用户名: 密码: 验证码:
基于柱撑粘土的低温NH3-SCR脱硝催化剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具有良好经济性和应用前景的低温氨选择性催化还原(NH_3SelectiveCatalytic Reduction, NH_3-SCR)脱硝技术已经成为烟气脱硝研究领域的重点。为开发低温下高效经济的催化剂,本文创新性地将锰(MnO_x)基氧化物负载在柱撑粘土(Pilared Intelayered Clays)上,并用于低温SCR脱硝。论文主要从MnO_x/Ti-PILC的制备及活性、脱硝性能的改进提高(从活性组分以及柱撑元素两方面)开展研究;其中对低温SCR反应动力学、催化剂抗SO_2性及失活机理也进行了探讨。并通过N2吸附/脱附、XRD、FT-IR、TG、NH_3-TPD、H_2-TPR、XPS等多种表征手段探索催化剂表面物理性质与活性之间的关系。论文主要获得以下结论:
     1.通过比较发现,Ti-PILC载体的制备参数、MnO_x负载量以及催化剂煅烧温度等对MnO_x/Ti-PILC的活性存在重要影响。通过优化研究,在Ti/clay为15mmol/g、H/Ti为1.2、1%的粘土悬浮液浓度、1:1(质量比)的水和丙酮作为溶剂,在500℃以下热处理后,可以得到适宜载体Ti-PILC。MnO_x/Ti-PILC的最佳负载量为10%,300℃下煅烧后,催化剂展现出最高的脱硝效率。其脱硝活性和MnO_x/Al_2O_3(γ-Al_2O_3)相当,且优于MnO_x/TiO2(P25),在65000h-1下仍保持较高的脱硝活性,180℃下,NO转化效率接近100%。催化剂具有较好的抗H_2O性,但抗SO_2特性有待进一步研究。
     2.系统地研究了掺杂型Mn-MOx/Ti-PILC的低温脱硝活性。掺杂元素M包括Bi、La、Fe、Sn、W、V、Ce,发现添加Ce、La对脱硝活性促进明显。Ce、La的添加存在一个最佳值。在最佳的Ce添加量下,Mn-CeO_x/Ti-PILC氧化还原性质最强,表面化学吸附氧浓度较高;在适量的La添加后,Mn-LaO_x/Ti-PILC氧化还原能力也明显增强,同时表面酸性改善,催化剂活性明显提高。Ce、La的添加提高了MnO_x/Ti-PILC抗H_2O和SO_2的能力。
     比较研究了不同的钛前驱物(方法)对Mn-CeO_x/Ti-PILCs的性能影响,发现以TiOSO_4为钛源通过沉淀反胶溶法得到的Ti-PILC负载Mn-CeO_x后,其活性优于Ti(OC_4H_9)_4溶胶法和TiCl_4酸解法得到的Ti-PILCs负载型的催化剂。这可能源与其较高的表面酸性、独特的孔结构、其粘土层外的TiO2也是可能的有利因素。这些均与其较好的交联柱撑效果有关。200℃下,此催化剂展现出一定的抗低浓度SO_2性能,在200ppmSO_2作用下,则迅速失活。
     以Mn-CeO_x/Ti-PILC催化剂为研究对象,通过N2吸附/脱附、XRD、FT-IR、TG、NH_3-TPD、H_2-TPR等表征手段,对比分析未中毒新鲜催化剂、SO_2中毒催化剂以及热处理后催化剂结构性质上的变化,探讨催化剂SO_2中毒机理。发现硫酸铵盐的沉积是催化剂失活的重要原因。以E-R、L-H机理为基础,建立动力学模型,并对100℃和200℃下试验数据进行分析,认为该催化剂的低温SCR反应趋于L-H机理。
     3.研究不同柱撑元素对负载型MnO_x基催化剂的低温脱硝活性影响,发现:对于MnO_x以及Mn-CeO_x双组份催化剂而言,Ti、Zr比Fe和Al作为氧化物柱时更有利。在此基础上,研究了两种共柱撑粘土负载型催化剂(MnO_x/Zr-Ce-PILC和Mn-CeO_x/Ti-Zr-PILC)的脱硝性能。研究表明Zr-Ce混合氧化物柱可以显著提高催化剂的比表面积、丰富其孔结构、改善MnO_x与载体的相互作用,提高其氧化还原性质以及表面酸性,MnO_x/Zr-Ce-PILC活性较单一柱撑的MnO_x/Zr-PILC和MnO_x/Ce-PILC更高。Zr-Ce混合柱撑在改善催化剂活性的同时,抗H_2O抗SO_2能力也得到一定改善。关于MnO_x/Ti-Zr-PILC的研究结果表明:对粘土进行有机改性可以促进Ti、Zr混合柱撑,从而进一步提高催化剂活性。
The selective catalytic reduction of NOxwith NH_3(NH_3-SCR) as reductant atlow temperature has drawn much attraction as a promising technology to remove NOxfrom stationary sources. There is much interest in developing such a technologybecause of its low cost and industrial application demand. The key of the technologyis the catalyst. In this study, in order to develop economical catalysts with goodactivity, the MnO_x-based metal oxides has been supported over pillared interlayeredclays arosed from the economical and easy obtained clays, then the catalysts wereused for SCR of NO with NH_3at low temperature. The preparation and NH_3-SCRactiveity at low temperature of MnO_x/Ti-PILC, the promotion of its catalyticactivities (including the activie components and the pillars) were studed. The reactionkinetics and SO_2posioning mechanism have been systermaticly investigated. Besides,N2absorption/desorption, XRD, FT-IR, TG, NH_3-TPD, H_2-TPR, XPS characterisionmethods were also used to study the property-activity relationship of the catalysts.
     1. It was found that preparation factors of Ti-PILC(including Ti/clay, H/clay, thepillaring temperature, solvent, concentration of the clays and the thermal treatmenttemperature), the MnO_xloadings and the cacinating temperatures all had greatinfluence on the SCR activity of MnO_x/Ti-PILC. Under the conditions of Ti/clay of15mmol/g, H/Ti of1.2,1:1weight ratio of H_2O and actone,1%clay suspention andthermal-treated at500℃, proper Ti-PILC support could be obtained for MnO_x,MnO_x/Ti-PILC with10%MnO_xloadings and cacainated at300℃exhibited superioractivity which was better than MnO_x/TiO2(P25), even at high space velocity of65000h-1, nearly100%NO conversion cold be obtained at180℃. This catalystshowed good resistance to H_2O, however, its resistance ability to SO_2need to befurther studied.
     2. For the study of the active componts, different kinds of metal (M=Bi、La、Fe、Sn、W、V、Ce) has been doped to MnO_x/Ti-PILC to investigate their effect on theactivity, the results showed that both Ce and La were very helpful for the enhancement of the activity in absence of H_2O and SO_2. For the addition of Ce andLa, there was a best doped amout. the resultant Mn-CeO_x/Ti-PILC was enhanced inredox properties and surface ative absorbed O; Mn-LaO_x/Ti-PILC was also promotedin redox charactors and surface acidity concentration. These two catalysts displayedhiger activity than MnO_x/Ti-PILC, besids, the resistance to SO_2and H_2O was alsoheightened.
     It has been found that the preparation method of Ti-PILCs can influence the lowtemperature-SCR activity of Mn-CeO_x/Ti-PILCs, the catasyt with titania formTiOSO_4(Mn-CeO_x/Ti-PILC(S)) rewealed much higher activity compared to thoseform both Ti(OC_4H_9)_4and TiCl_4(Mn-CeO_x/Ti-PILC(O) and Mn-CeO_x/Ti-PILC(Cl)),due to its higher acidity concentration, extra-lattice TiO2, along with the large surfacearea and pore volume, all of which could be attributed to the effective pillaringprocess. Mn-CeO_x/Ti-PILC(S) could keep its high activity in presence of low amoutof SO_2(100ppm) at200℃, while deactived quickly when200ppm SO_2wasintroduced to the gas.
     In order to study the SO_2deactivation machanism on Mn-CeO_x/Ti-PILC, N2absorption/desorption、XRD、FT-IR、TG、NH_3-TPD、H_2-TPR methods were usedto investigeate and compare samples before/after SO_2posioned and heat-regenerated.It was assumed that the sulfates saltes deposited over the catalysts account for thedeactivation. Based on the experimental data at100℃and200℃, the kineticsexperiment was carried with the E-R and L-H mechanism, the results showed that theSCR tend to follow the L-H mechanism under the conditions in this study.
     3. Impacts of various pillars were also studied, the results displayed that thekinds of pillars had great influence on the activity of PILC supported MnO_xandMn-CeO_xcatalysts, Ti and Zr tend to be better for the activity than Fe and Al. On thebasis of the results, two MnO_xbased catalysts supported over PILC with mixedpillars(MnO_x/Zr-Ce-PILC and Mn-CeO_x/Ti-Zr-PILC) has been investigated. Theresults showed that the simple one-step method to introduce Zr and Ce pillars intoclays proved sucssesful to enhance the surface area and the pores, strengthen theintereaction between MnO_xand the support and improve the redox properties, thusthe activity was greatly promoted even in presence of H_2O and SO_2. For Mn-CeO_x/Ti-Zr-PILC catalysts, it could be concluded that organ-modification of theclays could contribute to better the pillaring process with Ti-Zr mixed pillars and thenenhanced the SCR activity of supported Mn-CeO_xcatalysts.
引文
[1].杨楠,王雪.氮氧化物污染及防治[J].环境保护与循环经济,2010,10:63-67
    [2].王妍,李京文.我国煤炭消费现状与未来煤炭需求预测[J].中国人口.资源与环境,2008,18(5):152-155
    [3].周涛,刘少光,吴进明等.火电厂氮氧化物排放控制技术[J].环境工程,2008,26(6):82-85
    [4].刘亭.锰铈基低温选择性催化还原(SCR)脱硝催化剂的研究:[博士学位论文].天津:南开大学,2011
    [5].孙雅丽,郑骥,姜冰.燃煤电厂烟气氮氧化物排放控制技术发展现状[J].环境科学与技术,2011,34(6G):174-179
    [6].沈明昊.浅析燃煤对大气环境的污染及防治[J].西北煤炭,2008,6(1):46-48
    [7].江博琼. Mn/TiO2系列低温SCR脱硝催化剂制备及其反应机理研究:[博士学位论文].浙江杭州:浙江大学,2008
    [8].井鹏,岳涛,李晓岩等.火电厂氮氧化物控制标准、政策分析及研究[J].中国环保产业,2009,4:19-23
    [9].环保部发布《第一次全国污染源普查公报》[J].电力勘测设计,2010,(1):80
    [10].黄少鹗.美国治理燃煤电厂氮氧化物排放的技术措施[J].电力环境保护,1999,15,4:33-48
    [11].Koebel M,Madia G,Raimondi F,et al. Enhanced reoxidation of vanadia by NO2in the fastSCR reaction[J]. Journal of Catalysis,2002,209(1):159-165
    [12].谭青,冯雅晨.我国烟气脱硝行业现状与前景及SCR脱硝催化剂的研究进展[J].化工进展,2011,30:709-713
    [13].Bosch H,Frans J J,Janssen G,et al. The activity of supported vanadium oxide catalysts forthe selective reduction of NO with ammonia [J]. Applied Catalysis,1986,25(1-2):239-248
    [14].Iwamoto M. Zeolites in Environmental catalysis studies [J]. Surface Science and Catalysis,1994,84:1395-1410
    [15].梁斌,邱礼有. Ce/β-分子筛催化剂上NH3选择还原NO反应动力学研究[J].高校化学工程学报,1999,13(3):217-222
    [16].Kiovsky J R,Koradia P B,Lim C T. Evaluation of a new zeolitic catalyst for NOxreductionwith NH3[J]. Industrial&Engineering Chemistry Product Research and Development,1980,19:218-225
    [17].何选盟,朱振峰,任强.用于SCR技术的负载型催化剂研究进展[J].陕西科技大学学报,2008,26(1):159-162
    [18].Tuenter G,Leeuwen W,Snepvangers L. Kinetics and mechanism of the NOxreduction withNH3on V2O5-WO3/TiO2catalyst[J]. Industrial&Engineering Chemistry Product Researchand Development,1986,25(4):633-636
    [19].Ramis G,Cristiani C,Forzatti P,et al. On the consistency of data obtained from differenttechniques concerning the surface structure of vanadia-titania catalysts: Reply to thecomment of Israel E. Wachs[J]. Journal of Catalysis,1990,124(2):574-576
    [20].Topsoe N Y,Dumesic J A,Topose H. Vanadia-titania catalysts for selective catalyticreduction of nitric-oxide by ammonia: II. Studies of active sites and formulation of catalyticcycles[J]. Journal of Catalysis,1995,151(1):241-252
    [21].Djerad S. Effect of oxygen concentration on the NOxreduction with ammonia overV2O5-WO3/TiO2catalyst[J]. Catalysis today,2006,113:208-214
    [22].苏杭. SCR系统中板式和蜂窝式催化剂的选取[J].电力环境保护,2005,21(2):27-29
    [23].王静,沈伯雄,刘亭,等.钒钛基SCR催化剂中毒及再生研究进展[J].环境科学与技术,2010,33(9):97-101
    [24].Saur O,Bensitel M,Mohammed Saad A B,et al. The structure and stability of sulfatedalumina and titania[J]. Journal of Catalysis,1986,99(1):104-110
    [25].Azhar Uddin M,Shimizu K,Ishibe K,et al. Characteristics of the low temperature SCR ofNOxwith NH3over TiO2[J]. Journal of Molecular Catalysis A: Chemical,2009,309(1–2):178-183
    [26].Tauster S J,Fung S C,Garten R L. Strong metal support interactions·Group-noble metalssupported on titanium dioxide[J]. JAm. Chem. Soe.1978,100:170-175
    [27].Jiang B Q,Liu Y,Wu Z B. Low-temperature selective catalytic reduction of NO onMnOx/TiO2prepared by different methods[J]. Journal of Hazardous Materials,2009,162(2-3):1249-1254
    [28].Duffy B L,Curryhyde H E,Cant N W,et al.15N-labeling studies of the effect of water on thereduction of NO with NH3over chromia SCR catalysts in the absence and presence of O2[J].Journal of Catalysis,1995,154(1):107-114
    [29].Schneider H,Maciejewski M,Kohler K,et al. Chromia supported on titania: VI. Propertiesof different chromium oxide phases in the catalytic reduction of NO by NH3studied by insitu diffuse reflectance FTIR spectroscopy[J]. Journal of Catalysis,1995,157(2):312-320
    [30].Liu F D,He H,Zhang C B,et al. Selective catalytic reduction of NO with NH3over irontitanate catalyst: Catalytic performance and characterization[J]. Applied Catalysis B:Environmental,2010,96(3-4):408-420
    [31].Liu F D,Asakura K,He H,et al. Influence of calcination temperature on iron titanatecatalyst for the selective catalytic reduction of NOxwith NH3[J]. Catalysis Today,2010,10.1016/jcattod.2010.10.008
    [32].Liu F D,He H. Structure-activity relationship of iron titanate catalysts in the selectivecatalytic reduction of NOxwith NH3[J]. Journal of Physical Chemistry C,2010,114(40):16929-16936
    [33].Liu F D,He H,Zhang C. Novel iron titanate catalyst for the selective catalytic reduction ofNOxwith NH3in the medium temperature range[J]. Chemical Communications,2008,(17):2043-2045
    [34].Roy S,Viswanath B,Hegde M S,et al. Low-temperature selective catalytic reduction of NOwith NH3over Ti0.9M0.1O2-δ(M=Cr,Mn,Fe,Co,Cu)[J]. The Journal of Physical ChemistryC,2008,112:6002-6012
    [35].Matralis H,Theret S,Ruwet M,et al. Selective catalytic reduction of nitric oxide withammonia using MoO3/TiO2:Catalysts structure and activity[J]. Applied Catalysis B:Environmental1995,(5):271-281
    [36].Pe a D A,Uphade B S,Smirniotis P G. TiO2-supported metal oxide catalysts forlow-temperature selective catalytic reduction of NO with NH3:I. Evaluation andcharacterization of first row transition metals[J]. Journal of Catalysis,2004,221(2):421-431
    [37].Koebel M,Madia G,Elsener M. Selective catalytic reduction of NO and NO2at lowtemperatures[J]. Catalysis Today,2002,73(3–4):239-247
    [38].Ettireddy P R,Ettireddy N,Mamedov S,et al. Surface characterization studies of TiO2supported manganese oxide catalysts for low temperature SCR of NO with NH3[J]. AppliedCatalysis B: Environmental,2007,76(1-2):123-134
    [39].Choi S H,Cho S P,Lee J Y,et al. The influence of non-stoichiometric species of V/TiO2catalysts on selective catalytic reduction at low temperature[J]. Journal of MolecularCatalysis A: Chemical,2009,304(1-2):166-173
    [40].Li Y T,Zhong Q. The characterization and activity of F-doped vanadia/titania for theselective catalytic reduction of NO with NH3at low temperatures[J]. Journal of HazardousMaterials,2009,172(2-3):635-640
    [41].Phil H H,Reddy M P,Kumar P A,et al. SO2resistant antimony promoted V2O5/TiO2catalyst for NH3-SCR of NOxat low temperatures[J]. Applied Catalysis B: Environmental,2008,78(3-4):301-308
    [42].Khan S U M,Al-Shahry M,Ingler J W B. Efficient photochemical water splitting by achemically modified TiO2[J]. Science,2002,297:2243-2245
    [43].Singoredjo L,Korver R,Kapteijn F,et al. Alumina supported manganese oxides for thelow-temperature selective catalytic reduction of nitric oxide with ammonia[J]. AppliedCatalysis B: Environmental,1992,1(4):297-316
    [44].Singoredjo L,Kapteijn F. Alumina supported manganese catalysts for low temperatureselective catalytic reduction of NO with NH3[J]. Studies in Surface Science and Catalysis,1993,75:2705-2708
    [45].Sullivan J A,Doherty J A. NH3and urea in the selective catalytic reduction of NOxoveroxide-supported copper catalysts[J]. Applied Catalysis B: Environmental,2005,55(3):185-194
    [46].Kijlstra W S,Biervliet M,Poels E K,et al. Deactivation by SO2of MnOx/Al2O3catalystsused for the selective catalytic reduction of NO with NH3at low temperatures[J]. AppliedCatalysis B: Environmental,1998,16(4):327-337
    [47].Xie G Y,Liu Z Y,ZhuZ P,Liu Q A,et al. Simultaneous removal of SO2and NOxfrom fluegas using a CuO/Al2O3catalyst sorbent: II. Promotion of SCR activity by SO2at hightemperatures[J]. Journal of Catalysis,2004,224(1):42-49
    [48].Smirniotis P M,Sreekanth P M,Pen D A,et al. Manganese oxide catalysts supported onTiO2,Al2O3,and SiO2:A comparison for low-temperature SCR of NO with NH3[J].Industrial&Engineering Chemistry Research.2006,45,6436-6443
    [49].Huang J H,Tong Z Q,Huang Y,Zhang Z F. Selective catalytic reduction of NO with NH3at low temperatures over iron and manganese oxides supported on mesoporous silica[J].Applied Catalysis B: Environmental,2008,78(3–4):309-314
    [50].Caraba R M,Masters S G,Eriksen K M,Parvulescu V I,et al. Selective catalytic reductionof NO by NH3over high surface area vanadia-silica catalysts[J]. Applied Catalysis B:Environmental,2001,34(3):191-200
    [51].何勇,童华,童志权,等.新型CuSO4-CeO2/TS催化剂低温NH3-SCR脱除NO及抗中毒研究[J].过程工程学报,2009,2:360-367
    [52].Shen B X,Liu T,et al. The catalysts of MnOx/CeO2-ZrO2for low-temperature selectivecatalytic reduction of NOxwith NH3[J]. Environmental Engineering Science,2011,28(4):291-298
    [53].董国君,常雪,王桂香,等. CuO/SiO2-Al2O3/堇青石催化剂选择性还原NOx性能研究[J].应用化工,2009,38(5):655-658
    [54].杨超,张俊丰,童志权等.活性炭低温催化还原NOx影响因素及反应机理分析[J].环境科学研究,2006,18(4):86-90
    [55].杨超,童志权,黄妍.活性炭上氨低温选择催化还原NOx研究[J].煤炭转化,2006,29(1):770
    [56].沈伯雄,郭宾彬,史展亮,等. CeO2/ACF的低温SCR烟气脱硝性能研究[J].燃料化学学报,2007,35(1):125-128
    [57].Mu iz J,Marbán G,Fuertes A B. Low temperature selective catalytic reduction of NO overmodified activated carbon fibres[J]. Applied Catalysis B:Environmental,2000.27(1):27-36
    [58].Pasel J,K ner P,Montanari B,Gazzano M,et al,Transition metal oxides supported onactive carbons as low temperature catalysts for the selective catalytic reduction (SCR) of NOwith NH3[J].Applied Catalysis B: Environmental,1998,18(3-4):199-213
    [59].刘守军,刘振宇,牛宏贤,朱珍平.铜物种分散性对Cu/AC脱硫剂低温反应性的影响[J].煤炭转化,200,23(4):63-68
    [60].Zhu Z P,Liu Z Y,Liu S J,et al. A novel carbon-supported vanadium oxide catalyst for NOreduction with NH3at low temperatures[J]. Applied Catalysis B: Environmental,1999,23(4):L229-L233
    [61].Zhu Z P,Liu Z Y,Niu H X,et al. NO-NH3-O2reaction catalyzed by V2O5/AC at lowtemperatures[J]. Science in China (series B),2000,43(1):51-57
    [62].Zhu Z P,Liu Z Y,Niu H X,et al. Promoting effect of SO2on activated carbon-supportedvanadia catalyst for NO reduction by NH3at low temperatures[J]. Journal of Catalysis,1999,187(1):245-248
    [63].Zhu Z P,Liu Z Y,Liu S J,et al. Catalytic NO reduction with ammonia at low temperatureson V2O5/AC catalysts: effect of metal oxides addition and SO2[J]. Applied Catalysis B:Environmental,2001,30(3-4):267-276
    [64].Lazaro M J,Galvez M E,Ruiz C,et al. Vanadium loaded carbon-based catalysts for thereduction of nitric oxide[J]. Applied Catalysis B: Environmental,2006,68(3-4):130-138
    [65].Galvez M E,Lazaro M J,Moliner R. Novel activated carbon-based catalyst for the selectivecatalytic reduction of nitrogen oxide[J]. Catalysis Today,2005,102(1):142-147
    [66].Garcia-Bordeje E,Monzon A,Lazaro M J,et al. Promotion by a second metal or SO2overvanadium supported on mesoporous carbon-coated monoliths for the SCR of NO at lowtemperature[J]. Catalysis Today,2005,102(1):177-182
    [67].Garcia-Bordeje E,Calvillo L,Lazaro M J,et al. Vanadium supported on carbon-coatedmonoliths for the SCR of NO at low temperature: effect of pore structure[J]. AppliedCatalysis B: Environmental,2004,50(4):235-242
    [68].Garcia-Bordeje E,Pinilla J L,Lazaro M J,et al. Role of sulphates on the mechanism ofNH3-SCR of NO at low temperatures over presulphated vanadium supported oncarbon-coated monoliths[J]. Journal of Catalysis,2005,233(1):166-175
    [69].Zhu Z P,Liu Z Y,Niu H X,et al. Promoting effect of SO2on activated carbon-supportedvanadia catalyst for NO reduction by NH3at low temperatures[J]. Journal of Catalysis,1999,187(1):245-248
    [70].Zhu Z P,Niu H X,Liu Z Y,et al. Decomposition and reactivity of NH4HSO4on V2O5/ACcatalysts used for NO reduction with ammonia[J]. Journal of Catalysis,2000,195(2):268-278
    [71].Huang Z G,Zhu Z P,Liu Z Y,et al. Formation and reaction of ammonium sulfate salts onV2O5/AC catalyst during selective catalytic reduction of nitric oxide by ammonia at lowtemperatures[J]. Journal of Catalysis,2003,214(2):213-219
    [72].Marbon G,Antu a R,Fuertes A B. Low-temperature SCR of NOxwith NH3over activatedcarbon fiber composite-supported metal oxides[J]. Applied Catalysis B: Environmental,2003,41(3):323-338
    [73].Yoshikawa M,Yasutake A,Mochida I. Low-temperature selective catalytic reduction of NOxby metal oxides supported on active carbon fibers[J]. Applied Catalysis A: General,1998,173(2):239-245
    [74].Salker A V,Weisweiler W. Catalytic behavior of metal based ZSM-5catalysts for NOxreduction with NH3in dry and humid conditions[J]. Applied Catalysis A: General,2000,203(2):221-229
    [75].Moreno-Tost R,Santamar a-González J,Maireles-Torres P,et al,Cobalt supported onzirconium doped mesoporous silica: a selective catalyst for reduction of NO with ammonia atlow temperatures[J]. Applied Catalysis B: Environmental,2002,38(1):51-60
    [76].Balle P,Geiger B,Kureti S. Selective catalytic reduction of NOxby NH3on Fe-HBEAzeolite catalysts in oxygen-rich exhaust. Applied Catalysis B: Environmental,2009,85(3-4):109-119
    [77].Zhou G Y,Zhong B C,Wang W H,et al,In situ DRIFTS study of NO reduction by NH3overFe–Ce–Mn-ZSM-5[J] catalysts. Catalysis Today,2011,175(1):157-163
    [78].Richter M,Trunschke A,Bentrup U,et al. Selective catalytic reduction of nitric oxide byammonia over egg-shell MnOx/NaY composite catalysts[J]. Journal of Catalysis,2002,206(1):98-113
    [79].Carja G,Kameshima Y,Okada K,et al. Mn-Ce/ZSM-5as a new superior catalyst for NOreduction with NH3[J]. Applied Catalysis B: Environmental,2007,73(1-2):60-64
    [80].李金虎,张先龙,陈天虎,等.凹凸棒石负载锰氧化物低温选择性催化还原催化剂的表征及对氨的吸脱附[J].催化学报,2010,31(4):454~460
    [81].时博文,张先龙,杨保俊,等.铁锰氧化物负载粉煤灰-凹凸棒石的脱硝研究[J].安徽化工,2012,38(1):22-26
    [82].Park T S,Jeong S K,Hong S H,et al. Selective catalytic reduction of nitrogen oxides withNH3over natural manganese ore at low temperature[J]. Industrial&Engineering ChemistryResearch,2001,40(21):4491-4495
    [83].Kang M,Yeon T H,Park E D,et al. Novel MnOxcatalysts for NO reduction at lowtemperature with ammonia[J]. Catalysis Letters,2006,106(1-2):77-80
    [84].Tang X L,Hao J M,Xu W G,et al. Low temperature selective catalytic reduction of NOxwith NH3over amorphous MnOxcatalysts prepared by three methods[J]. CatalysisCommunications,2007,8(3):329-334
    [85].Pena D A, Uphade B S, Reddy E P, et al. Identification of surface species ontitania-Supported manganese, vhromium, and vopper oxide low-temperature SCRcatalysts[J]. The Journal of Physical Chemistry B,2004,108(1):9927-9936
    [86].Kang M,Park J H,Choi J S. Low-temperature catalytic reduction of nitrogen oxides withammonia over supported manganese oxide catalysts[J]. Korean Journal of ChemicalEngineering,2007,24(1):191-195
    [87].Jin R B,Liu Y,Wu Z B,et al. Low-temperature selective catalytic reduction of NO with NH3over Mn-Ce oxides supported on TiO2and Al2O3: A comparative study[J]. Chemosphere,2010,78(9):1160-1166
    [88].Kijlstra W S,Daamen J C M L,Graaf J M,et al. Inhibiting and deactivating effects of wateron the selective catalytic reduction of nitric oxide with ammonia over MnOx/Al2O3[J].Applied Catalysis B: Environmental,1996,7(3-4):337-357
    [89].沈伯雄,周元驰,史展亮,等.活性炭纤维的预处理及其SCR催化活性研究[J].燃料化学学报,2008,36(3):376-380
    [90].Zhang Y P,Zhao X Y,Xu H T,et al. Novel ultrasonic–modified MnOx/TiO2forlow-temperature selective catalytic reduction (SCR) of NO with ammonia[J]. Journal ofColloid and Interface Science,2011,361(1):212-218
    [91].唐晓龙,郝吉明,徐文国,等.低温条件下Nano-MnOx上NH3选择性催化还原NO[J].环境科学,2007,28(2):289-294
    [92].Qi G S,Yang R T,Chang R. MnOx-CeO2mixed oxides prepared by co-precipitation forselective catalytic reduction of NO with NH3at low temperatures[J]. Applied Catalysis B:Environmental,2004,51(2):93-106
    [93].Yu J,Guo F,Wang Y J,Zhu J H,et al. Sulfur poisoning resistant mesoporous Mn-basecatalyst for low-temperature SCR of NO with NH3[J]. Applied Catalysis B: Environmental,2010,95,(1–2):160-168
    [94].Qi G S,Yang R T. Performance and kinetics study for low-temperature SCR of NO with NH3over MnOx-CeO2catalyst[J]. Journal of Catalysis,2003,217(2):434-441
    [95].Duan K J,Tang X L,Yi H H,et al. Rare earth oxide modified Cu-Mn compounds supportedon TiO2catalysts for low temperature selective catalytic oxidation of ammonia and in leanoxygen MnOx-CeO2. Journal of Rare Earths,2010,28(S1):338-342
    [96].Kang M,Park E D,Kim J M,et al. Cu-Mn mixed oxides for low temperature NO reductionwith NH3[J]. Catalysis Today,2006,111(3-4):236-241
    [97].Chen Z H,Li X H,Gao X,et al. Selective catalytic reduction of NOxwith NH3on a Cr-Mnmixed oxide at low temperature[J]. Chinese Journal of Catalysis,2009,30(1):4-6
    [98].Eigenmann F,Maciejewski M,Baiker A. Selective reduction of NO by NH3overmanganese-cerium mixed oxides: Relation between adsorption, redox and catalyticbehavior[J]. Applied Catalysis B: Environmental,2006,62(3-4):311-318
    [99].Wu Z B,Jin R B,Liu Y,et al. Ceria modified MnOx/TiO2as a superior catalyst for NOreduction with NH3at low-temperature[J]. Catalysis Communications,2008,9(13):2217-2220
    [100]. Shen B X,Liu T. Deactivation of MnOx-CeOx/ACF catalysts for low-temperature SCR ofNO with NH3in the presence of SO2[J]. Acta Physico-Chimica Sinica,2010,26(11):3009-3016
    [101]. Tang X L,Hao J M,Yi H H,et al. Low-temperature SCR of NO with NH3over AC/Csupported manganese-based monolithic catalysts[J]. Catalysis Today,2007,126(3-4):406-411
    [102]. Casapu A,Grunwaldt J D,Maciejewski M,et al. Comparative study of structural propertiesand NOxstorage-reduction behavior of Pt/Ba/CeO2and Pt/Ba/Al2O3[J]. Applied Catalysis B:Environmental,2008,78(3-4):288-300
    [103]. Casapu M,Krocher O,Mehring M,et al. Characterization of Nb-containing MnOx-CeO2catalyst for low-temperature selective catalytic reduction of NO with NH3[J]. Journal ofPhysical Chemistry C,2010,114(21):9791-9801
    [104]. Zhang Q L,Qiu C T,Xu H D,et al. Novel promoting effects of tungsten on the selectivecatalytic reduction of NO by NH3over MnOx–CeO2monolith catalyst[J]. CatalysisCommunications,2011,16(1):20-24
    [105]. Thirupathi B,Smirniotis P G. Co-doping a metal (Cr,Fe,Co,Ni,Cu,Zn,Ce,and Zr)on Mn/TiO2catalyst and its effect on the selective reduction of NO with NH3atlow-temperatures[J]. Applied Catalysis B: Environmental,2011,110(2):195-206
    [106]. Thirupathi B,Smirniotis P G. Nickel-doped Mn/TiO2as an efficient catalyst for thelow-temperature SCR of NO with NH3. Catalytic evaluation and characterizations[J]. Journalof Catalysis,2012,288:74-83
    [107]. Wu X D,Si Z C,Li G,et al. Effects of cerium and vanadium on the activity on the activityand selectivity of MnOx-TiO2catalyst for low temperature NH3-SCR[J]. Journal of RareEarths,2011,29(1):64-68
    [108]. Shen B X,Liu T,Zhao N,et al. Iron oxide modified MnOx-CeO2/TiO2catalyst for lowtemperature SCR of NO with NH3[J]. Journal of Environmental Sciences,2010,22(9):1447-1452
    [109]. Qi G S,Yang R T. Low-temperature selective catalytic reduction of NO with NH3over ironand manganese oxides supported on titania[J]. Applied Catalysis B: Environmental,2003,44(3):217-225
    [110]. Li J H,Chen J J,Ke R,et al. Effects of precursors on the surface Mn species and theactivities for NO reduction over MnOx/TiO2catalysts[J]. Catalysis Communications,2007,8(12):1896-1900
    [111]. Kapteijn F, Singoredjo L, Vandriel M, et al. Alumina-supported manganese cxide catalysts:II. Surface characterization and adsorption of ammonia and nitric oxide[J]. Journal ofCatalysis,1994,150(1):105-116
    [112]. Chen L,Li J H,Ge M F,et al. DRIFT study on cerium-tungsten/titania catalyst for selectivecatalytic reduction of NOxwith NH3[J]. Environmental Science and Technology,2010,44:9590-9596
    [113].李云涛,钟秦.低温NH3-SCR反应机理及动力学研究进展[J].化学进展,2009(6):1094-1100
    [114].孙亮,许悠佳,曹青青,等.氧化锰基催化剂低温NH3选择性还原NOx反应及其机理[J].化学进展,2010,10:1882-1891
    [115]. Marbon G,Valdes-Solis T,Fuertes A B. Mechanism of low-temperature selective catalyticreduction of NO with NH3over carbon-supported Mn3O4: role of surface NH3species[J]:SCR mechanism. Journal of Catalysis,2004,226(1):138-155
    [116]. Machida M, Kurogi D, Kijima T. MnOx-CeO2binary oxides for catalytic NOx-sorption atlow temperatures. Selective reduction of sorbed NOx[J]. Chemistry of Materials,2000,12(10):3165-3170.
    [117]. Kijlstra W S,Brands D S,Poels E K,et al. Kinetics of the selective catalytic reduction ofNO with NH3over MnOx/Al2O3catalysts at low temperature[J]. Catalysis Today,1999,50(1):133-140
    [118]. Wu Z B,Jiang B Q,Liu Y,et al. Experimental study on a low-temperature SCR catalystbased on MnOx/TiO2prepared by sol–gel method[J]. Journal of Hazardous Materials[J],2007,145(3):488-494
    [119]. Gil A,Korili S A,Trujillano R,et al. A review on characterization of pillared clays byspecific techniques[J]. Applied Clay Science,2011,53(2):97-105
    [120]. Guido Busca,Luca Lietti,Gianguido Ramis,Francesco Berti.Chemical and mechanisticaspects of the selective catalytic reduction of NOxby ammonia over oxide catalysts: Areview[J]. Applied Catalysis B: Environmental,1998,18(1-2):1-36
    [121].李松军,罗来涛,郭建军.交联粘土催化剂的研究与进展[J].工业催化,2000,8(6):3-7
    [122]. Yang R T,Chen J P,Kikkinides E S,1992. Pillared clays as superior catalysts for selectivecatalytic reduction of NO with NH3[J],Industrial and Engineering Chemistry Research,31(6):1440-1445
    [123]. Chen J P,Hausladen M C,Yang R T. Delaminated Fe2O3-pillared clays: Its preparation,characterization,and activities for selective catalytic reduction of No by NH3[J]. Journal ofCatalysis,1995,151(1):135-146
    [124]. Long R Q,Yang R T. FTIR and kinetic studies of the mechanism of Fe3+-exchangedTiO2-pillared clays catalyst for selective catalytic teduction of NO with ammonia[J]. Journalof Catalysis,2000,190(1):22-31
    [125]. Long R Q,Yang R T. Selective catalytic teduction of nitrogen oxides by ammonia overFe3+-exchanged TiO2-pillared clays catalysts[J]. Journal of Catalysis,1999,186(2):254-268
    [126]. Long R Q,Chang M T,Yang R T Enhancement of activities by sulfation on Fe-exchangedTiO2-pillared clays for selective catalytic reduction of NO by ammonia[J]. Applied CatalysisB: Environmental,2001,33(1):97-107
    [127]. Long R Q,Yang R T. The promoting role of rare earth oxides on Fe-exchanged TiO2-pillared clay for selective catalytic reduction of nitric oxide by ammonia[J]. AppliedCatalysis B: Environmental,2000,27(2):87-95
    [128]. Arfaoui J,Boudali L K,GhorbelA,et al. Vanadium supported on sulfated Ti-pillared claycatalysts: Effect of the amount of vanadium on SCR-NO by NH3activity[J]. Studies inSurface Science and Catalysis,2008,174:1263-1266
    [129]. BoudaliL K,Ghorbel A,Grange P. Characterization and reactivity of WO3–V2O5supportedon sulfated titanium pillared clay catalysts for the SCR-NO reaction[J]. Comptes RendusChimie,2009,12(6-7):779-786
    [130]. Qi G S,Yang R T,Chang R. Low-temperature SCR of NO with NH3over USY-supportedmanganese oxide-based catalysts[J]. Catalysis Letters,2003,87(1-2):67-71
    [131]. Chmielarz L,Dziembaj R,Grzybek T,et al. Pillared smectite modified with carbon andmanganese as catalyst for SCR of NOxwith NH3.Part I. General characterization and catalystscreening[J] Catalysis Letters,2000,68:95–100
    [132]. Krishna B S,Murtyd S R,Praksh S J. Surfactant-modified clay as adsorbent forchromate[J]. Applied Clay Science,2001,20(1-2):65-71
    [133].曾昭槐.择形催化[M].北京:中国石化出版社,1994.38-72
    [134].闵恩泽.工业催化剂的研制与开发[M].北京:中国石化出版社,1997.82-83.
    [135]. Yang R T. Pillared interlayer clay catalysts for the selective reduction of nitrogen oxideswith ammonia. US:5415850,1995,5,16
    [136]. Gil A,Vicente M,Gandy L M.. Main factors controlling the texture of zirconia and aluminapillared clays[J]. Microporous and Mesoporous Materials,2000,34:115-125
    [137].赵东源,杨亚书,辛勤,等..混合金属络合物羟基镍铝交联蒙脱土的表面酸性及催化性能[J].催化学报,1993,14(4):287-292
    [138]. Linda S C,Yang R T,Cheny N. Iron oxide and chromia supported on titania-pillared clayfor selective catalytic reduction of nitric oxide with ammonia[J]. Journal of catalysis.1996,164:70–81
    [139]. Chmielarz L,Kustrowski P,Zbrojia M. SCR of NO by NH3on alumina or titania-pillaredmontmorillonite various modified with Cu or Co Part I. General characterization andcatalysts screening[J].Applied Catalysis B: Environmental,2003,45(2):103-116
    [140]. Manova E,Aranda P,Angeles M,et al. New titania-clay nanostructured porous materials[J].Microporous and Mesoporous Materials,2010,131(1-3):252-260.
    [141]. Binitha N N,Sugunan S. Preparation,characterization and catalytic activity of titaniapillared montmorillonite clays[J]. Microporous and Mesoporous Materials.2006,93(1-3):82-89.
    [142].陆琦,雷新荣,汤中道,等.柱撑粘土矿物材料的晶体结构和晶体化学特征[J].地质科技情报[J],2001,20(1):91-99
    [143].管俊芳,狄敬茹,于吉顺. Zr/Al基柱撑蒙脱石矿物材料的红外光谱研究[J].硅酸盐学报,2005,33(2):220-224.
    [144]. Bineesh K V,Kim S Y,Jermy B R,et al. Synthesis, characterization and catalyticperformance of vanadia-doped delaminated zirconia-pillared montmorillonite clay for theselective catalytic oxidation of hydrogen sulfide[J]. Journal of Molecular Catalysis A:Chemical,2009,308(1-2):150-158
    [145]. Li X Y,Lu G,Qu Z P. The role of titania pillar in copper-ion exchanged titania pillaredclays for the selective catalytic reduction of NO by propylene[J]. Applied Catalysis A:General.2011,398:82–87
    [146]. Sychev M,Prihod'ko R,Stepanenko A,et al. Characterisation of the microporosity ofchromia-and titania-pillared montmorillonites differing in pillar density II. Adsorption ofbenzene and water[J]. Microporous and Mesoporous Materials,2001,47(2-3):311-321
    [147]. Maes N,Heylen1,Cool P,et al. The relation between the synthesis of pillared clays and theresulting Porosity[J]. Applied Clay Seience,1997,12(1-2):43-60
    [148]. Valverde J L,Sánchez P,Dorado F,et al. Influence of the synthesis conditions on thepreparation of titanium-pillared clays using hydrolyzed titanium ethoxide as the pillaringagent[J]. Microporous and Mesoporous Materials,2002,54(1-2):155-165
    [149].刘涛.钛交联蒙脱石多孔材料的复合制备与层间结构研究:[博士学位论文].湖北武汉,武汉理工大学,2011
    [150].庹必阳,张一敏. Ti-PILCs的制备条件及焙烧性能的研究[J].矿业研究与开发,2008,28(5):36-39
    [151]. Fetter G,Hernández V,Rodr g uez V,et al. Effect of microwave irradiation time on thesynthesis of zirconia-pillared clays[J]. Materials Letters,2003,57(56):1220-1223
    [152]. Gyftopoulou M E,Millan M,Bridgwater A V,et al. Pillared clays as catalysts forhydrocracking of heavy liquid fuels[J]. Applied Catalysis A: General,2005,282(1-2):205-214
    [153]. Olaya A,Moreno S. Molina R. Synthesis of pillared clays with aluminum by means ofconcentrated suspensions and microwave radiation[J]. Catalysis Communications,2009,10(5):697-701
    [154]. Olaya A,Blanco G,Bernal S,et al. Synthesis of pillared clays with Al–Fe and Al–Fe–Cestarting from concentrated suspensions of clay using microwaves or ultrasound,and theircatalytic activity in the phenol oxidation reaction[J]. Applied Catalysis B: Environmental,2009,93:56–65
    [155]. Gallardo-Amores J M,Armaroli T,Ramis G,et al. A study of anatase–supported Mn oxideas catalysts for2-propanol oxidation[J]. Applied Catalysis B: Environmental,1999,22(4):249-259
    [156]. Geoffrey C. Bond,S. Flamerz Tahir. Vanadium oxide monolayer catalysts Preparation,characterization and catalytic activity[J]. Applied Catalysis,1991,71(1):1-31
    [157]. Yuan P,Yin X L,He H P,et al. Investigation on the delaminated-pillared structure ofTiO2-PILC synthesized by TiCl4hydrolysis methodv. Microporous and MesoporousMaterials,2006,93(1-3):240-247
    [158]. Kapteijn F,Singoredjo L, Andreini A,et al. Activity and selectivity of pure manganeseoxides in the selective catalytic reduction of nitric oxide with ammonia[J]. Applied CatalysisB: Environmental,1994,3(2–3):173-189
    [159]. Boot L A,Kerkhoffs M H J V.,Linden B T,et al. Preparation,characterization and catalytictesting of cobalt oxide and manganese oxide catalysts supported on zirconia[J]. AppliedCatalysis A: General,1996,137(1):69-86
    [160]. Gand a L M,Vicente M A,Gil A. Preparation and characterization of manganese oxidecatalysts supported on alumina and zirconia-pillared clays[J]. Applied Catalysis A: General,2000,196:281-292
    [161]. Wu Z B,Jiang B Q,Liu Y. Effect of transition metals addition on the catalyst ofmanganese/titania for low-temperature selective catalytic reduction of nitric oxide withammonia[J]. Applied Catalysis B: Environmental,2008,79(4):347-355.
    [162]. Caspu M, Kr cher O, Elsener M. Screening of doped MnOx–CeO2catalysts forlow-temperature NO-SCR[J]. Applied Catalysis B: Environmental,2009,88(3-4):413-419
    [163]. Qi G, Yang R T. Characterization and FTIR studies of Mn-CeOxcatalyst forlow-temperature selective reduction of NO with NH3[J]. The Journal of Chemical Physics B,2004,108:15738-5747
    [164]. Liu Z M,Kwang Seok Oh,Seong Ihl Woo,et al. Promoting effect of CeO2on NOxreduction with propene over SnO2/Al2O3: catalyst studied with in situ FT-IR spectroscopy[J].Catalysis Letters,2008,120(1-2)143~147
    [165]. Vicente M A,Banares-Munoz M A,Toranzo R,et al. Influence of the Ti precursor on theproperties of Ti-pillared smectites[J]. Clay Minerals,2001,36,125-138
    [166]. Yoda S,Sakurai Y,Endo A,et al. Synthesis of titania pillared montmorillonite viaintercalation of titanium alkoxidedissolved in supercritical carbon dioxide[J]. Journal ofMaterials Chemistry,2004,14,2763-2767
    [167]. Mao H H, Li B S, Li X, et al. Facile synthesis and catalytic properties of titaniumcontaining silica-pillared clay derivatives with ordered mesoporous structure through a novelintra-gallery templating method[J]. Microporous and Mesoporous Materials,2010,130(1-3):314-321
    [168].那平,张帆,杨曙锋,等.水热法制备钛柱撑蒙脱石及对水体中砷酸根的吸附[J].天津大学学报,2007,40(3):275-279
    [169]. Chmielarz L,Piwowarska Z,Ku trowski P,et al. Porous clay heterostructures (PCHs)intercalated with silic-titania pillars and modified with transition metals as catalysts for theDeNOxprocess[J]. Applied Catalysis B: Environmental,2009,91(1–2):449-459
    [170]. Shimizu K I,Kaneko T,Fujishima T,et al. Selective oxidation of liquid hydrocarbons overphotoirrated TiO2pillared clays[J]. Applied Catalysis A: General,2002,225(1-2):185-191
    [171]. Sun S M,Jiang Y S,Yu L X,et al. Enhanced photocatalytic activity of microwave treatedTiO2pillared montmorillonite[J]. Materials Chemistry and Physics,2006,98(2-3):377-381
    [172]. Xia Q H,Hidajat K,Kawi S. Adsorption and catalytic combustion of aromatics onplatinum-supported MCM-41materials[J]. Catalysis Today,2001,68(2-3):255-262
    [173]. Zheng Y J,Jensen A D,Johnsson J E. Deactivation of V2O5-WO3-TiO2SCR catalyst at abiomass-fired combined heat and power plant[J]. Applied Catalysis B: Environmental,2005,60(3-4):253-264.
    [174].邓黎丹.低温选择性催化还原催化剂的碱金属及碱土金属中毒研究.[硕士学位论文].天津:南开大学,2011.
    [175].刘炜,童志权,罗婕. Ce-Mn/TiO2催化剂选择性催化还原NO的低温活性及抗毒化性能[J].环境科学学报,2006,26(8):1240-1245
    [176]. Hsu L Y,Teng H S. Catalytic NO reduction with NH3over carbons modified by acidoxidation and by metal impregnation and its kinetic studies[J]. Applied Catalysis B:Environmental,2001,35:21-30
    [177]. Sirdeshpande A R,Lighty J S. Kinetics of the selective catalytic reduction of NO with NH3over CuO/γ-Al2O3, Industrial&Engineering Chemistry Research,2000,39,1781-1787
    [178]. Lei Z G,Long A B,Wen C P,et al. Experimental and kinetic study of low temperatureselective catalytic reduction of NO with NH3over the V2O5/AC catalyst[J]. Industrial&Engineering Chemistry Research,2011,50(9):5360–5368
    [179]. Sun D K,Liu Q Y,Liu Z Y,et al. Adsorption and oxidation of NH3over V2O5/ACsurface[J]. Applied Catalysis B: Environmental,2009,92,462–467.
    [180]. Liu Q Y,Liu Z Y,Li C Y. Adsorption and activation of NH3during aelective catalyticreduction of NO by NH3[J[. Chinese Journal of Catalysis.2006,27:636–646.
    [181].王忠杰,蔡晔,陈银飞,等.交联粘土的研究进展[J].化工生产与技术,1997,(4):23-28
    [182]. Hong Q Q,Zuo S F,Zhou R X. Catalytic performance of pillared interlayered clays (PILCs)supported CrCe catalysts for deep oxidation of nitrogen-containing VOCs[J]. AppliedCatalysis B: Environmental.2010,95(3-4):327–334
    [183]. Lin T,Zhang Q L,Li W,Gong M C,et al. Monolith Manganese-Based Catalyst Supportedon ZrO2-TiO2for NH3-SCR React ion at Low Temperature[J]. Acta Physico-Chimica Sinica.2008,24(7):1127-1131
    [184]. Keshavaraja A,Ramaswamy A V. Mn-stabilized zirconia catalysts for complete oxidationof n-butane[J]. Applied Catalysis B: Environmental,1996,8(1): L1-L7
    [185]. Sadykov V, Kuznetsova T, Doronin V. NOxSCR by decane and propylene onPt+Cu/Zr-pillared clays in realistic feeds: Performance and mechanistic features versusstructural specificity of nanosized zirconia pillars[J]. Catalysis Today,2006,114(1):13-22,
    [186].刘亭,沈伯雄,朱国营,等.抗H2O、抗SO2的低温选择性催化还原脱硝催化剂研究进展[J].环境污染与防治,2008,30(11):79-83
    [187]. Alifanti M,Baps B,Blangenois N,et al. Characterization of CeO2-ZrO2mixed oxides.Comparison of the citrate and sol-gel preparation methods[J]. Chemistry of Materials,2003,15(2):395-403
    [188]. Reddy B M,Chowdhury B,Reddy E P,et al. Characterization of MoOx/TiO2-ZrO2catalysts by XPS and other techniqucs[J]. Journal of Molecular Catalysis A: Chemical,2000,162:431-441
    [189]. Wo J C,Chung C S,Ay C L,et al. Nonoxidative dehydrogenation of ethyl benzene overTiO2-ZrO2catalysts:11. the effete of pretreatment on surface properties and cataIyticactivities[J]. Journal of Catalysis,1984,87:98-107.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700