacity factors of pile and soil is about0.72and1.78respectively. With300mmthick sand-gravel cushion. Under the characteristic load, the mean stress of soil is0.38MPa, the pile-soil stress ratio is about14.6and the load bearing ratio of soil is61%. The analysisshows that this kind of treatment is feasible.
     2) Compared with the single pile composite foundation loading test, the correctness ofeffectiveness of the adopted soil elastic-plastic model is veirified. The contact relationship andthe selected parameters can be used to analyze the stress of the rigid pile compositefoundation, and the deformation performance more accurately. On this basis, the size effect ofgroup piles composite foundation loading plate is researched and the formulas for calculatingthe final settlement of large size loading plate is worked out. The thickness of the Cushionlayer is100mm, the final settlements of the foundations with the side length of30m,40m and50m,is respectively16.7mm,17.5mm and18.1mm; while the thickness of the cushion is300mm, the final settlements of the foundations with the side length of30m,40m and50m,isrespectively32.4mm,34.5mm and36.1mm. The results match well with the measured values.The results of analyzing the macroscopic constitutive relation of the group piles compositefoundation show that with the increase of the number of the piles, the settlement of theloading plate increases, the bearing capacity of the soil decreases. In this geologicalconditions, under the effect of characteristic value of loads. As the thickness of cushions isrespectively100mm,200mm and300mm, the average value of49piles compositefoundation settlement is respectively about1.6,2.18and2.2times the foundation settlementof a single pile composite on average and the soil stress is respectively46%,65%,78%ofsingle pile composite foundation soil stress. In early loading period, the single and multiplepiles were of the similar penetration into the cushion, while the penetration of pile groupproved to be larger as the load increases. Thickness of the cushion layer is respectively100mm,200mm and300mm, on the characteristic loading value, the penetration of the singlepile into the cushion is3.9mm,6.8mm and8.4mm respectively. The penetration of themultiple piles is6.8mm、18.7mm、19.2mm respectively. When the pile number reaches theamount of49, and cushion layer of foundation up to300mm, the soil stress of the piles,foundation settlement, penetration of rigid pile, change little. Regulation of the cushion layertends to be stable.
     3) According to the test results and FEM analysis, combining engineering experiences,the bilinear spring macro constitutive relation of composite foundation is put forward. Thecorresponding settlement of characteristic load is12mm, and the corresponding settlement ofultimate load is40mm. The interaction between superstructure and composite foundation canbe simulated by SAP2000, and the corresponding foundation settlement of characteristic loadchanged from4mm to20mm. In addition to changes of raft moment in some individual area are close to9%, others are negligible. The results show that the method can not only considerthe effect of the stiffness of superstructure, but also can reflect the nonlinear property of theground as well as the overall settlement.
     4) Solid element model of the foundation has been established, considering the frictionbetween the raft and cushion. Elastoplastic analysis was done with ABAQUS to consider theinteraction of superstructure with composite foundation. The results showed that under thedesign load of elastoplastic calculation, section stress distribution is appropriately uniform,cross-sectional maximum tensile stress is about1.63Mpa, the maximum stress ofreinforcement is about80Mpa; the maximum stress of reinforcement under standard load is48Mpa,the calculated results agree well with the measured values to verify the correctness ofthis analysis in this article. By calculation and analysis, compared to calculation results withcommon methods, it shows that ground reaction force model, and the friction between raftand cushion are major factors that affect the calculation results of the forces in the raft.Ground reaction force at the edge of the raft surges, the maximum value reaches3.5times theaverage value, which can easily cause damage to the foundation of local area in advance.Finally, the foundation soil deformation modulus, thickness cushion, cushion modulus,thickness and other parameters on the raft force and deformation have been analyzed. Theresults show that the ground reaction force and stress in the raft are related to the relativestiffness of the raft and ground.
     5)The modeling method of FEM-Infinite element coupling is adopted to set up theintegral three-dimension analyzing model for the dynamic elastoplastic time-history analysis.By comparing with the results of ordinary pile raft foundation dynamic time-history analysis,the results show that the composite foundation has no seismic reduction effect at the stage offrequent earthquake of intensity of7; but at the same degree of rare earthquake intensity, themaximum pile moment and shear force of ordinary pile raft foundation is1.8times of thosevalues in the rigid pile composite foundation, and there is a large plastic deformation and sliprelative to the substrate in the cushion, which shows a certain role in energy dissipation andseismic reduction. The dynamic response of raft foundation in the composite foundation andsuperstructure is90%of the corresponding amount in ordinary pile raft foundation, theseismic decrease coefficient lies between0.8and0.9.
引文
[1]钱力航.高层建筑箱形与筏形基础的设计计算,2003,北京,中国建筑工业出版社
    [2]龚晓南.广义复合地基理论及工程应用[J].岩土工程学报,2007(1):1-13.
    [3]王佳庆.高层框架结构与刚性桩复合地基—筏板基础体系共同作用的数值分析[D].重庆:重庆大学,2007.
    [4]倪光乐,苏克之,张志允等.刚性桩复合地基理论及其在广东地区的应用[J].岩石力学与工程学报,2006(S2):4160-4168.
    [5]陶景晖,梁书亭,龚维明,等.高层建筑刚性桩复合地基承载受力性状研究[J].东南大学学报(自然科学版),2009(S2):238-245.
    [6]阎明礼,中国建设教育协会继续教育委员会.地基处理技术[M].中国环境科学出版社,1996.
    [7]毛前,龚晓南.桩体复合地基柔性垫层的效用研究[J].岩土力学,1998(2):67-73.
    [8]傅景辉,宋二祥.刚性桩复合地基工作特性分析[J].岩土力学,2000(4):335-339.
    [9]郭忠贤,耿建峰,杨志红.刚性桩复合地基的现场试验研究[J].勘察科学技术,2001(1):7-10.
    [10]陈东佐,梁仁旺. CFG桩复合地基的试验研究[J].建筑结构学报,2002(4).
    [11]任鹏,邓荣贵,于志强. CFG桩复合地基试验研究[J].岩土力学,2008(1):81-86.
    [12]陈冬贵.复合地基承载力试验与探讨[J].岩土工技术,2001,(3):173-175
    [13]董必昌,郑俊杰. CFG桩复合地基沉降计算方法研究[J].岩石力学与工程学报,2002(7):1084-1086.
    [14]葛忻声.高层建筑刚性桩复合地基性状[D].杭州:浙江大学,2003.
    [15]池跃君,宋二祥,金淮,等.刚性桩复合地基应力场分布的试验研究[J].岩土力学,2003(3):339-343.
    [16]戚科骏,宰金珉,梅国雄,等.群桩复合地基褥垫层效用的数值分析[J].岩石力学与工程学报,2004(S1):4590-4592.
    [17]郑刚,刘双菊,伍止超.不同厚度褥垫层刚性桩复合地基工作特性研究[J].岩土力学,2006(8):1357-1360.
    [18]曹明.刚性桩复合地基工程性状的数值分析[J].工业建筑,2006(S1):665-669.
    [19]黄菊清,何春保,莫海鸿,等.刚性桩复合地基承载机制试验研究[J].岩土力学,2008(3):841-845.
    [20]亓乐,施建勇,曹权.刚性桩复合地基垫层合理厚度确定方法[J].岩土力学,2009(11):3423-3428.
    [21]李丽,鲍鹏,赵捷.刚性桩复合地基模型试验研究[J].建筑结构,2010(1):69-70.
    [22]郭院成,张四化,李明宇.长短桩复合地基试验研究及数值模拟分析[J].岩土工程学报,2010(S2):232-235.
    [23]杨光华,李德吉,官大庶.刚性桩复合地基优化设计[J].岩石力学与工程学报,2011(4):818-825.
    [24] Golder H Q. The ultimate bearing pressure of rectangular footings[J]. Journal of Institutefor Civil Engineers,1941,17:161-174.
    [25] De Beer E E. The scale effect in the transposition of the results of deep sounding tests onthe ultimate bearing capacity of piles and caisson foundation[J]. Geotechnique,1963,13(1):39-75.
    [26]李小勇.载荷板尺寸效应的试验研究[J].太原理工大学学报,2005,36(1):44-47.
    [27]柳飞,杨俊杰,刘红军,等.离心模型试验模拟平板试验研究[J].岩石工程学报,2007,29(6):880-886.
    [28]王成峰,刘宏,高振鲲,等.荷载板尺寸效应对水泥搅拌桩静载试验的影响[J].建筑科学,2007,23(11):53-55.
    [29]翟洪飞,高云等.载荷试验沉降与承压板尺寸关系的分析[J].西部探矿工程,2008,(10):219-221.
    [30]陈照亮.相对密度对地基承载力试验中基础尺寸效应影响研究[D].青岛:中国海洋大学,2009.
    [31]柳飞.模型试验中地基材料粒径与基础尺寸效应研究[D].青岛:中国海洋大学,2010.
    [32]张文龙,张辉,陈国栋,等.内蒙古地区粉细砂地基平板载荷试验尺寸效应研究[J].岩土工程学报,2010,32(S2):492-495.
    [33]韩晓雷,张辉,水伟厚,等.强夯法处理沙漠地基的载荷试验尺寸效应研究[J].工程勘察,2011(6):4-7.
    [34] G.G.Meyerhof Some recent foundation researeh and its aPPlication to design[J].Struct.Engr.,1953(31):151~167.
    [35] S.Chamecki. Structural rigidity in calculating settlements[J]. Soil Mech.and Found. Div.,ASCE,1956(82):1~9.
    [36] H.Grosshof. Influence of flexural rigidity of superstructure on the distribution of contactPressure and bending moments of an elastic combined footing[J].Proc.6th ICSMFE, London1957, l:300~306.
    [37] H.Sommer. A method of calculation of settlements contact Pressures and bendingmoments in a foundation including the flexural rigidity of the superstructure[J]. Proe.6thICSMFE,Montreal1965,2:197~201.
    [38] O.C.Zeinkeiwicz, YK.Cheung. plates and tanks on elastic foundation an application finiteelement method[J]. J. Solids and Struct,1965(l):451~461.
    [39] J.S.przemieniecki. Theory of matrix structural analysis[M]. New York Wiley,1968.
    [40] I.K.Lee, H.B.Harrison. A theoretical study of the interaction of structure andfoundation[J]. J.Struct.Div., Proc ASCE,1970,96(ST2):177~197.
    [41] M.J.Haddadin. Mats and combined footings analysis by the finite element methods[J].Proc. ACI,1971,68(12):945~949.
    [42] J.T. Christian.Soil structure-interaction for tall buildings[J]. planning and Design of TallBuildings,Lehigh U.,1972, Vol.a2,967~983.
    [43] J.A. HooPer Obsevrations on the behavior of a Piled-ratf Foundation on London Clay[J].Proc. ICE.1973,55(2):855~877.
    [44] S.J.Hain, I.K.Lee. Rational analysis of ratf foundation[J]. J.Geotech. Engg. Div ASCE,1974,100(GT7):843~860.
    [45] W.J.Larnach, L.A.Wood. The eeffets of soil structure interaction on settlements[M]. Int.Symp. on Computer Aided Design, Univ of Warwick,1972.
    [46] G.J.W.King, VS.Chandrasekaran. Interactive analysis of a rafted multistory space frameresting on an inhomogeneous clay stratum[]. Proe. Int. Conf on Finite Element Methods inEngineering. Australia,1974,493~509
    [47] L.J.Wardle, R.A.Fraser. Methods for foundation design including soil-structureinteraction[M]. Proc. Sypm. on Ratf Foundations, Perth,Australia,1975, l~11.
    [48] J.A.HooPer, L.A. Wood.Foundation analysis of across-wall structure[M].Proc.Int,ConfOn Performance Big.Srtuct., Glasgow,1976,229~248.
    [49] H.G.Poulos, E.H.Davis. Pile foundation analysis and design[M]. NewYorkWiley,1980.
    [50]张问清,赵锡宏.逐步扩大子结构法计算高层结构刚度的基本原理[J].建筑结构学报,1980,(4):66-70.
    [51]朱百里,曹铭葆,魏道垛.框架结构与地基基础共同作用的数值分析-线性与非线性地基[J].同济大学学报,1982,(4):15-31
    [52]宰金珉,张问清.高层空间剪力墙结构结构与地基的共同作用三维问题的双重扩大子结构有限元-有限层分析[J].建筑结构学报,1983,(4):58-69.
    [53]裴捷,张问清,赵锡宏.考虑考虑填充墙的框架结构与地基基础的共同作用的分析方法[J].建筑结构学报,1984,(4):58-69.
    [54]董建国,路佳,赵锡宏.共同作用分析在高层建筑箱基设计中的应用[M].北京:建筑工业出版社,1993.
    [55]中华人民共和国行业标准.建筑地基基础设计规范(GBJ7-89)[S].北京:中国建筑工业出版社,1989.
    [56]中华人民共和国国家标准.建筑桩基技术规范((JGJ94-94)[S].北京:中国建筑工业出版社,1995.
    [57]干腾君.空间框架-筏基-土共同工作的有限元-边界元耦合方法[D].重庆:重庆建筑工程学院,1993.
    [58]赵玲.高层建筑上部结构-筏板基础-地基共同作用的有限元分析—以成都市某高层框架住宅为例[D].成都理工大学,2006.
    [59]张金轮.上部结构-桩筏基础共同作用的有限元计算与分析[D].合肥工业大学,2007.
    [60]王汝恒,郭文,张春涛.基于共同作用下巨型框架结构的动力特性分析[J].华中科技大学学报,2008,25(4):61-63.
    [61]张春涛,王汝恒,贾彬.基于共同作用下筏板基础的力学机理研究[J].华中科技大学学报,2008,25(4):293-295.
    [62]董建国,钱宇平,赵锡宏.小雁塔宾馆高层建筑剪力墙-箱基-地基共同作用的分析[J].结构工程师,1986(2):31-36.
    [63]王振宇,张保印.高层建筑上部结构与箱基和砂卵石地基共同作用的数值模拟[J].建筑结构,2000,(11):3-9.
    [64]王振宇,张保印,高歌.砂卵石地基高层建筑箱基基底反力实测研究[J].建筑结构学报,2000,(4):72-75.
    [65]陈志明.高层建筑与地基基础共同作用的理论应用与现场测试研究[D].同济大学博士学位论文,2001.
    [66]黄熙龄.高层建筑厚筏反力及变形特征试验研究[J].岩土工程学报,2002,24(2):132-136.
    [67]熊建国.土-结构动力相互作用问题的新进展(I)[J].世界地震工程,1992,(2):22-29.
    [68] Quinlan, P.M. The elastic theory of soil dynamics[A]. Symp.on Dyn.Testing of soils[C].ASTM-STPASTM,1987,156:3-34.
    [69] Sung, T.Y. Vibrations in semi-infinite solids due to periodic surface loadings[A].Symp.On Dynamic Testing of soils[C].ASTM-STP ASTM,1987,156:35-64.
    [70] Lysmer, J.Riehart, F.E.T. Dynamic response of footings to vertical loadings[J]. Soil mech.division. ASCE.1966,92(1):65-91.
    [71] Kashio J. Steady state response of a circular disk resting on layered medium[D]. RiceUniversity, Houston, TX,1970.
    [72] Lueo J.E. Impednace functions for a rigid foundation on layered medium[J]. Nucl. Engrg.Des.,1974,31:204-231.
    [73] Kausel E., Roesset J M. Dynmaic stiffness of circular foundations[J]. Journal of theEngineering Mechanics Division,1975,101(6):771-785.
    [74] Waas G. Linear two-dimensional analysis of soil dynamics problems in semi-infinitelayered media[D]. University of California at Berkeley,1972.
    [75] LysmerJ., Kuhlemeyer R.L. Finite dynamic model for infinite media[J]. J.Engng.Mech.Div, ASCE1974,95:859-877.
    [76] Cole D.L., Kosloff D.D., Minster J.B. A numerical boundary integral equation methodfor elastodynamics Int[J]. Bulletin of the Seismological Society of Ameriea,1978,68:1331-1357.
    [77] Dominguez J. Dynamic stiffness of rectangular foundation[R]. Report ofCivil-engineering Department, MIT,MA, USA,1978.
    [78] Von Estorff O., Schmid G. Application of the boundary element method to the analysis ofthe vibration behavior of strip foundations on a soil layer[J]. Proc Int.SymP.on DynamicSoil-Sturcture Interaction, Minneapolis, Ml. Rotterdam: A.A.Balkema,1984:11-17.
    [79]廖振鹏,黄孔亮,杨柏坡,等.瞬态波透射边界[J].中国科学(A辑),1988,6(27):556-564.
    [80] Wolf J.P. Dynamic soil-structure interaction in time domain[M]. Englewood Cliffs, NJ,Prentice-Hall,1988.
    [81] Beer G, Meek J.L. The coupling of the boundary and finite element methods for infinitedomain problems in elastoplasticity[A]. Boundary element methods[C]. Berlin,1981:575-591.
    [82] Beskos D.E. Boundary element methods in dynamic analysis[J]. Appl.Mech.Rev.,1988,40:1-23.
    [83] Abscal R.Dominguez, J. Vibration of footings on viscoelastic soil[J]. EngineeringMechanical,ASCE,1985,111(2):123-141.
    [84] Ahmad S., Benerjel R.K. Multi domain boundary element method for the dimensionalproblems in elastic dynamics[J]. Int.J.Number, Methods in eng,1988,(26):91-991.
    [85] Ahmad S., Benerjel P.K. Time domain transient elastic dynamic analysis of3-D solids byBEM[J]. Int. J.Number, Methods in eng.1988,(26):1709-1728.
    [86] J.P.Wolf, Chongmin Song. Dynamic-stiffness matrix in time domain of unbound mediumby infinitesimal finite element cell method[J]. Earthquakes engineering and structure dynamic,1994,23(10):1235-1249.
    [87] Y.C.Han, P.E. Dynamic vertical response of piles in nonlinear soil, Journal ofgeotechnical and geoenvironmental engineering[J]. ASCE.1997,123(8):710-716.
    [88]职洪涛,俞载道,曹国敖.基础提离、滑移对多层房屋地震反应影响分析[J].同济大学学报,1998,26(4):367-371.
    [89]熊建国.土-结构动力问题的新进展(II)[J].世界地震工程,1992(4):17-25.
    [90]宰金珉,宰金璋.高层建筑基础分析与设计[M].北京:中国建筑工业出版社第一版,1993.
    [91] S.J.Hain, I.K.Lee. Ratiional Analysis of Raft Foundation[J]. J.Geotech.Eng.Div, ASCE,1974,100:843-860.
    [92]窦远明,刘晓立,赵少伟,等.砂垫层隔震性能的试验研究[J].建筑结构学报,2005,26(1):125-128.
    [93]李立,刘德馨.建筑物的滑动隔震[A].王优龙,魏琏,李康祺等.隔震结构的研究与应用[M].北京:地震出版社,1991:60-69.
    [94]王文明.砂层滑动隔震[A].王优龙,魏琏,李康祺等.隔震结构的研究与应用[M]北京:地震出版社,1991:99-109.
    [95] SCHNABEL P B, LYSMER J, SEED H B. Shake: a computer program for earthquakeresponse analysis of horizontally layered sites[R]. Report EERL.1972.
    [96]刘稚媛.砂垫层减震性能研究[D].天津:河北工业大学,2003.
    [97]刘晓立,王江,窦远明,等.砂垫层厚度及基底压力对地面地震反应的影响[J].华北航天工业学院学报,2004,14(2):7-10.
    [98]王凤池,朱浮声,林勇.复合地基垫层的减振作用分析[J].世界地震工程.2004,20(3):109-113.
    [99]邹颖娴.砂砂石垫层的隔震性能研究[D].西安:西安建筑科技大学,2006.
    [100]白举科,陈龙珠.复合地基褥垫层上结构水平地震响应分析[J].工程抗震与加固改建.2009.31(2):55-59.
    [101]林本海.复合地基的液化检验理论及其应用[D].北京:中国水利水电出版社.1999.
    [102]王伟,杨尧志.水泥粉煤灰碎石桩复合地基抗震性能分析[J].世界地震工程,2000,16(2):97-100.
    [103]刘广君,韩银泉. CFG桩复合地基中褥垫层的抗震性能分析[J].石家庄铁路工程职业技术学院学报,2003,2(2):7-11.
    [104]徐自国,宋二祥.刚性桩复合地基抗震性能的有限元分析[J].岩土力学,2004,25(2):179-183.
    [105]徐自国,宋二祥.刚性桩复合地基地震响应的简化分析方法[J].岩土力学,2005,26(1):75-81.
    [106]刘光磊,武思宇,宋二祥.群桩刚性桩复合地基地震反应三维有限元分析[J].建筑结构,2006,36(7):85-88.
    [107]屠毓敏,俞亚南.刚性桩复合地基水平承载力特性[J].岩土力学,2007(11):2329-2332.
    [108]武思宇,宋二祥,刘华北,等.刚性桩复合地基抗震性能的振动台试验研究[J].岩土力学,2007(1):77-82.
    [109]丁继辉,刘风然,杜二霞,等.水泥土和CFG组合桩复合地基动力特性分析.粉煤灰综合利用,2008,(6):37-40.
    [110]胡再强,王军星,刘兰兰,等.褥垫层作用下复合地基抗震性能有限元分析[J].岩土力学,2008(S1):587-592.
    [111]夏栋舟,何益斌,刘建华.刚性桩复合地基-上部结构动力相互作用体系抗震性能及影响因素分析[J].岩土力学,2009,30(11):3505-3511.
    [112]武思宇,宋二祥.刚性桩复合地基地震反应机理分析[J].岩土力学,2009,30(3):785-792.
    [113]宋二祥,武思宇,刘华北.刚性桩复合地基地震反应的拟静力计算方法[J].岩土工程学报,2009(11):1723-1728.
    [114]鲍鹏,苏彩丽,张利伟.基于时程分析法的刚性桩复合地基地震响应分析[J].岩土工程学报,2011(S2):485-489.
    [115]李丰,宋二祥.刚性桩复合地基抗震计算的一种简化方法[J].西北地震学报,2011(S1):123-127.
    [116] RASHED Y F. A boundary domain element method for analysis of building raftfoundations[J]. Engineering Analysis with Boundary Elements,2005,29(9):859-877.
    [117] POULOS H G. Piled raft foundation: design and applications[J]. Geotechnique,2001,(2):95-113.
    [118] CHEN Qiu-nan, ZHAO Ming-hua, ZHOU Guo-hua, et al. Bearing capacity andmechanical behavior of CFG pile composite foundation[J]. Journal of Central SouthUniversity of Technology,2008,15(s2):045-049.
    [119]张伟丽,蔡健,林奕禧,等.水泥土搅拌桩复合地基荷载传递机理的试验研究[J].土木工程学报,2010,43(6):116-121.
    [120]马海龙,陈云敏,水泥土群桩承载力特性的原位试验研究[J].浙江大学学报(工学版),2004,38(5):593-597.
    [121] LIANG Fa-yun, CHEN Long-zhu, SHI Xu-guang. Numerical Analysis of CompositePiled Raft with Cushion Subjected to Vertical Load[J]. Computers and Geotechnics,2003,30:443-453.
    [122].ZHU K, XU R Q, GUO Y, et al. Test Research on the Behavior of CompositeFoundations Incorporating Rigid and Flexible Piles[J]. Ground Modification and SeismicMitigation,2006,152:313-320.
    [123] Pan, J.L., Goha,T.C.,Wong, etal. Model tests on single piles in soft clay[J]. CanadianGeotechnical Journal,2000,37(4):890-897.
    [124] ZHANG Ling, ZHAO Ming-hua, HE Wei. Working mechanism of two-directionreinforced composite foundation[J]. Journal of Central South University of Technology,2007,14(4):589-594.
    [125] WANG Xian-zhi, ZHENG Jun-jie. Experiments of Multi-element CompositeFoundation with Steel Pipe Pile and Gravel Pile[J]. Journal of Southwest Jiao tong University(English Edition),2008,16(3):254-258.
    [126] Sekhar C D, Rana R.A. Critical Review on Idealization and Modeling for Interactionamong Soil-Foundation-Structure System. Computers and Structures[J],2002,80:1579-1594.
    [127] Y. X. Cai, P. L. Gould, C. S. Desai. Nonlinear Analysis of3D Seismic Interaction ofSoil-Pile-Structure Systems and Application[J]. Engineering Structures.2000,22:191~199.
    [128]张俊发,高层建筑考虑土-桩-结构相互作用的静动力研究[D].西安:西安建筑科技大学,2005.
    [129] FILONENKO-BORODICH MM. Some approximate theories of the elasticfoundation[J]. LJchenyie Zapiski Moskovskogo Gosudarstvennoho Uni versitela Mekhan¨aca,1940,46:3-18.
    [130] BARBER JR. Beams on Elastic Foundations[J]. Intermediate Mechanics of Materials,2011:353-384.
    [131] HOOPER JA. Observations on the behaviour of a piled-raft foundation on LondonClay[J]. Proceedings of the Institution of Civil Engineers,1973,55(Part2):855-877.
    [132] GB50007-2002建筑地基基础设计规范[M].北京:中国建筑工业出版社.2002.
    [133]张春涛,王汝恒,贾彬.基于共同作用下筏板基础的力学机理研究[J].华中科技大学学报,2008,25(4):293-295.
    [134]宰金珉,宰金璋.高层建筑基础分析与设计-土与结构物共同作用的理论与应用
    [M].北京:中国建筑工业出版社,1993.
    [135] MINDLIN RD. Influence of rotatory inertia and shear on flexural motions of isotropicelastic plates[J]. J appl Mech,1951,18(1):31¨C38.
    [136] R.W.克拉夫,J.彭津.《结构动力学》.北京:科学出版社,1981.
    [137] Ciro Faella Enzo Martinelli and Emidio Nigro.Shear Connection Nonlinearity andDeflections of Steel—Concrete Composite Beams:A simplified Method[J]. Journal ofStructural Engineering,2003,129(l)12—20.
    [138]王焕定,吴德伦,林家骥.《有限单元法及计算程序》[M],北京:中国建筑工业出版社,2004.
    [139]中国建筑科学研究院.建筑地基处理技术规范(JGJ79—2002)[S].北京:中国建筑工业出版社.2002.
    [140]建筑地基处理技术规范(JGJ79-2002)[M].中国建筑工业出版社,2002.
    [141]广东省建筑科学研究院.建筑地基基础检验规范[M].中国建筑工业出版社,2008.
    [142]张伟丽,蔡健,林奕禧等.水泥土搅拌桩复合地基荷载传递机理的试验研究[J].土木工程学报,2010,43(6):116-121.
    [143]石亦平,周玉蓉. ABAQUS有限元分析实例详解[M].北京:机械工业出版社,2006.
    [144]费康,张健伟. ABAQUS在岩土工程中的应用[M].北京:中国水利水电出版社,2010.
    [145]杨庆,栾茂田,崇金著等.混凝土底板与碎石垫层室内水平抗滑试验研究[J].工程勘察,1999,(6):5-8.
    [146]罗凡.刚性桩复合地基—筏板基础—上部结构整体有限元分析[D].华南理工大学,2011.
    [147]楼梦麟,陈清军.侧向边界对桩基地震反应影响的研究[R].同济大学结构理论研究所,1997.
    [148]杨光华,王鹏华,乔有梁.地基非线性沉降计算的原状土割线模量法[J].土木工程学报,2007,40(5):49-52.
    [149]杨光华.地基沉降计算的新方法[J].岩石力学与工程学报,2008,27(4):679-686.
    [150]杨光华,苏卜坤,乔有梁.刚性桩复合地基沉降计算方法[J].岩石力学与工程学报,2009,28(11):2193-2200.
    [151]建设综合勘察研究设计院.岩土工程勘察规范(GB50021-2001)[M].中国建筑工业出版社,2009.
    [152]钱家欢,土力学[M].南京:河海大学出版社,1995.
    [153]孔位学,芮勇勤,董宝弟.岩土材料在非关联流动法则下剪胀角选取探讨[J].岩土力学,2009(11):3278-3282.
    [154]亓乐,施建勇,侯仟.复合地基桩体对垫层的刺入量研究[J].岩土力学,2011,32(3):816-819.
    [155] HAN Xiao-lei, XIAO Cheng-an, LI Jia-xuan, FENG Jie-qiang. Spring constitutivemodel of rigid pile composite foundation and application in design of raft foundation[J].Journal of central south university of technology,2013,4,20(4):1079-1084.
    [156]吕西林,金国芳,吴晓涵.钢筋混凝土结构非线性有限元理论与应用[M].同济大学出版社,1997.
    [157]过镇海,时旭东.钢筋混凝土原理和分析[M].清华大学出版社,2003.
    [158] LUBLINER J., OLIVER J., OLLER S., et al. A plastic-damage model for concrete[J].International Journal of Solids and Structures,1989,25(3):299-326.
    [159] LEE J. Plastic-damage model for cyclic loading of concrete structures[J]. Journal ofengineering mechanics,1998,124:892.
    [160] HILLERBORG A., MODEER M., PETERSSON P.E. Analysis of crack formation andcrack growth in concrete by means of fracture mechanics and finite elements[J]. Cement andconcrete research,1976,6(6):773-781.
    [161]王金昌,陈页开. ABAQUS在土木工程中的应用[M].浙江大学出版社,2006.
    [162]方秦,还毅,张亚栋,等ABAQUS混凝土损伤塑性模型的静力性能分析[J].解放军理工大学学报(自然科学版),2007,8(3):254-260.
    [163]英峻豪.刚性桩复合地基-筏板基础-上部结构整体抗震性能研究[D].广州:华南理工大学,2012.
    [164]王皆伟,王汝恒.土动力本构模型初探[J].四川建筑科学研究,2005(5):89-91.
    [165]李亮,赵成刚.饱和土体动力本构模型研究进展[J].世界地震工程,2004(1):138-148.
    [166]刘立平.水平地震作用下桩-土-上部结构弹塑性动力相互作用分析[D].重庆:重庆大学,2004.
    [167]阴光华,陈清军.地震波反演与土-结构动力相互作用分析[J].力学季刊,2010(2):256-264.
    [168]蔡袁强,凌道盛,周迪永,等.非线性分层地基地面运动反演分析[J].振动工程学报,2000(3):106-112.
    [169]杨溥,李英民,赖明.结构时程分析法输入地震波的选择控制指标[J].土木工程学报,2000(6):33-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700