用户名: 密码: 验证码:
低温煤焦油加氢处理用NiW/γ-Al_2O_3催化剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低温煤焦油通过加氢处理可以制备出富含环烷烃和氢化芳烃的高性能喷气燃料组分,实现煤焦油原料的清洁高效转化。通过改变金属负载量、氧化铝的水热处理温度和载体中Y分子筛的添加量制备出不同的NiW加氢处理催化剂,采用低温N2吸附、H2-TPR、XRD、SEM、NH3-TPD等手段进行表征,考察了金属配比、孔结构及载体酸性对催化剂结构、活性金属分散性及还原性的影响,并通过萘-甲酚模型化合物的加氢反应对其活性进行评价,研究了萘和甲酚在不同催化剂上的加氢反应路径及催化机理。以优选的催化剂对低温煤焦油馏分进行加氢处理,考察了加氢处理催化剂对芳烃和酚类化合物定向转化为环烷烃和氢化芳烃的效果。结果表明,制备的催化剂显著提高了焦油馏分中环烷烃和氢化芳烃的含量,添加5%Y型分子筛之后效果更为明显。
Low-temperature coal tar can be converted clean and efficiently by hydroprocessing to obtain high-performance aviation jet fuel components rich in cycloalkanes and hydroaromatics. NiW catalysts were prepared with different metal loading, with gamma-alumina hydrothermal treated at different temperatures and with different zeolite Y addition, and characterized with N2adsorption, H2-TPR, XRD, SEM and NH3-TPD. The effect of Ni/W atomic ratio, pore structure and support acidity on the texture, metal dispersion and reducibility of the catalysts were investigated. Hydrotreating of naphthalene-cresol were carried out to test the catalysts activities and the reaction pathways and catalytic mechanism were proposed. Hydroprocessing of coal tar fraction with selected catalysts were performed to examine the production of cycloalkanes and hydroaromatics from phenols and aromatics. The results showed that the content of cycloalkanes and hydroaromatics increased significantly with the prepared catalysts, especially the one with5%zeolite Y.
引文
[1]中国统计年鉴[M].北京:中国统计出版社,2012.
    [2]孙会青,曲思建,王利斌.低温煤焦油生产加工利用的现状[J].洁净煤技术,2008,14(5):3-38.
    [3]胡发婷,张晓静,李培霖.煤焦油加工技术进展及工业化现状[J].洁净煤技术,2011,5:31-35.
    [4]Schobert H H. Advanced Thermally Stable Jet Fuels [R]. DOE PC/92104, Washington DC, 1999.
    [5]水恒福,张德祥,张超群.煤焦油分离与精制[M].北京:化学工业出版社,2006.
    [6]马宝岐,任沛建,杨占彪等.煤焦油制燃料油品[M].北京:化学工业出版社,2011.
    [7]肖瑞华.煤焦油化工学[M].北京:冶金工业出版社,2009.
    [8]Mirza A, Masood M A, Ramaswamy A V, et al. Medium-pressure hydrogenation of neutral oil fractions of low-temperature tar into diesel oil. [Use of commercial catalyst (W and Ni sulfides); hydrogenation at 300 to 450℃,70 to 100 atm] [J]. Brennstoff Chemistry,1965,46(11): 355-358.
    [9]Janardanarao M. Cracking and hydrogenation of low-temperature coal tars and alkyl phenols [J]. Industrial & Engineering Chemistry Product Research and Development,1982,21(3):375-390.
    [10]李增文.煤焦油加氢工艺技术[J].化学工程师,2009,10:57-62.
    [11]付晓东.煤气化副产品焦油的加氢转化[J].化学工程师,2005,4:53-66.
    [12]吕子胜,王守峰.用低温煤焦油生产柴油的研究[J].燃料与化工,2002,33(2):81-82.
    [13]屈明达,鄂忠明.煤焦油的加氢处理[J].化工技术经济,2005,23(6):49-53.
    [14]燕京,吕才山,刘爱华等.高温煤焦油加氢制取汽油和柴油[J].石油化工,2006,35(1):33-36.
    [15]张连明.黑化集团公司低温焦油的开发利用[J].鸡西大学学报,2002,2(2):54-55.
    [16]王树东,胡俊生,胡浩权等.神府煤新法干馏焦油的加氢处理[J].煤炭转化,1992(02):73-78.
    [17]曲思建,关北锋,王燕芳等.我国煤温和气化(热解)焦油性质及其加工利用现状与进展[J].煤炭转化,1998,21(1):15-20.
    [18]舒歌平,史士东,金嘉璐.气化焦油加氢制汽油、柴油研究[J].煤化工,1998,2:34-39.
    [19]黄谦昌.煤气化焦油加工制取汽油和柴油的研究[J].煤炭转化,1995,18(4):75-83.
    [20]何国峰,陈贵峰,关北峰等.低温热解焦油馏分加氢精制的研究[J].煤炭转化,1998,21(1):49-53.
    [21]张晔,赵亮富.中/低温煤焦油催化加氢制各清洁燃料油研究[J].煤炭转化,2009,32(3):48-51.
    [22]李冬,李稳宏,高新等.中低温煤焦油加氢改质工艺研究[J].煤炭转化,2009,32(4):81-84.
    [23]陈松,许杰,方向晨.煤焦油联合加氢裂化处理工艺及其专用催化剂[J].现代化工,2009,29(3):64-69.
    [24]Kan T, Wang H, He H, et al Experimental study on two-stage catalytic hydroprocessing of middle-temperature coal tar to clean liquid fuels [J]. Fuel,2011,90(11):3404-3409.
    [25]Groot C K, De Beer V H J, Prins R, et al. Comparative study of alumina-and carbon-supported catalysts for hydrogenolysis and hydrogenation of model compounds and coal-derived liquids [J]. Industrial & Engineering Chemistry Product Research and Development,1986,25(4): 522-530.
    [26]Demirel B. Production of High Octane Gasoline Components by Hydroprocessing of Coal-Derived Aromatic Hydrocarbons [D]. Salt Lake City:The University of Utah,1996.
    [27]Rosal R, Diez F V, Sastre H. Catalytic hydrogenation of multiring aromatic hydrocarbons in a coal tar fraction [J]. Industrial & Engineering Chemistry Research,1992,31(4):1007-1012.
    [28]Demirel B, Wiser W H, Oblad A G, et al. Production of high octane gasoline components by hydroprocessing of coal-derived aromatic hydrocarbons [J]. Fuel,1998,77(4):301-311.
    [29]Martinez M T, Miranda J, Juan R. Catalytic hydrotreating of coal liquids [J]. Fuel,1988,67(9): 1197-1200.
    [30]Surygala J, Wandas R, Sliwka E. Hydrogenation of multicomponent mixture simulating fast pyrolysis tar [J]. Reaction Kinetics and Catalysis Letters,1994,53(1):217-221.
    [31]Kusy J, Andel L, Safarova M, et al. Hydrogenation process of the tar obtained from the pyrolisis of brown coal [J]. Fuel,2011,101:38-44.
    [32]Belik N A, Shevchenko G G, Rokhina E F, et al. Catalytic activity of wide-pore catalysts in hydrogenation processing of tars [J]. Solid Fuel Chemistry,2001,35(1):63-66.
    [33]Song C, Lai W C, Schobert H H. Hydrogen-Transferring Pyrolysis of Long-Chain Alkanes and Thermal Stability Improvement of Jet Fuels by Hydrogen Donors [J]. Ind. Eng. Chem. Res., 1994,33(3):548-557.
    [34]Yoon E M, Selvaraj L, Song C, et al. High-Temperature Stabilizers for Jet Fuels and Similar Hydrocarbon Mixtures.I. Comparative Studies of Hydrogen Donors [J]. Energy & Fuels,1996, 10:806-811.
    [35]Butnark S. Thermally stable coal-based jet fuel:Chemical compostion, thermal stability, physical properties and thier relationships [D].The Pennsylvania State University,2003.
    [36]Gul O, Rudnick L R, Schobert H H. Effect of the Reaction Temperature and Fuel Treatment on the Deposit Formation of Jet Fuels [J]. Energy & Fuels,1981,22(1):433-439.
    [37]Gul O, Rudnick L R, Schobert H H. The Effect of Chemical Composition of Coal-Based Jet Fuels on the Deposit Tendency and Morphology [J]. Energy & Fuels,2006,20(6):2478-2485.
    [38]Smith B L,Bruno T J. Composition-Explicit Distillation Curves of Aviation Fuel JP-8 and a Coal-Based Jet Fuel [J]. Energy & Fuels,2007,21(5):2853-2862.
    [39]Strohm J J, Butnark S, Keyser T L, et al. The use of coal pyrolysis products for the development of thermally stable jet fuels [J]. Fuel Chemistry Division Preprints,2004,47(1):177-178.
    [40]Balster L M, Corporan E, DeWitt M J, et al. Development of an advanced, thermally stable, coal-based jet fuel [J]. Fuel Processing Technology,2008,89(4):364-378.
    [41]Schobert H H, Badger M W, Santoro R J. Progress toward coal-based JP-900 [J]. Am. Chem. Soc.-Petroleum Chemistry Division Preprints,2002,47(3):192-194.
    [42]韩崇仁.加氢裂化工艺与工程[M].北京:中国石化出版社,2001.
    [43]李大东.加氢处理工程与工艺[M].北京:中国石化出版社,2004.
    [44]Gutierrez-Alejandre A, Ramirez J, Val I J-d, et al. Activity of NiW catalysts supported on Ti02-Al2O3 mixed oxides:Effect of Ti incorporation method on the HDS of 4,6-DMDBT [J]. Catalysis Today,2005,107-108:879-884.
    [45]Ninh T K T, Massin L, Laurenti D, et al. A new approach in the evaluation of the support effect for NiMo hydrodesulfurization catalysts [J]. Applied Catalysis A:General,2011,407(1-2): 29-39.
    [46]Perot G. Hydrotreating catalysts containing zeolites and related materials--mechanistic aspects related to deep desulfurization [J]. Catalysis Today,2003,86(1-4):111-128.
    [47]Ramirez J, Macias G, Cedeno L, et al. The role of titania in supported Mo, CoMo, NiMo, and NiW hydrodesulfurization catalysts:analysis of past and new evidences [J]. Catalysis Today, 2004,98(1-2):19-30.
    [48]Wang J, Li Q, Yao J. The effect of metal-acid balance in Pt-loading dealuminated Y zeolite catalysts on the hydrogenation of benzene [J]. Applied Catalysis A:General,1999,184(2): 181-188.
    [49]Yasuda H, Sato T, Yoshimura Y. Influence of the acidity of USY zeolite on the sulfur tolerance of Pd-Pt catalysts for aromatic hydrogenation [J]. Catalysis Today,1999,50(1):63-71.
    [50]Petitto C, Giordano G, Fajula F, et al. Influence of the source of sulfur on the hydroconversion of 1-methylnaphthalene over a Pt-Pd/USY catalyst [J]. Catalysis Communications,2002,3(1): 15-18.
    [51]Du M, Qin Z, Ge H, et al. Enhancement of Pd-Pt/Al2O3 catalyst performance in naphthalene hydrogenation by mixing different molecular sieves in the support [J]. Fuel Processing Technology,2010,91 (11):1655-1661.
    [52]Pawelec B, La Parola V, Thomas S, et al. Enhancement of naphthalene hydrogenation over PtPd/SiO2-Al2O3 catalyst modified by gold [J]. Journal of Molecular Catalysis A:Chemical, 2006,253(1-2):30-43.
    [53]Grange P,Vanhaeren X. Hydrotreating catalysts, an old story with new challenges [J]. Catalysis Today,1997,36(4):375-391.
    [54]Furimsky E. Catalytic hydrodeoxygenation [J]. Applied Catalysis A:General,2000,199(2): 147-190.
    [55]Kameoka T, Yanase H, Nishijima A, et al. Catalytic performance tests and deactivation behavior of Ni-W/Al2O3 catalysts developed for upgrading coal-derived liquids [J]. Applied Catalysis A: General,1995,123(2):217-228.
    [56]Samuel P, Butte B K, Mukherjee S K, et al. Middle distillates by catalytic hydrogenation [J]. Indian Journal of Technology,1980,18(11):458-460.
    [57]Samuel P, Dutta B K, Mukherjee S K, et al. Hydrogenation of coal tar oil to middle distillates [J]. Indian Journal of Technology,1984,22(1):20-24.
    [58]Wilson M F,Kriz J F. Upgrading of middle distillate fractions of a syncrude from Athabasca oil sands [J]. Fuel,1984,63(2):190-196.
    [59]Maslyanskaya T G, ltskovich V A, Tsudikova L P. Hydrorefining of light-medium tar from rapid pyrolysis of KAU (Kansk-Achink coal) [J]. Solid Fuel Chemistry,1986,20(2):100-103.
    [60]Belik N A, Shevchenko G G, Rokhina E F. Composition and structure of hydrocarbon components of hydrogenates of heavy tar from semicoking of cheremkhovo coals [J]. Solid Fuel Chemistry,1994,28(4-5):93-102.
    [61]Shimada H, Kameoka T, Yanase H, et al., Highly Active Ni-W/Al2O3 Catalyst for Upgrading Unconventional Feedstocks. In:Guczi L, Solymosi F, TETENyi P. Studies in Surface Science and Catalysis. Elsevier,1993:1915-1918.
    [62]Wandas R,Chrapek T. Hydrotreating of middle distillates from destructive petroleum processing over high-activity catalysts to reduce nitrogen and improve the quality [J]. Fuel Processing Technology,2004,85(11):1333-1343.
    [63]Stanislaus A,Cooper B H. Aromatic Hydrogenation Catalysis:A Review [J]. Catalysis Reviews, 1994,36(1):75-123.
    [64]倪月琴,臧璟龄,张吉仁.加氢脱氮催化剂活性相的表征——1.硫化Mo/Al2O3的表面和化学结构[J].催化学报,1991(01):14-19.
    [65]王雪峰,王锋,陈满英等.Ni基双金属催化剂加氢脱氧性能的研究[J].燃料化学学报,2005(05):612-616.
    [66]秦磊,阳永荣.Pt-Pd催化剂的萘加氢活性和抗氮性能研究[J].化学反应工程与工艺,2011(05):393-399.
    [67]邱丽美,齐和日玛,刘清河等.X射线光电子能谱法研究加氢脱硫催化剂中活性元素的化学态[J].石油学报(石油加工),2011(04):638-642.
    [68]韩艳敏,张舜光,王欣等.非负载Co-Mo催化剂的制备、表征与加氢脱硫活性评价[J].精细石油化工,2011(02):12-16.
    [69]李彦鹏,刘大鹏,刘晓等.器外预硫化型MoNiP/γ-Al2O3催化剂的二苯并噻吩加氢脱硫活性[J].催化学报,2006(07):624-630.
    [70]Farragher A L. Surface vacancies in close packed crystal structures [J]. Advances in Colloid and Interface Science,1979,11(1):3-41.
    [71]Hagenbach G, Courty P, Delmon B. Physicochemical investigations and catalytic activity measurements on crystallized molydbenum sulfide-cobalt sulfide mixed catalysts [J]. Journal of Catalysis,1973,31(2):264-273.
    [72]Asua J M,Delmon B. Separation of the kinetic terms in catalytic reactions with varying number of active sites (case of the remote control model) [J]. Applied Catalysis,1984,12(2):249-262.
    [73]Tops(?)e H,Clausen B S. Importance of Co-Mo-S Type Structures in Hydrodesulfurization [J]. Catalysis Reviews,1984,26(3-4):395-420.
    [74]Townsend A T,Larkins F P. Upgrading of an Australian coal-derived liquid.1. Initial activity dependence on loading for Ni-Mo/Al2O3 catalysts [J]. Fuel Processing Technology,1992, 32(1-2):101-113.
    [75]Kim M H, Ebner J R, Friedman R M, et al. Determination of Metal Dispersion and Surface Composition in Supported Cu-Pt Catalysts [J]. Journal of Catalysis,2002,208(2):381-392.
    [76]Park K-C, Yim D-J, lhm S-K. Characteristics of Al-MCM-41 supported Pt catalysts:effect of Al distribution in Al-MCM-41 on its catalytic activity in naphthalene hydrogenation [J]. Catalysis Today,2002,74(3-4):281-290.
    [77]Uner D O, Pruski M, King T S. Optimization of the Volumetric Hydrogen Chemisorption Technique for Dispersions of Ru/SiO2 Catalysts [J]. Journal of Catalysis,1995,156(1):60-64.
    [78]Mochida l,Sakanishi K. Catalytic upgrading of coal liquid vacuum residue derived from Illinois No.6 coal [J]. Fuel,1987,66(11):1584-1587.
    [79]Ito K, Kogasaka Y, Kurokawa H, et al. Preliminary study on mechanism of naphthalene hydrogenation to form decalins via tetralin over Pt/TiO2 [J]. Fuel Processing Technology,2002, 79(1):77-80.
    [80]Lu C, Lin Y, Wang I. Naphthalene hydrogenation over Pt/TiO2-ZrO2 and the behavior of strong metal-support interaction (SMSI) [J]. Applied Catalysis A:General,2000,198(1-2):223-234.
    [81]Ramirez J, Rayo P, Gutierrez-Alejandre A, et al. Analysis of the hydrotreatment of Maya heavy crude with NiMo catalysts supported on TiO2-Al2O3 binary oxides:Effect of the incorporation method of Ti [J]. Catalysis Today,2005,109(1-4):54-60.
    [82]Vissenberg M J, van der Meer Y, Hensen E J M, et al. The Effect of Support Interaction on the Sulfidability of Al2O3- and TiO2-Supported CoW and NiW Hydrodesulfurization Catalysts [J]. Journal of Catalysis,2001,198(2):151-163.
    [83]朱洪法,刘丽芝.催化剂制备及应用技术[M].北京:中国石化出版社,2011.
    [84]高滋.沸石催化与分离技术[M].北京:中国石化出版社,1999.
    [85]徐如人,庞文琴.分子筛与多孔材料化学[M].北京:科学出版社,2004.
    [86]齐和日玛,李会峰,袁蕙等.Al2O3性质对加氢脱硫催化剂Co-Mo/Al2O3活性相形成的影响[J].催化学报,2011(02):240-249.
    [87]商红岩,刘晨光,徐永强等.活性炭负载的Co-Mo催化剂的加氢脱硫性能Ⅰ.活性炭载体与γ-Al2O3的对比[J].催化学报,2004(05):363-368.
    [88]魏昭彬,辛勤,郭燮贤.加氢脱硫催化剂研究:TiO2调变Al2O3载体对MoO3物化行为的影响[J].催化学报,1991(04):255-260.
    [89]黎成勇,黄华.载体酸性对镍金属催化剂芳烃加氢抗硫性能的影响[J].工业催化,2006(06):16-19.
    [90]王宝宇,沈健CoMo/SBA-15-γ-Al2O3催化剂的加氢脱硫活性研究[J].石油炼制与化工2011(05):18-22.
    [91]刘会茹,李建荣,赵地顺等.Y沸石载体酸量对贵金属催化剂加氢活性和抗硫性能的影响[J].催化学报,2007(03):274-280.
    [92]田然,王甫村,孙发民等.负载型加氢催化剂金属组分在载体上的分布状态[J].工业催化,2008(10):59-61.
    [93]Absi-Halabi M, Stanislaus A, Al-Zald A. Studies on pore control of alumina:preparation of alumina catalyst extrudates with large unmodal pore structure by low temperature hydrothermal treatment. In:Poncelet G, et al. Preparation of Catalysts V. Amsterdam:Elsevier Science Publishers B.V.,1991:155-163.
    [94]Stanislaus A, Al-Dolama K, Absi-Halabi M. Preparation of a large pore alumina-based HDM catalyst by hydrothermal treatment and studies on pore enlargement mechanism [J]. Journal of Molecular Catalysis A:Chemical,2002,181(1-2):33-39.
    [95]Zhang J, Chen J, Ren J, et al. Chemical treatment of γ-Al2O3 and its influence on the properties of Co-based catalysts for Fischer-Tropsch synthesis [J]. Applied Catalysis A:General,2003, 243(1):121-133.
    [96]李俊诚,向兰,冯旭等.水热改性对氧化铝载体织构和表面性质的影响[J].无机化学学报,2005,21(2):212-217.
    [97]Li J, Xiang L, Xu F, et al. Effect of hydrothermal treatment on the acidity distribution of [gamma]-Al2O3 support [J]. Applied Surface Science,2006,253(2):766-770.
    [98]董松涛,李宣文,李大东等.水热处理USY二次孔形成规律研究[J].物理化学学报,2002,18(3):201-206.
    [99]刘百军,李敏,冯智.水热和草酸改性对Y分子筛结构和酸性的影响[J].分子催化,2007,21(4):300-303.
    [100]Elaiopoulos K, Perraki T, Grigoropoulou E. Monitoring the effect of hydrothermal treatments on the structure of a natural zeolite through a combined XRD, FT1R, XRF, SEM and N2-porosimetry analysis [J]. Microporous and Mesoporous Materials,2010,134(1-3):29-43.
    [101]Li H, Xu Y, Gao C, et al. Structural and textural evolution of Ni/[gamma]-Al2O3 catalyst under hydrothermal conditions [J]. Catalysis Today,2010,158(3-4):475-480.
    [102]Salman N, Ruscher C H, Buhl J C, et al. Effect of temperature and time in the hydrothermal treatment of HY zeolite [J]. Microporous and Mesoporous Materials,2006,90(1-3):339-346.
    [103]Sigurdson S, Sundaramurthy V, Dalai A K, et al. Phosphorus promoted trimetallic NiMoW/[gamma]-Al2O3 sulfide catalysts in gas oil hydrotreating [J]. Journal of Molecular Catalysis A:Chemical,2008,291(1-2):30-37.
    [104]Maity S K, Flores G A, Ancheyta J, et al. Effect of preparation methods and content of phosphorus on hydrotreating activity [J]. Catalysis Today,2008,130(2-4):374-381.
    [105]Sundaramurthy V, Dalai A K, Adjaye J. Effect of phosphorus addition on the hydrotreating activity of NiMo/Al2O3 carbide catalyst [J]. Catalysis Today,2007,125(3-4):239-247.
    [106]Maity S K, Ancheyta J, Rana M S, et al. Effect of phosphorus on activity of hydrotreating catalyst of Maya heavy crude [J]. Catalysis Today,2005,109(1-4):42-48.
    [107]Atanasova P, Tabakova T, Vladov C, et al. Effect of phosphorus concentration and method of preparation on the structure of the oxide form of phosphorus-nickel-tungsten/alumina hydrotreating catalysts [J]. Applied Catalysis A:General,1997,161(1-2):105-119.
    [108]Maity S K, Lemus M, Ancheyta J. Effect of Preparation Methods and Content of Boron on Hydrotreating Catalytic Activity [J]. Energy & Fuels,2011,25(7):3100-3107.
    [109]Wang W, Yang Y, Bao J, et al. Characterization and catalytic properties of Ni-Mo-B amorphous catalysts for phenol hydrodeoxygenation [J]. Catalysis Communications,2009,11(2): 100-105.
    [110]Ferdous D, Dalai A, Adjaye J. Comparison of product selectivity during hydroprocessing of bitumen derived gas oil in the presence of NiMo/Al2O3 catalyst containing boron and phosphorus [J]. Fuel,2006,85(9):1286-1297.
    [111]Bej S K. Performance Evaluation of Hydroprocessing CatalystsA Review of Experimental Techniques [J]. Energy & Fuels,2002,16(3):774-784.
    [112]Tsai M C, Chen Y W, Kang B C, et al. Hydrodesulfurization and hydrodemetalation reactions of residue oils over cobalt-molybdenum/aluminum borate catalysts in a trickle bed reactor [J]. Industrial & Engineering Chemistry Research,1991,30(8):1801-1810.
    [113]Gachet C, Breysse M, Cartenot M, et al. Optimization of the composition of Ni-W/Al2O3 hydrotreating catalysts using model molecules and real feedstock conversion studies [J]. Catalysis Today,1988,4(1):7-22.
    [114]董松涛.加氢裂化催化剂选择性的研究[D].北京:石油化工科学研究院,2001.
    [115]李洪宝,黄卫国,康小洪等.含氮化合物对NiW体系催化剂芳烃加氢性能的影响[J].石油炼制与化工,2006(10):27-31.
    [116]左东华,聂红,Vrinat M等.硫化态NiW/Al2O3催化剂加氢脱硫活性相的研究Ⅱ.程序升温还原表征[J].催化学报,2004(05):373-376.
    [117]Dugulan A I, Hensen E J M, van Veen J A R. Effect of pressure on the sulfidation behavior of NiW catalysts:A 182W Mossbauer spectroscopy study [J]. Catalysis Today,2010,150(3-4): 224-230.
    [118]Hensen E J M, van der Meer Y, van Veen J A R, et al. Insight into the formation of the active phases in supported NiW hydrotreating catalysts [J]. Applied Catalysis A:General,2007,322: 16-32.
    [119]van Veen J A R, Colijn H A, Hendriks P A J M, et al. On the formation of type Ⅰ and type Ⅱ NiMoS phases in NiMo/Al2O3 hydrotreating catalysts and its catalytic implications [J]. Fuel Processing Technology,1993,35(1-2):137-157.
    [120]Ding Y, Liang J, Fan Y, et al. Synergisms between matrices and ZSM-5 in FCC gasoline non-hydrogenating upgrading catalysts [J]. Catalysis Today,2007,125(Compendex):178-184.
    [121]Ding Y-H, Chen H, Wang D-F, et al. Supercritical fluid extraction and fractionation of high-temperature coal tar [J]. Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology,2010,38(Compendex):140-143.
    [122]Wandas R, Surygala J, Sliwka E. Conversion of cresols and naphthalene in the hydroprocessing of three-component model mixtures simulating fast pyrolysis tars [J]. Fuel, 1996,75(6):687-694.
    [123]Moreau C, Aubert C, Durand R, et al. Structure-activity relationships in hydroprocessing of aromatic and heteroaromatic model compounds over sulphided NiO-MoO3/γ-Al2O3 and NiO-WO3/γ-Al2O3 catalysts; chemical evidence for the existence of two types of catalytic sites [J]. Catalysis Today,1988,4(1):117-131.
    [124]Moreau C, Joffre J, Saenz C, et al. Hydroprocessing of substituted benzenes over a sulfided CoO-MoO3/γ-Al2O3 catalyst [J]. Journal of Catalysis,1990,122(2):448-451.
    [125]Odebunmi E O,OIlis D F. Catalytic hydrodeoxygenation:I. Conversions of o-, p-, and m-cresols [J]. Journal of Catalysis,1983,80(1):56-64.
    [126]Corma A, Martinez A, Martinez-Soria V. Catalytic Performance of the New Delaminated ITQ-2 Zeolite for Mild Hydrocracking and Aromatic Hydrogenation Processes [J]. Journal of Catalysis,2001,200(2):259-269.
    [127]Halachev T, Atanasova P, Agudo A L, et al. Activity of P-Ni-W/Al2O3 catalysts with varying phosphorus content in the hydrogenation of naphthalene [J]. Applied Catalysis A:General,1996, 136(2):161-175.
    [128]Schmitz A D, Bowers G, Song C. Shape-selective hydrogenation of naphthalene over zeolite-supported Pt and Pd catalysts [J]. Catalysis Today,1996,31(1-2):45-56.
    [129]刘百军,张金霞,鲍晓军等.水热处理改性对NiWF/Al2O3催化剂加氢精制性能的影响.in第九届全国化学工艺学术年会.2005.北京.
    [130]陆红军.FCC催化剂中B酸和L酸的作用[J].催化裂化,1998,17(2):13-14,23.
    [131]Arribas M A, Corma A, Diaz-Cabanas M J, et al. Hydrogenation and ring opening of Tetralin over bifunctional catalysts based on the new ITQ-21 zeolite [J]. Applied Catalysis A:General, 2004,273(1-2):277-286.
    [132]Arribas M A,Martinez A. The influence of zeolite acidity for the coupled hydrogenation and ring opening of 1-methylnaphthalene on Pt/USY catalysts [J]. Applied Catalysis A:General, 2002,230(1-2):203-217.
    [133]Bendezu S, Cid R, Fierro J L G, et al. Thiophene hydrodesulfurization on sulfided Ni, W and NiW/USY zeolite catalysts:effect of the preparation method [J]. Applied Catalysis A:General, 2000,197(1):47-60.
    [134]Brzozowski R,Te,cza W. Shape-selective reactions of naphthalene over zeolites [J]. Applied Catalysis A:General,1998,166(1):21-27.
    [135]Cairon O, Thomas K, Chambellan A, et al. Acid-catalysed benzene hydroconversion using various zeolites:Bronsted acidity, hydrogenation and side-reactions [J]. Applied Catalysis A: General,2003,238(2):167-183.
    [136]Corma A, Martinez A, Martinez-Soria V. Hydrogenation of Aromatics in Diesel Fuels on Pt/MCM-41 Catalysts [J]. Journal of Catalysis,1997,169(2):480-489.
    [137]Rocha A S, Moreno E L, da Silva G P M, et al. Tetralin hydrogenation on dealuminated Y zeolite-supported bimetallic Pd-Ir catalysts [J]. Catalysis Today,2008,133-135(0):394-399.
    [138]Vermeiren W,Gilson J P. Impact of Zeolites on the Petroleum and Petrochemical Industry [J]. Topics in Catalysis,2009,52(9):1131-1161.
    [139]Wang L, Shen B, Fang F, et al. Upgrading of light cycle oil via coupled hydrogenation and ring-opening over NiW/Al2O3-USY catalysts [J]. Catalysis Today,2010,158(3-4):343-347.
    [140]辛勤,罗孟飞.现代催化研究方法[M].北京:科学出版社,2009.
    [141]沈春玉,储刚,刘发起.X射线衍射法测定分子筛硅铝比与结晶度[J].抚顺石油学院学报,2002,22(4):34-37.
    [142]王彪,王槐平.分子筛催化剂结晶度和硅铝比的X射线分析[J].石油大学学报(自然科学版),1998,22(1):70-75.
    [143]李洪宝,黄卫国,康小洪等.载体对Ni-W加氢催化剂活性相及芳烃饱和性能的影响[J].石油学报(石油加工),2006,22(6):69-75.
    [144]Inamura K,Iino A. Development of zeolite hydrocracking catalyst and system for resid hydrodesulfurization unit [J]. Catalysis Today,2011,164(1):204-208.
    [145]Simon L J, van Ommen J G, Jentys A, et al. Sulfur-Tolerant Pt-Supported Zeolite Catalysts for Benzene Hydrogenation:I. Influence of the Support [J]. Journal of Catalysis,2001,201(1): 60-69.
    [146]刘希尧.工业催化剂分析测试表征[M].北京:烃加工出版社,1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700