用户名: 密码: 验证码:
SAPO与A1PO类分子筛上甲醇制烯烃反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甲醇替代石油制烯烃(MTO)的可持续路线,近些年引起了人们的研究兴趣。本文利用水热的方法合成了一系列具有不同孔道结构的硅铝磷酸盐(SAPO)分子筛和磷酸盐(AlPO)分子筛,在固定床的条件下考察了其在MTO反应中的催化活性,并结合多种表征手段对影响MTO反应的因素以及反应的机理进行深入的研究。
     在相同反应条件下首先对具有不同孔道结构和B酸含量的SAPO类分子筛进行MTO活性评价,并结合~1H MAS NMR,in-situ UV/Vis, GC-MS以及TGA等手段对催化剂的B酸含量及孔道结构对MTO反应的影响进行详细分析。结果表明,具有一维十元环孔道和中等B酸含量的SAPO-41分子筛具有良好的MTO催化活性和较长的寿命。
     首次利用NH3吸附以及~1H高速魔角旋转固体核磁(~1H MAS NMR)对SAPO-34分子筛在MTO反应过程中B酸及苯基碳正离子的变化过程进行定量表征。结果表明样品上的B酸在MTO反应过程中是逐渐被消耗或覆盖的,而苯基碳正离子则先生成后逐渐被消耗。此外,结合MTO的活性数据可知,B酸的完全消耗并不是催化剂失活的直接原因,而苯基碳正离子的完全消耗可能与催化剂的失活有直接的联系。
     通过焙烧温度的控制,对三维十二元环孔道结构的SAPO-46分子筛上模板剂不完全焙烧造成的有机杂质对MTO催化活性的影响进行了详细的分析。研究表明低温焙烧的SAPO-46样品具有良好的初活性。GC-MS的结果表明低温下模板剂不完全焙烧形成的甲苯有机杂质在反应初期起到活性“烃池”物种的作用,甲醇与该物种按照“烃池”机理的方式断裂生成低碳烯烃。
     首次合成具有不同孔道结构和微量B酸的AlPO类分子筛,并将其用到MTO反应中进一步探索B酸对MTO反应的影响。利用in situ FTIR,is situ UV/Vis,~1H MAS NMR,~(13)C MAS NMR以及TGA等手段对特定的AlPO分子筛上B酸变化过程以及有机物种的形成和消耗过程进行深入的研究,首次发现微量的B酸足以引发MTO反应,适宜的孔道结构与微量的B酸可以获得优异的MTO性能。
     首次利用~1H脉冲梯度场固体核磁(~1H PFG NMR)手段对乙烯和乙烷探针分子在不同MTO反应时间后的SAPO-34样品上的扩散情况进行研究。并结合in situ UV/Vis,~(13)C MAS NMR以及~1H MAS NMR等手段讨论MTO反应过程中有机物种和B酸的变化过程。然后综合以上多种表征结果对MTO反应过程中SAPO-34催化剂失活的原因进行详细分析。结果表明,MTO反应过程中积碳的形成对SAPO-34分子筛孔道的扩散性能有一定的影响,但催化剂失活并不是由积碳导致的孔道完全堵塞造成的,进一步证实积碳造成的B酸和苯基碳正离子活性位的完全覆盖则可能是其失活的直接原因。
As an oil-free process to obtain olefins, the conversion of methanol to olefins(MTO) on microporous solid acids has attracted significant attentions. In the presentstudy, several types of silicoaluminophosphates (SAPO) and aluminophosphates(AlPO) with different framework structure were synthesized via hydrothermalmethods and applied as MTO catalysts in fixed-bed reactor. The mechanism of MTOreaction and the factors influencing MTO conversion were investigated by means of aseries of characterization techniques.
     The catalytic performances of SAPO-type samples with different amounts ofBr nsted acid sites and different framework structure were studied under the sameconditions. The effects of Br nsted acid sites and framework structure on MTOconversion were studied by~1H MAS NMR, in-situ UV/Vis, GC-MS and TGAanalysis. The results indicated for the first time that SAPO-41with one-dimensional10-ring pores and a significant concentration of Br nsted acid sites could be goodcatalyst for MTO, or more generalized MTH, reaction.
     The accessible Br nsted acid sites and benzene-based carbenium ions on workingSAPO-34catalysts after different MTO reaction time were measured via a novelmethod consisting of ammonia adsorption and quantitative~1H high speed MAS NMRspectroscopy for the first time. The results indicated that the accessible Br nsted acidsites were gradually consumed during the MTO process, but the benzene-basedcarbenium ions were firstly formed and then gradually consumed. The totalconsumption/coverage of benzene-based carbenium ions, instead of the totalconsumption/coverage of Br nsted acid sites, is the direct reason for catalystdeactivation.
     The effects of organic impurities originated from the incomplete combustion oforganic template on MTO reaction were studied over SAPO-46withthree-dimensional12-ring pore structures. SAPO-46samples calcined at lowertemperatures exhibited good initial MTO activity. GC-MS results indicated the tolueneoriginated from the incomplete combustion of organic template may be the primaryhydrocarbon pool or the precursor for the formation of primary hydrocarbon pool thatinduces the initial MTO reaction. Under MTO reaction conditions, residual toluene inSAPO-46can be transformed to polymethylbenzenes and alkylnaphthalenes, i.e. thewell-known active hydrocarbon pool species for MTO process.
     In order to study the effects of trace amounts of Br nsted acid sites on MTOconversion. Several AlPO-type molecular sieves with different framework structureand trace amounts of Br nsted acid sites were synthesized and studied as possibleMTO catalysts. The changes of Br nsted acid sites and organic species during MTOconversion were studied by in situ FTIR, is situ UV/Vis,~1H MAS NMR,~(13)C MASNMR and TGA analysis. Based on the results, it is revealed that trace amounts ofBr nsted acid sites are enough to realize MTO reaction. Moreover, good MTOperformances can be obtained on catalysts with trace amounts of Br nsted acid sitesand suitable framework structure.
     SAPO-34obtained after MTO conversion times of0to30min were investigatedby~1H PFG NMR spectroscopy for studying the self-diffusivities of ethane and ethene.The MTO reaction over SAPO-34were investigated by in situ UV/vis,~(13)C MASNMR, and~1H MAS NMR spectroscopy giving insights into the organic deposits andacid sites in different periods of the catalyst lifetime. The results indicated that theorganic deposits can lead a growing hindrance of molecular diffusion in the pores ofSAPO-34. However, the deactivation of SAPO-34was not caused by the block ofpore, but should be due to the cover of benzene-based carbenium ions by coke.
引文
[1] St cker M. Methanol-to-hydrocarbons: catalytic materials and their behavior. MicroporMesopor Mater,1999,29:3~48
    [2] Chang C D, Silvestri A J. Conversion of Methanol and other O-Compounds over ZeoliteCatalysts. J Catal,1977,47:249~259
    [3] Chang C D. Hydrocarbons from Methanol. Catal Rev,1983,25:1~118
    [4] Meisel S L, Catalysis Research Bears Fruit. Chemtech,1988,1:32~37
    [5] Chang C D, Silvestri A J. MTG. Origin, evolution, operation. Chemtech,1987,10:624~631
    [6] Vora B V, Marker T L, Barger P T, et al. Economic route for natural gas conversion toethylene and propylene. Stud Surf Sci Catal,1997,107:87~98
    [7] Gregor J, Vermeiren W. Proceedings of the fifth EMEA Petrochemicals technologyconference. Paris,2003,6:25~26
    [8] Koempel H, Liebner W. Lurgi's Methanol to propylene (MTP) report on a successfulcommercialisation. Stud Surf Sci Catal,2007,167:261~267
    [9]中国科学院大连化学物理研究所一种由合成气直接制取低碳烯烃反应.CN1067878A.1993,1
    [10] Liu Z M,Sun C L,Wang G W,et al.New progress in R&D of lower olefin synthesis.FuelProcess Tech.2000,62(2-3):161~172
    [11]张惠明。甲醇制低碳烯烃工艺技术新进展。化学反应工程与工艺,2008,24(2):148~152
    [12]王科,李杨,陈鹏,等。甲醇制丙烯工艺及催化剂技术研究新进展。天然气化工,2009,34(5):63~68
    [13] Johansson R, Hruby S L, Rass-Hansen J, et al. The Hydrocarbon Pool in Ethanol-to-Gasolineover HZSM-5Catalysts. Catal Lett,2009,127:1~6
    [14] Madeira F F, Gnep N S, Magnoux P, et al. Ethanol transformation over HFAU, HBEA andHMFI zeolites presenting similar Br nsted acidity. Appl Catal A: Gen,2009,367:39~46
    [15] Katoh M, Yamazaki T, Kikuchi N, et al. Conversion of bio-ethanol into hydrocarbons overHZSM-5catalyst. Kagaku Kogaku Ronbunshu,2008,34:396~401
    [16] Zhu Q J, Kondo J N, Inagaki S, et al. Catalytic Activities of Alcohol Transformations Over8-Ring Zeolites. Top Catal,2009,52:1272~1280
    [17] Xia W, Takahashi A, Nakamura I, et al. Study of active sites on the MFI zeolite catalysts forthe transformation of ethanol into propylene. J Mol Catal A: Chem,2010,328:114~118
    [18] Wang F, Luo M, Xiao W D, et al. Coking behavior of a submicron MFI catalyst duringethanol dehydration to ethylene in a pilot-scale fixed-bed reactor. Appl Catal A: Gen,2011,393:161~170
    [19] Tsuchida T, Yoshioka T, Sakuma S, et al. Synthesis of Biogasoline from Ethanol overHydroxyapatite Catalyst. Ind Eng Chem Res,2008,47:1443~1452
    [20] Tret'yakov V F, Lermontov A S, Makarfi Y I, et al. Synthesis of motor fuels from bioethanol.Chem Tech Fuels Oils,2008,44:409~411
    [21] Song Z X, Takahashi A, Nakamura I, et al. Phosphorus-modified ZSM-5for conversion ofethanol to propylene. Appl Catal A: Gen,2010,384:201~205
    [22] Song Z X, Takahashi A, Nakamura I, et al. Production of Propylene from Ethanol OverZSM-5Zeolites. Catal Lett,2009,131:364~369
    [23] Makarfi Y I, Yakimova M S, Lermontov A S, et al. Conversion of bioethanol over zeolites.Chem Eng J,2009,154:396~400
    [24] Ivanova S, Vanhaecke E, Dreibine L, et al. Binderless HZSM-5coating on b-SiC for differentalcohols dehydration. Appl Catal A: Gen,2009,359:151~157
    [25] Inoue T, Itakura M, Jon H, et al. Synthesis of LEV zeolite by interzeolite conversion methodand its catalytic performance in ethanol to olefins reaction. Micropor Mesopor Mater2009,122:149~154
    [26] Inaba M, Murata K, Takahara I, et al. Production of olefins from ethanol by Fe and/orP-modified H-ZSM-5zeolite catalysts. J Chem Technol Biotechnol,2011,86:95~104
    [27] Inaba M, Murata K, Takahara I. Effect of Fe-loading and reaction temperature on theproduction of olefins from ethanol by Fe/H-ZSM-5zeolite catalysts. React Kinet Catal Lett,2009,97:19~26
    [28] Inaba M, Murata K, Saito M, et al. Production of olefins from ethanol by Fe-supportedzeolite catalysts. Green Chem.2007,9:638~646
    [29] Inaba M, Murata K, Saito M, et al. Ethanol conversion to aromatic hydrocarbons over severalzeolite catalysts. React Kinet Catal Lett,2006,88:135~141
    [30] Goto D, Harada Y, Furumoto Y, et al. Conversion of ethanol to propylene over HZSM-5typezeolite containing alkaline earth metals. Appl Catal A: Gen,2010,383:89~95
    [31] Ermakov R V, Plakhotnik V A. Conversion of lower alcohols into C2-C4olefins overacid-base catalysts. Petrol Chem,2008,48:1~5
    [32] Cheng X W, Jin Y M, Wang J, et al. Dehydration of diluted ethanol to ethylene on binder-freeHZSM-5zeolite catalyst. Petrochemical Technology2008,37:548~553
    [33] Bi J D, Guo X W, Liu M, et al. High effective dehydration of bio-ethanol into ethylene overnanoscale HZSM-5zeolite catalysts. Catal Today,2010,149:143~147
    [34] Gujara A C, Gudab V K, Nolanc M, et al. Reactions of methanol and higher alcohols overH-ZSM-5. Appl Catal A: Gen,2009,363:115~121
    [35] Mentzel Uffe V, Shunmugavel S, Hruby S L, et al. High Yield of Liquid Range OlefinsObtained by Converting i-Propanol over Zeolite H-ZSM-5. J Am Chem Soc,2009,131:17009~17013
    [36] Taylor C E, Noceti R P, Schehl R R. Direct conversion of methane to liquid hydrocarbonsthrough chlorocarbon intermediates. Stud Surf Sci Catal,1998,36,483~487
    [37] C.E. Taylor, R.P. Noceti. New developments in the photocatalytic conversion of methane tomethanol. Catal Today,2000,55:259~267
    [38] Taylor C E. Conversion of substituted methanes over ZSM-catalysts Stud Surf Sci Catal,2000,130D,3633~3638
    [39] Jaumain D, Su B-L. Monitoring the Bronsted acidity of zeolites by means of in situ FT-IRand catalytic testing using chloromethane as probe molecule. Catal Today,2002,73:187~196
    [40] Jaumain D, Su B-L. Direct catalytic conversion of chloromethane to higher hydrocarbonsover a series of ZSM-5zeolites exchanged with alkali cations. J Mol Catal A: Chem,2003,197:263~273
    [41] Su B-L, Jaumain D. Chloromethane as Probe Molecule to Characterize the Brensted Acidityof Zeolites: An In Situ FTIR Study. in: Proceedings of the12th International ZeoliteConference,(Eds: M.M.J. Treacy, B.K. Marcus, M.E. Bisher, J.B. Higgins), Mater Res Soc,Warrendale, PA,1998, p.2689
    [42] Su B-L, Jaumain D. Effect of Acido-Basicity of Beta Zeolites on the Conversion ofChloromethane to Hydrocarbons as Studied by FTIR and TPD-MS. in: Proceedings of the12th International Zeolite Conference,(Eds. M.M.J. Treacy, B.K. Marcus, M.E. Bisher, J.B.Higgins), Mater Res Soc, Warrendale, PA,1998, p.2681
    [43] Wei Y X, Zhang D Z, Liu Z M, et al. Highly efficient catalytic conversion of chloromethaneto light olefins over HSAPO-34as studied by catalytic testing and in situ FTIR. J Catal,2006,238:46~57
    [44] Wei Y X, Zhang D Z, Xu L, et al. New route for light olefins production from chloromethaneover HSAPO-34molecular sieve. Catal Today,2005,106:84~89
    [45] Nilsen M H, Svelle S, Aravinthan S, et al. The conversion of chloromethane to light olefinsover SAPO-34: The influence of dichloromethane addition. Appl Catal A: Gen,2009,367(1-2):23~31
    [46] Bayer T S, Widmayer D M, Temme K, et al. Synthesis of methyl halides from biomass usingengineered microbes. J Am Chem Soc,2009,131(18):6508~6515
    [47] Svelle S, Aravinthan S, Bj rgen M, et al. The methyl halide to hydrocarbon reaction overH-SAPO-34. J Catal,2006,241(2):243~254
    [48] Svelle S, Kolboe S, Olsbye U, et al. A theoretical investigation of the methylation ofmethylbenzenes and alkenes by halomethanes over acidic zeolites. J Phys Chem B,2003,107,5251~5260
    [49] Bleken F, Svelle S, Lillerud K P, et al. Thermochemistry of Organic Reactions inMicroporous Oxides by Atomistic Simulations: Benchmarking against Periodic B3LYP. JPhys Chem A,2010,114(27):7391~7397
    [50] Wei Y X, Zhang D Z, Liu Z M, et al. Mechanistic elucidation of chloromethanetransformation over SAPO-34using deuterated probe molecule: A FTIR study on the surfaceevolution of catalyst. Chem Phys Lett,2007,444:197~201
    [51] Lorkovic I, Noy M, Weiss M, et al. C1Coupling via bromine activation and tandem catalyticcondensation and neutralization over CaO/zeolite composites. Chem Commun,2004,566~567
    [52] Lorkovic I M, Yilmaz A, Yilmaz G A, et al. A Novel Integrated Process for theFunctionalization of Methane and Ethane: Bromine as Mediator. Catal Today,2004,98:317~322
    [53] Lorkovic I M, Noy M L, Schenck W A, et al. C1oxidative coupling via bromine activationand tandem catalytic condensation and neutralization over CaO/zeolite composites II.Product distribution variation and full bromine confinement. Catal Today,2004,98:589~594
    [54] Breed A, Doherty M F, Gadewar S, et al. Natural Gas Conversion to Liquid Fuels in a ZoneReactor. Catal Today,2005,106:301~304
    [55] Liang J, Li H Y, Zhao S G, et al. Characteristics and performance of SAPO-34catalyst formethanol-to-olefin conversion. Applied Catal,1990,64:31~40
    [56] Sánchez del Campo A E, Gayubo A G, Aguayo A T, et al. Acidity, surface species, andmechanism of methanol transformation into olefins on a SAPO-34. Ind Eng Chem Res,1998,37(6):2336~2340
    [57] Chen D, Rebo H P, Moljord K, et al. Methanol conversion to light olefins over SAPO-34.sorption, diffusion, and catalytic reactions. Ind Eng Chem Res,1999,38(11):4241~4249
    [58] Liu Z M, Liang J. Methanol to olefin conversion catalysts. Curr Opin Solid S T M,1999,4:80~84
    [59] Arstad B, Kolboe S. The reactivity of molecules trapped within the SAPO-34cavities in themethanol-to-hydrocarbons reaction. J Am Chem Soc,2001,123(33):8137~8138
    [60] Abraha M G, Wu X C, Anthony R G. Effects of particle size and modified SAPO-34onconversion ofmethanol to light olefins and dimethyl ether. Stud Surf Sci Catal,2001,133:211~218
    [61] Wang W, Buchholz A, Seiler M, et al. Evidence for an initiation of the methanol-to-olefinprocess by reactive surface methoxy groups on acidic zeolite catalysts. J Am Chem Soc,2003,125(49):15260~15267
    [62] Wu X C, Abraha M G, Anthony R G. Methanol conversion on SAPO-34: reaction conditionfor fixed-bed reactor. Appl Catal A: Gen,2004,260:63~69
    [63] Alwahabi S M, Froment G F. Conceptual reactor design for the methanol-to-olefins processon SAPO-34. Ind Eng Chem Res,2004,43(17):5112~5122
    [64] Alwahabi S M, Froment G F. Froment single event kinetic modeling of themethanol-to-olefins process on SAPO-34. Ind Eng Chem Res,2004,43(17):5098~5111
    [65] Jiang Y J, Huang J, Marthala V R R, et al. In situ MAS NMR-UV/Vis investigation ofH-SAPO-34catalysts partially coked in the methanol-to-olefin conversion undercontinuous-flow conditions and of their regeneration. Micropor Mesopor Mater,2007,105:132~139
    [66] Van Niekerk M J, Fletcher J C Q, O’Connor A T. Effect of catalyst modification on theconversion of methanol to light olefins over SAPO-34. Appl Catal A: Gen,1996,138:135~145
    [67] Hartmann M, Kevan L. Transition Metal Ions in Aluminophosphate and Silico-aluminophosphate Molecular Sieves: Location, Interaction with Adsorbates and CatalyticProperties, Chem Rev,1999,99:635~663
    [68] Djieugoue M A, Prakash A M, Kevan L. Catalytic study of methanol to olefins conversion infour small pore aluminophosphate molecular sieves: influence of the structural type, nickelincorporation, nickel location and nickel concentration. J Phys Chem B,2000,104:6452~6461
    [69] Wei Y X, Zhang D Z, Xu L, et al. Synthesis, characterization and catalytic performance ofmetal-incorporated SAPO-34for chloromethane transformation to light olefins. Catal Today,2008,131:262~269
    [70] Dubois D R, Obrzut D L, Liu J, et al. Conversion of methanol to olefins over cobalt-,manganese-and nickel-incorporated SAPO-34molecular sieves. Fuel Process Tech.2003,83:203~218
    [71] Salmasi M, Fatemi S, Najafabadi A T. Improvement of light olefins selectivity and catalystlifetime in MTO reaction; using Ni and Mg-modified SAPO-34synthesized by combinationof two templates. J Ind Eng Chem.2011,17:755~761
    [72] Kang M. Methanol conversion on metal-incorporated SAPO-34. J Mole Catal A.2000,160:437~444
    [73] Wilson S, Barger P. The characteristics of SAPO-34which influence the conversion ofmethanol to light olefins. Micropor Mesopor Mater,1999,29:117~126
    [74] Dahl I M, Mostad H, Akporiaye D, et al. Structural and chemical influences on the MTOreaction: a comparison of chabazite and SAPO-34as MTO catalysts. Micropor MesoporMater1999,29:185~190
    [75] Izadbakhsh A, Farhadi F, Khorasheh F, et al. Effect of SAPO-34's composition on itsphysico-chemical properties and deactivation in MTO process. Appl Catal A: Gen,2009,364:48~56
    [76] Izadbakhsh A, Farhadi F, Khorasheh F, et al. Key parameters in hydrothermal synthesis andcharacterization of low silicon content SAPO-34molecular sieve. Micropor Mesopor Mater,2009,126:1~7
    [77] Nishiyama N, Kawaguchi M, Hirota Y, et al. Size control of SAPO-34crystals and theircatalyst lifetime in the methanol-to-olefin reaction. Appl Catal A: Gen,2009,362:193~199
    [78] Wang P F, Lv A L, Hu J, et al. The synthesis of SAPO-34with mixed template and itscatalytic performance for methanol to olefins reaction. Micropor Mesopor Mater,2012,152:178~184
    [79] Lee K Y, Chae H J, Jeong S Y, et al. Effect of crystallite size of SAPO-34catalysts on theirinduction period and deactivation in methanol-to-olefin reactions. Appl Catal A: Gen,2009,369:60~66
    [80] Wendelbo R, Akporiaye D, Andersen A, et al. Synthesis, characterization and catalytic testingof SAPO-18, MgAPO-18, and ZnAPO-18in the MTO reaction. Appl Catal A: Gen,1996,142: L197-L207
    [81] Aguayo A T, Gayubo A G, Vivanco R, et al. Initiation step and reactive intermediates in thetransformation of methanol into olefins over SAPO-18catalyst. Ind Eng Chem Res,2005,44(19):7279~7286
    [82] Gayubo A G. Aguayo A T. Alonso A, et al. Kinetic modeling of the methanol-to-olefinsprocess on a silicoaluminophosphate (SAPO-18) catalyst by considering deactivation and theformation of individual olefins. Ind Eng Chem Res,2007,46(7):1981~1989
    [83] Marcus D M, Song W G, Ng L L, et al. Aromatic hydrocarbon formation in HSAPO-18catalysts: cage topology and acid site density. Langmuir,2002,18:8386~8391
    [84] Djieugoue M A, Prakash A M, Kevan L. Catalytic study of methanol-to-olefins conversion infour small-pore silicoaluminophosphate molecular sieves: Influence of the structural type,nickel incorporation, Nickel location, and Nickel concentration. J Phys Chem B,2000,104:6452~6461
    [85] Wragg D S, Akporiaye D, Fjellv g H. Direct observation of catalyst behaviour under realworking conditions with X-ray diffraction: Comparing SAPO-18and SAPO-34methanol toolefin catalysts. J Catal,2011,279:397~402
    [86] Gayubo A G, Aguayo A T, Alonso A, et al. Reaction scheme and kinetic modelling for theMTO process over a SAPO-18catalyst. Catal Today,2005,106,112~117
    [87] Zhu Q J, Kondo J N, Tatsumi T, et al. A comparative study of methanol to olefin over CHAand MTF zeolites. J Phys Chem C,2007,111(14):5409~5415
    [88] Sommer L, Krivokapi A, Svelle S, et al. Enhanced Catalyst Performance of Zeolite SSZ-13in the Methanol to Olefin Reaction after Neutron Irradiation. J Phys Chem C,2011,115(14):6521~6530
    [89] Zhu Q J, Kondo J N, Ohnuma R, et al. The study of methanol-to-olefin over proton typealuminosilicate CHA zeolites. Micropor Mesopor Mater,2008,112:153~161
    [90] Bleken F, Bj rgen M, Palumbo L, et al. The effect of acidstrength on the conversion ofmethanol to olefins over acidic microporous catalysts with the CHA topology. Top Catal,(2009)52:218~228
    [91] Zhang H Y, Yang C G, Zhu L F, et al. Organotemplate-free and seed-directed synthesis oflevyne zeolite. Micropor Mesopor Mater,2012,155:1~7
    [92] Castro M, Warrender S J, Wright P A, et al. Silicoaluminophosphate Molecular Sieves STA-7and STA-14and Their Structure-Dependent Catalytic Performance in the Conversion ofMethanol to Olefins. J Phys Chem C,2009,113:15731~15741
    [93] Zhang L, Yang C G, Meng X J, et al. Organotemplate-Free Syntheses of ZSM-34Zeolite andIts Heteroatom-Substituted Analogues with Good Catalytic Performance. Chem Mater,2010,22:3099~3107
    [94] Park J W, Lee J Y, Kim K S, et al. Effects of cageshape and size of8-membered ringmolecular sieves on their deactivation in methanol-to-olefin (MTO) reactions. Appl Catal A:Gen,2008,339:36~44
    [95] Kaarsholm M, Joensen F, Nerlov J, et al. Phosphorous modified ZSM-5: Deactivation andproduct distribution for MTO. Chem Eng Sci,2007,62:5527~5532
    [96] Tago T, Iwakai K, Morita K, et al. Control of acid-site location of ZSM-5zeolite membraneand its application to the MTO reaction. Catal Today,2005,105:662~666
    [97] Bj rgen M, Svelle S, Joensen F, et al. Conversion of methanol to hydrocarbons over zeoliteH-ZSM-5: On the origin of the olefinic species. J Catal,2007,249:195~207
    [98] Bj rgen M, Joensen F, Lillerud K-P, et al. The mechanisms of ethene and propene formationfrom methanol over high silica H-ZSM-5and H-beta. Catal Today,2009,142:90~97
    [99] Zhang J C, Zhang H B, Yang X Y, et al. Study on the deactivation and regeneration of theZSM-5catalyst used in methanol to olefins. J Nat Gas Chem,2011,20:266~270
    [100] Keil F J, Hinderer J, Garayhi A R. Diffusion and reaction in ZSM-5and composite catalystsfor the methanol-to-olefins process. Catal Today,1999,50:637~650
    [101] Gayubo A G, Aguayo A T, Olazar M, et al. Kinetics of the irreversible deactivation of theHZSM-5catalyst in the MTO process. Chem Eng Sci,2003,58:5239~5249
    [101] Bj rgen M, Joensen F, Holm M S, et al. Methanol to gasoline over zeolite H-ZSM-5:Improved catalyst performance by treatment with NaOH. Appl Catal A: Gen,2008,345:43~50
    [102] Wu W Z, Guo W Y, Xiao W D, et al. Dominant reaction pathway for methanol conversionto propene over high silicon H-ZSM-5. Chem Eng Sci,2011,66:4722~4732
    [103] Svelle S, Joensen F, Nerlov J, et al. Conversion of methanol into hydrocarbons over zeoliteH-ZSM-5: ethene formation is mechanistically separated from the formation of higheralkenes. J Am Chem Soc,2006,128(46):14770~14771
    [104] Palumbo L, Bonino F, Beato P, et al. Conversion of methanol to hydrocarbons:spectroscopic characterization of carbonaceous species formed over H-ZSM-5. J Phys ChemC,2008,112(26):9710~9716
    [105] Abubakar S M, Marcus D M, Lee J C, et al. Structural and mechanistic investigation of aphosphate-modified HZSM-5catalyst for methanol conversion. Langmuir,2006,22(10):4846~4852
    [106] Liu J, Zhang C, Shen Z, et al. Methanol to propylene: effect of phosphorus on a high silicaHZSM-5catalyst. Catal Commun,2009,10(11):1506~1509
    [107] Wang Z W, Jiang G Y, Zhao Z, et al. Highly efficient P-modified HZSM-5catalsyst forcoupling transformation of methanol and1-butene to propene. Energy Fuels2010,24:758~763
    [108] Valle B, Alonso A, Atutxa A, et al. Effect of nickel incorporation on the acidity and stabilityof HZSM-5zeolite in the MTO process. Catal Today,2005:106,118~122
    [109] Zhang S H, Zhang B L, Gao Z X, et al. Methanol to olefin over Ca-modified HZSM-5zeolites. Ind Eng Chem Res,2010,49:2103~2106
    [110] Rownaghi A A, Rezaei F, Hedlund J. Uniform mesoporous ZSM-5single crystals catalystwith high resistance to coke formation for methanol deoxygenation. Micropor MesoporMater,2012,151:26~33
    [111] Mei C S, Wen P Y, Liu Z C, et al. Selective production of propylene from methanol:Mesoporosity development in high silica HZSM-5. J Catal,2008,258:243~249
    [112] Firoozi M, Baghalha M, Asadi M. The effect of micro and nano particle sizes of H-ZSM-5on the selectivity of MTP reaction. Catal Commun.2009,10:1582~1585
    [114] Cui Z M, Liu Q, Song W G, et al. Insights into the mechanism of methanol-to-olefinconversion at zeolites with systematically selected framework structures. Angew Chem IntEd,2006,45:6512~6515
    [115] Cui Z M, Liu Q, Ma Z, et al. Direct observation of olefin homologations on zeolite ZSM-22and its implications to methanol to olefin conversion. J Catal,2008,258:83~86
    [116] Teketel S, Svelle S, Lillerud K P, et al. Shape-selective conversion of methanol tohydrocarbons over10-Ring unidirectional-channel acidic H-ZSM-22. ChemCatChem,2009,1:78-81
    [117] Li J Z, Wei Y X, Qi Y, et al. Conversion of methanol over H-ZSM-22: The reactionmechanism and deactivation. Catal Today,2011,164:288~292
    [118] Li J Z, Wei Y X, Liu G Y, et al. Comparative study of MTO conversion over SAPO-34,H-ZSM-5and H-ZSM-22: Correlating catalytic performance and reaction mechanism tozeolite topology. Catal Today,2011,171:221~228
    [119] Teketel S, Skistad W, Benard S, et al. Shape selectivity in the conversion of methanol tohydrocarbons: the catalytic performance of one-dimensional10-Ring zeolites: ZSM-22,ZSM-23, ZSM-48, and EU-1. ACS Catal,2012,2:26~37
    [120] Min H K, Park M B, Hong S B. Methanol-to-olefin conversion over H-MCM-22andH-ITQ-2zeolites. J Catal,2010,271:186~194
    [121] Bj rgen M, Akyalcin S, Olsbye U, et al. Methanol to hydrocarbons over large cavityzeolites: Toward a unified description of catalyst deactivation and the reaction mechanism.J Catal,2010,275:170~180
    [122] Salvador P, Kladnig W. Surface reactivity of zeolites type H-Y and Na-Y with methanol.J.C.S. Faraday Trans.1977,73:1153~1168
    [123] Hochevar S, Echevskii G V, Drzaj B, et al. Methanol-based synthesis of hydrocarbons onbifunctional Y-type zeolites. React Kinetics Catal Lett,1980,13:425~429
    [124] Kubelkova L, Novakova J, Jiru P, in: Jacobs P A, Jaeger N I, Jiru P, Kazansky V B,Schulz-Ekloff G(Eds.), Structure and Reactivity of Modified Zeolites, Elsevier, Amsterdam,1984, p.217.
    [125] Dejaifve P, Auroux A, Gravelle P C, et al. Methanol conversion on acidic ZSM-5, offretite,and mordenite zeolites-a comparative-study of the formation and stability of coke deposits.J Catal,1981,70:123~136
    [126] Sawa M, Niwa M, Murakami Y. Development of long-life dealuminated mordenite formethanol conversion to hydrocarbons. Chem Lett,1987,8:1637~1640
    [126] Park J W, Kim S J, Seo M, et al. Product selectivity and catalytic deactivation of MORzeolites with different acid site densities in methanol-to-olefin (MTO) reactions. Appl CatalA: Gen,2008,349:76~85
    [127] Park J W, Seo G. IR study on methanol-to-olefin reaction over zeolites with different porestructures and acidities. Appl Catal A: Gen,2009,356:180~188
    [128] Lesthaeghe D, De Sterck B, Van Speybroeck V, et al. Zeolite shape-selectivity in thegem-methylation of aromatic hydrocarbons. Angew Chem Int Ed,2007,46:1311~1314
    [129] Kikhtyanin O V, Mastikhin V M, Ione K G. Methanol conversion on aluminophosphateswith zeolite structure. Appl Catal,1988,42:1~13
    [130] Hibi T, Takahashi K, Okuhara T, et al. Catalysis by heteropoly compounds x. Synthesis oflower olefins by conversion of dimethyl ether over12-tungstophosphates. Appl Catal,1986,24:69~83
    [131] Ehwald H, Fiebig W, Jerschkewitz H-G, et al. Synthesis of olefins from methanol on SiO2supported Ag4(SiW12O40) catalysts. Appl Catal,1987,34:13~22
    [132] Ehwald H, Fiebig W, Jerschkewitz H-G, et al. Synthesis of olefins from methanol onalumina-supported H4[SiW12O40] catalysts. Appl Catal,1987,34:23~28
    [133] Sassi A, Song W G, Wildman M A, et al. Methanol to hydrocarbon catalysis on sulfatedzirconia proceeds through a hydrocarbon pool mechanism. Catal Lett.2002,81(1-2):101~105
    [134] Wang W, Hunger M. Reactivity of surface alkoxy species on acidic zeolite catalystsAccounts Chem Res.2008,41(8):895~904
    [135] Froment G F, Dehertog W J H, A. Marchi J. Zeolite catalysis in the conversion of methanolinto olefins, Catalysis,1992,9:1~64
    [136] Chang C D, in: Bibby D M, Chang C D, Howe R F, Yurchak S (Eds.), Methane Conversion,Elsevier, Amsterdam,1988, p.127.
    [137] Hutchings G H, Hunter R. Hydrocarbon formation from methanol and dimethyl ether: areview of the experimental observations concerning the mechanism of formation of theprimary products. Catal Today,1990,6:279~306
    [138] van den Berg J P, Wolthuizen J P, van Hooff J H C, in: L.V. Rees (Ed.), Proceedings5thInternational Zeolite Conference (Naples), Heyden, London,1980, p.649. Proceedings5thInternational Zeolit Conference
    [139] Olah G A. Higher coordinate (hypercarbon containing) carbocations and their role inelectrophilic reactions of hydrocarbons. Pure Appl Chem,1981,53:201~207
    [140] Huisgen R. Altes und neues fiber aliphatische diazoverbindun-gen I. Angew Chem,1955,67:439~453
    [141] Fougerit J M,Gnep N S,Guisnet M.selective transformation of methanol into light olefinsover a mordenite catalyst: reaction scheme and mechanism. Micropor Mesopor Mater,1999,29(1-2):79-89
    [142] Franzen V, Fikentscher L. Annal. Chem.617(University of Stuttgart, Germany) for his kind(1957)1
    [143] Hellring S D, Chang C D.21st ACS State-of-the-Art Symp., Methanol as a Raw Materialfor Fuels and Chemicals, Marco Is., Florida, USA, June1986.
    [144] Forester T R, Wong S T, Howe R F. In situ Fourier transform i.r. observation of methylatingspecies in ZSM-5. J C S Chem Comm,1986,1611~1613
    [145] Lesthaeghe D, Van Speybroeck V, Marin G B, et al. Understanding the failure of direct C-Ccoupling in the zeolite-catalyzed methanol-to-olefin process. Angew Chem Int Ed,2006,45:1714~1719
    [146] Song W G, Marcus D M, Fu H, et al. An oft-studied reaction that may never have been:direct catalytic conversion of methanol or dimethyl ether to hydrocarbons on the solid acidsHZSM-5or HSAPO-34. J Am Chem Soc,2002,124:3844~3845
    [147]王仰东,王传明,刘红星,等.HSAP0—34分子筛上氧嗡叶立德机理的第一性原理研究.催化学报,2010,31(1):33~37
    [148] Swabb F A, Gates B C. Diffusion, reaction, and fouling in H-Mordenite crystallites. Thecatalytic dehydration of methanol, Ind Eng Chem Fundament,1972,11:540~545
    [149] Chang C D, Chu C T-W. On the mechanism of hydrocarbon formation from methanol overzeolite catalysts: Evidence for carbene intermediacy. J Catal,1982,74:203~206
    [150] Dass D V, Martin R W, Odell A L, Quinn G W. in Bibby D M, Chang C D, Howe R F,Yurchak S (Eds.), Methane Conversion, Elsevier, Amsterdam,1988, p.177
    [151] Lee C S, Wu M M. Reaction of carbenoid species diazomethane decomposition over zeoliteZSM-5. J C S Chem Comm,1985,250~252
    [152] Olah G A, Surya Prakash G K, Ellis R W, et al. Remarks on the mechanism of ethyleneformation from methyl alcohol, J C S Chem Comm,1986,9~10
    [153] Nováková J, Kubelková L, Dolej ek Z. Primary reaction steps in the methanol-to-olefintransformation on zeolites. J Catal,1987,108:208~213
    [154] Hutchings G J, Hunter R, Pickl W, Jansen van Rensburg L, in: Bibby D M, Chang C D,Howe R F, Yurchak S (Eds.), Methane Conversion, Elsevier, Amsterdam,1988, p.183
    [155] Chang C D, Hellring S D, Pearson J A. On the existence and role of free radicals inmethanol conversion to hydrocarbons over HZSM-5: I. Inhibition by NO. J Catal,1989,115:282~285
    [156] Zatorski W, Krzyzanowski S. Acta Phys. Chem.1978,29:347
    [157] Clarke J K A, Darcy R, Hegarty B F, et al. Free radicals in dimethyl ether on H-ZSM-5zeolite. A novel dimension of heterogeneous catalysis. J C S Chem Comm,1986,425~426
    [158] Choukroun H, Brunel D, Germain A. C-C bond formation from dimethyl ether via a radicalmechanism in the presence of strong acid. J C S Chem Comm,1986,6~7
    [159] Kolboe S, in: Holmen A, Jens K-J, Kolboe S (Eds.), Natural gas conversion. Stud Surf SciCatal, vol.61, Elsevier, Amsterdam,1991, p.413
    [160] Hunter R, Hutchings G J, Pick W. Mechanistic studies on initial C-C bond formation in thezeolite ZSM-5catalysed methanol conversion reaction: Evidence against a radical pathway.J Chem Soc, Chem Commun,1987:843~844
    [161] Hunter R, Hutchings G J, Pick W. Methanol conversion to hydrocarbons over the zeolitecatalyst H ZSM-5in the presence of oxygen and nitric oxidie: Further evidence against aradical reaction mechanistic. J C S Chem Comm,1987,1369~1371
    [162] Hutchings G J, in: Holmen A, Jens K-J, Kolboe S (Eds.), Natural gas conversion. Stud SurfSci Catal, vol.61, Elsevier, Amsterdam,1991, p.405
    [163] Dahl I M, Kolboe S. On the Reaction Mechanism for Hydrocarbon Formation fromMethanol over SAPO-34: I. Isotopic Labeling Studies of the Co-Reaction of Ethene andMethanol. J Catal,1994,149:458~464
    [164] Langner B E. Reactions of Methanol on Zeolites with Different Pore Structures. Appl Catal,1982,2:289~302
    [165] Mole T, Bett G, Seddon D. Conversion of Methanol to Hydrocarbons over ZSM-5Zeolitean Examination of the Role of Aromatic-Hydrocarbons Using Carbon-14-Labeled andDueterium-Labeled Feeds. J Catal,1983,84:435~445
    [166] Dahl I M, Kolboe S. On the reaction mechanism for propene formation in the MTO reactionover SAPO-34. Catal Lett,1993,20:329~336
    [167] Haw J F, Nicholas J B, Song W G, et al. Roles for Cyclopentenyl Cations in the Synthesis ofHydrocarbons from Methanol on Zeolite Catalyst HZSM-5. J Am Chem Soc,2000,122:4763~4775
    [168] Chua Y T, Stair P C,Nicholas J B, et al. UV Raman spectrum of1,3-dimethylcyclopentenylcation adsorbed in zeolite H-MFI. J Am Chem Soc,2003,125(420):866~867
    [169] SongW, Fu H, Haw J F. Selective Synthesis of Methylnaphthalenes in HSAPO-34Cagesand Their Function as Reaction Centers in Methanol-to-Olefin Catalysis. J Phys Chem B,2001,105:12839~12843
    [170] Fu H, Song W G, Marcus D M, et al. Ship-in-a-Bottle Synthesis of Methylphenols inHSAPO-34Cages from Methanol and Air. J Phys Chem B,2002,106:5648~5652
    [171] Marcus D M, SongW G, Abubakar SM. Reactions of Halobenzenes with Methanol on theMicroporous Solid Acids HBeta, HZSM-5, and HSAPO-5:Halogenation Does Not Improvethe Hydrocarbon Pool. Langmuir,2004,20(14):5946~5951
    [172] Song W G, Fu H, Ha w J F. Supramolecular Origins of Product Selectivity forMethanol-to-Olefin Catalysis on HSAPO-34. J Am Chem Soc,2001,123:4749~4754
    [173] Arstad B, Nic holas J B, Ha w J F. Theoretical Study of the Methylbenzene Side-ChainHydrocarbon Pool Mechanism in Methanol to Olefin Catalysis. J Am Chem Soc,2004,126:2991~3001
    [174] Sassi A, Wildman M A, Ha w J F. Reactions of Butylbenzene Isomers on Zeolite HBeta:Methanol-to-Olefins Hydrocarbon Pool Chemistry and Secondary Reactions of Olefins JPhys Chem B,2002,106(34):8768~8773
    [175] Bleken F, Bj rgen M, Palumbo L, et al. The Effect of Acid Strength on the Conversion ofMethanol to Olefins Over Acidic Microporous Catalysts with the CHA Topology. Top Catal,2009,52(3):218~228
    [176] Schulz H.“Coking” of zeolites during methanol conversion: Basic reactions of the MTO-,MTP-and MTG processes. Catal Today2010,154:183~194
    [177] Hereijgers B P C, Bleken F, Nilsen M H, et al. Product shape selectivity dominates theMethanol-to-Olefins (MTO) reaction over H-SAPO-34catalysts. J Catal,2009,264:77~87
    [178] Sassi A, Wildman M A, Ahn H J, et al. Methylbenzene Chemistry on Zeolite HBeta:Multiple Insights into Methanol-to-Olefin Catalysis. J Phys Chem B,2002,106:2294~2303
    [179] Bj rgen M, Olsbye U, Kolboe S. Coke precursor formation and zeolite deactivation:mechanistic insights from hexamethylbenzene conversion. J Catal,2003,215:30~44
    [180] Guisnet M, Costa L, Ribeiro F R. Prevention of zeolite deactivation by coking. J Mol CatalA: Chem,2009,305:69~83
    [181] Mores D, Kornatowski J, Olsbye U, et al. Coke Formation during the Methanol-to-OlefinConversion: In Situ Microspectroscopy on Individual H-ZSM-5Crystals with DifferentBr nsted Acidity. Chem Eur J,2011,17(10):2874~2884
    [1] St cker M. Methanol-to-hydrocarbons: catalytic materials and their behavior. MicroporMesopor Mater,1999,29:3~48
    [2] Xu M T, Lunsford J H, Goodman D W, et al. Synthesis of dimethyl ether (DME) frommethanol over solid-acid catalysts. Appl Catal A: Gen,1997,149:289~301
    [3] Lertjiamratn K, Praserthdam P, Arai M, et al. Modification of acid properties and catalyticproperties of AlPO4by hydrothermal pretreatment for methanol dehydration to dimethylether. Appl Catal A: Gen,2010,378:119~123
    [4] Cui Z M, Liu Q, Song W G, et al. Insights into the Mechanism of Methanol-to-OlefinConversion at Zeolites with Systematically Selected Framework Structures. Angew Chem IntEd,2006,45:6512~6515
    [5] Wilson S, Barger P. The characteristics of SAPO-34which influence the conversion ofmethanol to light olefins. Micropor Mesopor Mater,1999,29:117~126
    [6] Bleken F, Bj rgen M, Palumbo L, et al. The Effect of Acid Strength on the Conversion ofMethanol to Olefins Over Acidic Microporous Catalysts with the CHA Topology. Top Catal,2009,52:218~228
    [7] Marcus D M, Song W G, Ng L L, et al. Aromatic Hydrocarbon Formation in HSAPO-18Catalysts: Cage Topology and Acid Site Density. Langmuir,2002,18:8386~8391
    [8] Gayubo A G, Aguayo A T, Alonso A, et al. Reaction scheme and kinetic modelling for theMTO process over a SAPO-18catalyst. Catal Today,2005,106:112~117
    [9] Aguayo A T, Gayubo A G, Vivanco R, et al. Role of acidity and microporous structure inalternative catalysts for the transformation of methanol into olefins. Appl Catal A: Gen,2005,283:197~207
    [10] Djieugoue M A, Prakash A M, Kevan L. Catalytic Study of Methanol-to-Olefins Conversionin Four Small-Pore Silicoaluminophosphate Molecular Sieves: Influence of the StructuralType, Nickel Incorporation, Nickel Location, and Nickel Concentration. J Phys Chem B,2000,104:6452~6461
    [11] Zhu Z D, Hartmann M, Kevan L. Catalytic Conversion of Methanol to Olefins on SAPO-n(n=11,34, and35), CrAPSO-n, and CrSAPO-n Molecular Sieves. Chem Mater,2000,12:2781~2787
    [12] Castro M, Warrender S J, Wright P A, et al. Theoretical Study of Ethylbenzenium Ions: TheMechanism for Splitting Off Ethene, and the Formation of a π Complex of Ethene and theBenzenium Ion. J Phys Chem C,2009,113:15731~15741
    [13] Baerlocher Ch, Meier W M, Olson D H, Atlas of zeolite framework types,5th revised ed.;Elsevier: Amsterdam, The Netherlands,2007
    [14] Tan J, Liu Z M, Bao X H, et al. Crystallization and Si incorporation mechanisms of SAPO-34.Micropor Mesopor Mater,2002,53:97~108
    [15] Ma Y F, Li N, Ren X T, et al. Synthesis of SAPO-41from a new reproducible route usingH3PO3as the phosphorus source and its application in hydroisomerization of n-decane. JMol Catal A: Chem,2006,250:9~14
    [16] Murthy K V V S B S R, Kulkarni S J S K. Sorption properties of modifiedsilicoaluminophosphate (SAPO)-5and SAPO-11molecular sieves. Micropor Mesopor Mater,2001,43:201~209
    [17] Prakash A M, Satyanarayana C V V, Ashtekar S, et al. SAPO-46molecular sieve:incorporation of silicon at crystallographically independent sites. J Chem Soc ChemCommun,1994,1527~1528
    [18] Sastre G, Lewis D W, Richard C, et al. Modeling of Silicon Substitution in SAPO-5andSAPO-34Molecular Sieves J Phys Chem B,1997,101:5249~5262
    [19] Hunger M. Br nsted acid sites in zeolites characterized by multi-nuclear solid-state NMRspectroscopy. Catal Rev Sci Eng,1997,39:345~393
    [20] Hunger M, Anderson M W, Ojo A, et al. Study of the geometry and location of the bridgingOH groups in aluminosilicate and silicoaluminophosphate type zeolites using1H MAS NMRsideband analysis and CP/MAS NMR. Microporous Mater,1993,1:17~32
    [21] Buchholz A, Wang W, Xu M C, et al. Thermal stability and dehydroxylation of Broenstedacid sites in silicoaluminophosphates H-SAPO-11, H-SAPO-18, H-SAPO-31, andH-SAPO-34investigated by multi-nuclear solid-state NMR spectroscopy. MicroporousMesoporous Mater,2002,56:267~278
    [22] Huang J, van Vegten N, Jiang Y J, et al. Tuning Br nsted acidity of flame-derivedsilica-alumina up to zeolitic strength, Angew Chem Int Ed,2010,49:7776~7781
    [23] Chen D, Rebo H P, Moljord K, et al. Methanol conversion to light olefins over SAPO-34:sorption, diffusion and catalytic reactions. Ind Eng Chem Res,1999,38:4241~4249
    [24] Wang W, Hunger M. Reactivity of surface alkoxy species on acidic zeolite catalysts. AccChem Res,2008,41:895~904
    [25] Anderson M W, Barrie P J, Klinowski J.1H Magic-Angle-Spinning NMR Studies of theAdsorption of Alcohols on Molecular Sieve Catalysts. J Phys Chem,1991,95:235~239
    [26] Karge H G, Laniecki M, Ziolek M, et al. in: P.A. Jacobs, R.A. van Santen (Eds.), Zeolites:Facts, Figures, Future, Stud Surf Sci Catal, vol.49, Elsevier, Amsterdam,1989, p.1327
    [27] Mohan J. Organic Spectroscopy Principles and Applications, Alpha Science InternationalLtd., Harrow,2002, p.128and p.137
    [28] Kirisci I, F rster H, Tasi G, et al. Generation, Characterization, and Transformations ofUnsaturated Carbenium Ions in Zeolites. Chem Rev,1999,99:2085~2114
    [29] Ahmad R, Melsheimer J, Jentoft F C, et al. Isomerization of n-butane and of n-pentane in thepresence of sulfated zirconia: formation of surface deposits investigated by in situ UV-visdiffuse reflectance spectroscopy. J Catal,2003,218:365~374
    [30] Yang S W, Kondo J N, Domen K. Formation of alkenyl carbenium ions by adsorption ofcyclic precursors on zeolites. Catal Today,2002,73:113~125
    [31] Stepanenko Y, Sobolewski A L, Mordzinski A. Electronic spectroscopy and methyl internalrotation dynamics of9,10-dimethylanthracene. J Mol Spectrosc,2005,233:15~22
    [32] Song W G, Haw J F, Nicholas J B, et al. Methylbenzenes Are the Organic Reaction Centersfor Methanol-to-Olefin Catalysis on HSAPO-34. J Am Chem Soc,2000,122:10726~10727
    [33] Song W G, Fu H, Haw J F. Supramolecular Origins of Product Selectivity forMethanol-to-Olefin Catalysis on HSAPO-34. J Am Chem Soc,2001,123:4749~4754
    [34] Svelle S, Joensen F, Nerlov J, et al. Conversion of Methanol into Hydrocarbons over ZeoliteH-ZSM-5: Ethene Formation Is Mechanistically Separated from the Formation of HigherAlkenes. J Am Chem Soc,2006,128:14770~14771
    [35] Bj rgen M, Svelle S, Joensen F, et al. Conversion of methanol to hydrocarbons over zeoliteH-ZSM-5: On the origin of the olefinic species. J Catal,2007,249:195~207
    [1] St cker M. in Zeolite and Catalysis: Synthesis, Reactions and Applications (Eds: J. ejka, A.Corma, S. Zones), Wiley-VCH, Weinheim,2010, p.687
    [2] Dahl I M, Kolboe S. On the Reaction Mechanism for Hydrocarbon Formation fromMethanol over SAPO-34: I. Isotopic Labeling Studies of the Co-Reaction of Ethene andMethanol. J Catal,1994,149:458~464
    [3] Dahl I M, Kolboe S. On the Reaction Mechanism for Hydrocarbon Formation fromMethanol over SAPO-34:2. Isotopic Labeling Studies of the Co-Reaction of Ethene andMethanol. J Catal,1996,161:304~309
    [4] Arstad B, Kolboe S. Methanol-to-hydrocarbons reaction over SAPO-34. Molecules confinedin the catalyst cavities at short time on stream. Catal Lett,2001,71:209~212
    [5] Buchholz A, Wang W, Xu M C, et al. Thermal stability and dehydroxylation of Broenstedacid sites in silicoaluminophosphates H-SAPO-11, H-SAPO-18, H-SAPO-31, andH-SAPO-34investigated by multi-nuclear solid-state NMR spectroscopy. Micropor MesoporMater,2002,56:267~278
    [6] Treacy M M J, Higgins J B, Eds. Collection of simulated XRD powder patterns for zeolites,5th reviseded. Elsevier: Oxford,2007
    [7] Chen D, Moljord K, Fuglerud T, et al. The effect of crystal size of SAPO-34on theselectivity and deactivation of the MTO reaction. Micropor Mesopor Mater,1999,29:191~203
    [8] Nishiyama N, Kawaguchi M, Hirota Y, et al. Size control of SAPO-34crystals and theircatalyst lifetime in the methanol-to-olefin reaction. Appl Catal A: Gen,2009,362:193~199
    [9] Lee K Y, Chae H J, Jeong S Y, et al. Effect of crystallite size of SAPO-34catalysts on theirinduction period and deactivation in methanol-to-olefin reactions. Appl Catal A: Gen,2009,369:60~66
    [10] Crews P, Rodriguez J, Jaspars M. Organic Structure Analysis, Oxford University Press, USA,1998
    [11] Kirisci I, F rster H, Tasi G, et al. Generation, Characterization, and Transformations ofUnsaturated Carbenium Ions in Zeolites. Chem Rev,1999,99:2085~2114
    [12] Bj rgen M, Bonino F, Kolboe S, et al. Spectroscopic Evidence for a Persistent BenzeniumCation in Zeolite H-Beta. J Am Chem Soc,2003,125:15863~15868
    [13] Friebolin H. Ein-und zweidimensionale NMR-Spektroskopie, Wiley-VCH,Weinheim,1999
    [14] H NMR Predictor, Product Version9.08, Advanced Chemistry Development Inc.,2006
    [15] Hunger M, Weitkamp J, in In-situ Spectroscopy of Catalysts (Ed.: Weckhuysen B M),American Scientific Publishers, Stevenson Ranch, USA,2004
    [16] Arstad B, Kolboe S. The Reactivity of Molecules Trapped within the SAPO-34Cavities inthe Methanol-to-Hydrocarbons Reaction. J Am Chem Soc,2001,123:8137~8138
    [17] Svelle S, Bj rgen M, Kolboe S, et al. Intermediates in the Methanol-to-hydrocarbons (MTH)Reaction: A Gas Phase Study of the Unimolecular Reactivity of Multiply MethylatedBenzenium Cations, Catal Lett,2006,109:25~35
    [18] C NMR, Version1.1, Advanced Chemistry Development Inc., USA,1995.
    [19] Olah G A, Lin H C, Forsyth D A. Stable carbocations. CLXXIV. Charge distributiondifferences in benzenium and nitrobenzenium ions based on carbon-13nuclear magneticresonance studies and their relevance to the isomer distribution in electrophilic aromaticsubstitutions. J Am Chem Soc,1974,96:6908~6911
    [20] Olah G A, Staral J S, Asencio G, et al. Stable carbocations.215. Carbon-13nuclear magneticresonance spectroscopic study of the benzenium, naphthalenium, and anthracenium ions. JAm Chem Soc,1978,100:6299~6308
    [1] Dahl I M, Kolboe S. On the Reaction Mechanism for Hydrocarbon Formation fromMethanol over SAPO-34: I. Isotopic Labeling Studies of the Co-Reaction of Ethene andMethanol. J Catal,1994,149:458~464
    [2] Dahl I M, Kolboe S. On the Reaction Mechanism for Hydrocarbon Formation fromMethanol over SAPO-34:2. Isotopic Labeling Studies of the Co-Reaction of Ethene andMethanol. J Catal,1996,161:304~309
    [3] Goguen P W, T Xu, Barich D H, et al. Pulse-Quench Catalytic Reactor Studies Reveal aCarbon-Pool Mechanism in Methanol-to-Gasoline Chemistry on Zeolite HZSM-5. J AmChem Soc,1998,120:2650~2651
    [4] St cker M. Methanol-to-hydrocarbons: catalytic materials and their behavior. MicroporMesopor Mater,1999,29:3~48
    [5] Svelle S, Joensen F, Nerlov J, et al. Conversion of methanol into hydrocarbons over zeoliteH-ZSM-5: Ethene formation is mechanistically separated from the formation of higheralkenes. J Am Chem Soc,2006,128:147701~4771
    [6] Mikkelsen, R nning P O, Kolboe S. Use of isotopic labeling for mechanistic studies of themethanol-to-hydrocarbons reaction. Methylation of toluene with methanol over H-ZSM-5,H-mordenite and H-beta. Micropor Mesopor Mater,2000,40:95~113
    [7] Song W G, Haw J F. Improved Methanol-to-Olefin Catalyst with Nanocages Functionalizedthrough Ship-in-a-Bottle Synthesis from PH3. Angew Chem Int Ed,2003,42:892~893
    [8] Song W G, Fu H, Haw J F. Selective Synthesis of Methylnaphthalenes in HSAPO-34Cagesand Their Function as Reaction Centers in Methanol-to-Olefin Catalysis J Phys Chem B,2001,105:12839~12843
    [9] Bj rgen M, Olsbye U, Petersen D, et al. The methanol-to-hydrocarbons reaction: insight intothe reaction mechanism from [12C] benzene and [13C] methanol co-reactions over zeoliteH-beta. J Catal,2004,221:1~10
    [10] Song W G, Marcus D M, Fu H, et al. An Oft-Studied Reaction That May Never Have Been:Direct Catalytic Conversion of Methanol or Dimethyl Ether to Hydrocarbons on the SolidAcids HZSM-5or HSAPO-34. J Am Chem Soc,2002,124:3844~3845
    [11] Katada N, Igi H, Kim J H, et al, Determination of the Acidic Properties of Zeolite byTheoretical Analysis of Temperature-Programmed Desorption of Ammonia Based onAdsorption Equilibrium. J Phys Chem B,1997:101,5969~5977
    [12] Niwa M, Katada N, Sawa M, et al. Temperature-Programmed Desorption of Ammonia withReadsorption Based on the Derived Theoretical Equation. J Phys Chem,1995,99(21):8812~8816
    [13] Park J W, Kim S J, Seo M, et al. Product selectivity and catalytic deactivation of MORzeolites with different acid site densities in methanol-to-olefin (MTO) reactions. Appl CatalA: Gen,2008,349:76~85
    [14] Zecchina A, Marchese L, Bordiga S, et al. Vibrational Spectroscopy of NH+4Ions in ZeoliticMaterials: An IR Study. J Phys Chem B,1997,101:10128~10135
    [15] Martins G V A, Berlier G, Bisio C, et al. Quantification of Br nsted Acid Sites inMicroporous Catalysts by a Combined FTIR and NH3-TPD Study. J Phys Chem C,2008,112:7193~7200
    [16] Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds, Wiley,New York,1997.
    [17] Bj rgen M, Olsbye U, Kolboe S. Coke precursor formation and zeolite deactivation:mechanistic insights from hexamethylbenzene conversion. J Catal,2003,215:30~44
    [18] Olsbye U, Bj rgen M, Svelle S, et al. Mechanistic insight into the methanol-to-hydrocarbonsreaction. Catal Today,2005,106:108~111
    [19] Bj rgen M, Svelle S, Joensen F, et al. Conversion of methanol to hydrocarbons over zeoliteH-ZSM-5: On the origin of the olefinic species. J Catal,2007,249:195–207
    [20] Lesthaeghe D, De Sterck B, Van Speybroeck V, et al. Zeolite Shape-Selectivity in thegem-Methylation of Aromatic Hydrocarbons. Angew Chem Int Ed,2007,46:1311~1314
    [21] McCann D M, Lesthaeghe D, Kletnieks P W, et al. A complete catalytic cycle forsupramolecular methanol-to-olefins conversion by linking theory with experiment. AngewChem Int Ed,2008,120:5257~5260
    [1] Dahl I M, Kolboe S. On the Reaction Mechanism for Hydrocarbon Formation fromMethanol over SAPO-34:2. Isotopic Labeling Studies of the Co-Reaction of Ethene andMethanol. J Catal,1996,161:304~309
    [2] Arstad B, Kolboe S. The Reactivity of Molecules Trapped within the SAPO-34Cavities inthe Methanol-to-Hydrocarbons Reaction. J Am Chem Soc,2001,123:8137~8138
    [3] Svelle S, Joensen F, Nerlov J, et al. Conversion of Methanol into Hydrocarbons over ZeoliteH-ZSM-5: Ethene Formation Is Mechanistically Separated from the Formation of HigherAlkenes. J Am Chem Soc,2006,128:14770~14771
    [4] Wu X C, Abraha M G, Anthony R G. Methanol conversion on SAPO-34: reaction conditionfor fixed-bed reactor. Appl Catal A: Gen,2004,260:63~69
    [5] Chen J Q, Bozzano A, Glover B, et al. Recent advancements in ethylene and propyleneproduction using the UOP/Hydro MTO process. Catal Today,2005,106:103~107
    [6] Dahl I M, Mostad H, Akporiaye D, et al. Structural and chemical influences on the MTOreaction: a comparison of chabazite and SAPO-34as MTO catalysts. Micropor MesoporMater,1999,29:185~190
    [7] Wilson S, Barger P, The characteristics of SAPO-34which influence the conversion ofmethanol to light olefins. Micropor Mesopor Mater,1999,29:117~126
    [8] Dahl I M, Mostad H, Akporiaye D, et al. Structural and chemical influences on the MTOreaction: a comparison of chabazite and SAPO-34as MTO catalysts. Micropor MesoporMater,1999,29:185~190
    [9] Izadbakhsh A, Farhadi F, Khorasheh F, et al. Effect of SAPO-34's composition on itsphysico-chemical properties and deactivation in MTO process. Appl Catal A: Gen,2009,364:48~56
    [10] Van Niekerk M J, Fletcher J C Q, O’Connor C T. Effect of catalyst modification on theconversion of methanol to light olefins over SAPO-34. Appl Catal A: Gen,1996,138:135~145
    [11] Djieugoue M A, Prakash A M, Kevan L. Catalytic study of methanol-to-olefinsconversionin four smallpore silicoaluminophosphate molecular sieves:Influence of the structural type,nickel incorporation, nickel location, and nickel concentration. J Phys Chem B,2000,104:6452~6461
    [12] Zhu Z D, Hartmann M, Kevan L. Catalytic conversion of methanol to olefins on SAPO-n,CrAPSO-n, and Cr-SAPO-nmolecularsieves.Chem Mater,2000,12:2782~2787
    [13] Mees F D P, Voort P V D, Cool P, et al. Controlled reduction of the acid site density ofSAPO-34molecular sieve by means of silanation and disilanation. J Phys Chem B,2003,107:3161~3167
    [14] Tuel A, Caldarelli S, Meden A, McCusker L B, et al. NMR Characterization and RietveldRefinement of the Structure of Rehydrated AlPO4-34. J Phys Chem B,2000,104:5697~5705
    [15] Poulet G, Tuel A, Sautet P. A Combined Experimental and Theoretical Evaluation of theStructure of Hydrated Microporous Aluminophosphate AlPO4-18. J Phys Chem B,2005,109:22939~22946
    [16] Ma Y F, Li N, Xiang S H. Synthesizing pure AlPO4-41phase from the gels containingH3PO3as the phosphorous source: A new reproducible route. Micropor Mesopor Mater,2005,86:329~334
    [17] Treacy M M J, Higgins J B. Collection of Simulated XRD Powder Patterns for Zeolites, FifthRevised Edition. Elsevier,2007
    [18] Haw J F, Nicholas J B, Xu T, et al. Physical organic chemistry of solid acids: Lessons from insitu NMR and theoretical chemistry. Acc Chem Res,1996,29(6):259-267
    [19] Li S H, Zheng A M, Su Y C, et al. Br nsted/Lewis acid synergy in dealuminated HY zeolite:a combined solid-state NMR and theoretical calculation study. J Am Chem Soc,2007,129:11161~11171
    [20] Fang H J, Zheng A M, Chu Y Y, et al.13C Chemical Shift of Adsorbed Acetone for Measuringthe Acid Strength of Solid Acids: A Theoretical Calculation Study. J Phys Chem C,2010,114:12711~12718
    [21] Huang J, van Vegten N, Jiang Y Y, et al. Tuning Br nsted acidity of flame-derivedsilica-alumina up to zeolitic strength, Angew Chem Int Ed,2010,49:7776~7781
    [22] Hunger M. Br nsted acid sites in zeolites characterized by multi-nuclear solid-state NMRspectroscopy. Catal Rev Sci Eng,1997,39:345~393
    [23] Hunger M, Anderson M W, Ojo A, et al. Study of the geometry and location of the bridgingOH groups in aluminosilicate and silicoaluminophosphate type zeolites using1H MAS NMRsideband analysis and CP/MAS NMR. Microporous Mater.1993,1:17~32
    [24] Jiang Y Y, Huang J, Marthala V R R, et al. In situ MAS NMR-UV/Vis investigation ofH-SAPO-34catalysts partially coked in the methanol-to-olefin conversion undercontinuous-flow conditions and of their regeneration. Micropor Mesopor Mater,2007,105:132~139
    [25] Kirisci I, F rster H, Tasi G, et al. Generation, Characterization, and Transformations ofUnsaturated Carbenium Ions in Zeolites. Chem Rev,1999,99:2085~2114
    [26] Bj rgen M, Bonino F, Kolboe S, et al. Spectroscopic Evidence for a Persistent BenzeniumCation in Zeolite H-Beta. J Am Chem Soc,2003,125:15863~15868
    [27] Baerlocher Ch, Meier W M, Olson D H, Atlas of zeolite framework types,5th revised ed.;Elsevier: Amsterdam, The Netherlands,2007
    [1] Guisnet M, Magnoux P. Coking and deactivation of zeolites. Influence of the Pore Structure.Appl Catal A: Gen,1989,54:1~27
    [2] Chen D, Rebo H P, Moljord K, et al. Influence of Coke Deposition on Selectivity in ZeoliteCatalysis. Ind Eng Chem Res,1997,36:3473-3479
    [3] St cker M. Methanol-to-hydrocarbons: catalytic materials and their behavior. MicroporMesopor Mater,1999,29:3~48
    [4] Froment G F. Single event kinetic modeling of complex catalytic processes. Catal Rev,2005,47:83~124
    [5] Guisnet M, Costa L, Ribeiro F R. Prevention of zeolite deactivation by coking. J Mol CatalA: Chemical,2009,305:69~83
    [6] Schulz H.“Coking” of zeolites during methanol conversion: Basic reactions of the MTO-,MTP-and MTG processes. Catal Today,2010,154:183~194.
    [7] Song W G, Haw J F, Nicholas J B, et al. Methylbenzenes Are the Organic Reaction Centersfor Methanol-to-Olefin Catalysis on HSAPO-34. J Am Chem Soc,2000,122:10726~10727
    [8] Aguayo A T, Campo A E S D, Gayubo A G, et al. Deactivation by coke of a catalyst based ona SAPO-34in the transformation of methanol into olefins. J Chem Technol Biotechnol,1999,74:315~321
    [9] Marchi A J, Froment G F. Catalytic conversion of methanol to light alkenes on SAPOmolecular sieves. Appl Catal A: Gen,1991,71:139~152
    [10] Chen D, Rebo H P, Gr nvold A, et al. Methanol conversion to light olefins over SAPO-34:Kinetic modeling of coke formation. Micropor Mesopor Mater,2000,35-36:121~135
    [11] Qi G Z, Xie Z K, Yang W M, et al. Behaviors of coke deposition on SAPO-34catalyst duringmethanol conversion to light olefins. Fuel Processing Technology,2007,88:437~441
    [12] Tuel A, Caldarelli S, Meden A, et al. NMR Characterization and Rietveld Refinement of theStructure of Rehydrated AlPO4-34. J Phys Chem B,104(2000)5697~5705
    [13] Durgakumari V, Narayanan S, Guczi L. Alkylation of phenol with methanol over AlPO andSAPO molecular sieves. Catal Lett,1990,5:377~384
    [14] Moffat J B, Vetrivel R, Viswanathan B. A model cluster study of the acid-base properties ofphosphate catalysts. J Mol Catal A: Chem,1985,30:171~180
    [15] Tada A. Surface acidity and catalytic activity of high-temperature evacuated AlPO4. MaterChem Phys,1987,17:145~159
    [16] Popova M, Minehev Ch, Kanazirev V. Effect of the different modifications of AlPO-5molecular sieve on its acidity and catalytic properties in methanol conversion tohydrocarbons. React Kinet Catal Lett,1998,63(2):379~384
    [17] Min H K, Park M B, Hong S B. Methanol-to-olefin conversion over H-MCM-22andH-ITQ-2zeolites. J Catal,2010,271:186~194
    [18] H NMR Predictor, Product Version9.08, Advanced Chemistry Development Inc,2006
    [19] Binder H, Anikin A, Kohlstrunk B. Isomerization and Polymerization of Phospholipids withTerminal Diene Groups in Supported Films. J Phys Chem B,1999,103:450~460
    [20] Hunger M, Applications of in situ spectroscopy in zeolite catalysis, Micropor Mesopor Mater,2005,82,241~255
    [21] Petkovic L M, Ginosar D M, Burch K C. Supercritical fluid removal of hydrocarbonsabsorbed on wide-pore zeolite catalysts. J Catal,2005,234(2):328~339
    [22] Bj rgen M, Bonino F, Arstad B, et al. Persistent Methylbenzenium Ions in ProtonatedZeolites: The Required Proton Affinity of the Guest Hydrocarbon. ChemPhysChem,2005,6:232~235
    [23] Park J W, Seo G. IR study on methanol-to-olefin reaction over zeolites with different porestructures and acidities. Appl Catal A: Gen,2009,356:180~188
    [24] Kalinowski H O, Berger S, Braun S,13C NMR-Spektroskopie, Georg Thieme Verlag,Stuttgart, New York,1984, p.136
    [25] C NMR, Version1.1, Advanced Chemistry Development Inc., USA,1995.
    [1] Khandan N, Kazemeini M, Aghaziarati M. Determining an optimum catalyst forliquid p hase dehydration of methanol to dimethyl ether. Appl Catal A: Gen,2008,349:6~12
    [2] Xu M T, Lunsford J H, Goodman W D, et al. Synthesis of dimethyl ether (DME) frommethanol over solid-acid catalysts. Appl Catal A: Gen,1997,149:289~301
    [3] Kang S H, Bae J W, Jun K W, et al. Dimethyl ether synthesis from syngas over thecomposite catalysts of Cu-ZnO-Al2O3/Zr-modified zeolites. Catal Commun,2008,9:2035~2039
    [4] Yaripour F, Schmidt F, Baghaei I, et al. Catalytic dehydration of methanol to dimethyl ether(DME) over solid-acid catalysts. Catal Commun,2005,6:147~152
    [5] Prasad P S S, Bae J W, Kang S H, et al. Single-step synthesis of DME from syngas onCu-ZnO-Al2O3/zeolite bifunctional catalysts: The superiority of ferrierite over the otherzeolites. Fuel Process Technol,2008,9:1281-1286
    [6] Eren J, Sierra I, Olazar M, et al. Deactivation of a CuO-ZnO-Al2O3/γ-Al2O3Catalyst in theSynthesis of Dimethyl Ether. Ind Eng Chem Res,2008,47:2238~2247
    [7] Raoof F, Taghizadeh M, Eliassi A, et al. Effects of temperature and feed composition oncatalytic dehydration of methanol to dimethyl ether over γ-alumina. Fuel,2008,87:2967~2971
    [8] Kim S D, Baek S C, Lee Y J, et al. Effect of γ-alumina content on catalytic performance ofmodified ZSM-5for dehydration of crude methanol to dimethyl ether. Appl Catal A: Gen,2006,309:139~143
    [9] Lee Y J, Kim J M, Bae J W, et al. Phosphorus induced hydrothermal stability and enhancedcatalytic activity of ZSM-5in methanol to DME conversion. Fuel,2009,88:1915~1921
    [10] Vishwanathan V, Jun K W, Kim J W, et al. Vapour phase dehydration of crude methanol todimethyl ether over Na-modified H-ZSM-5catalysts. Appl Catal A: Gen,2004,276:251~255
    [11] Tynj l P, Pakkanen T T. Modification of ZSM-5zeolite with trimethyl phosphite part1.Structure and acidity. Micropor Mesopor Mater,1998,20:363~369
    [12] Yaripour F, Baghaei F, Schmidt I, et al. Catalytic dehydration of methanol to dimethyl ether(DME) over solid-acid catalysts. Catal Commun,6(2005)147–152
    [13] Royaee S J, Falamaki C, Sohrabi M, et al. A new Langmuir–Hinshelwood mechanism for themethanol to dimethylether dehydration reaction over clinoptilolite-zeolite catalyst. ApplCatal A: Gen,2008,338:114~120
    [14] Baek S C, Lee Y J, Jun K W, et al. Influence of Catalytic Functionalities of Zeolites onProduct Selectivities in Methanol Conversion. Energy&Fuels,2009,23:593~598
    [15] Takeguchi T, Yanagisawa K I, Inui T, et al. Effect of the property of solid acid uponsyngas-to-dimethyl ether conversion on the hybrid catalysts composed of Cu-Zn-Ga andsolid acids. Appl Catal A: Gen,2000,192:201~209
    [16] Fu Y C, Hong T, Chen J P, et al. Surface acidity and the dehydration of methanol to dimethylether. Thermochimica Acta,2005,434:22~26
    [17] Pop G, Bozga G, Ganea R, et al. Methanol Conversion to Dimethyl Ether over H-SAPO-34Catalyst. Ind Eng Chem Res,2009,48:7065~7071
    [18] Lertjiamratn K, Praserthdam P, Arai M, et al. Effects of hydrothermal treatment on thecharacteristics and catalytic properties of AlPO4catalyst in the dehydration of methanol todimethyl ether. Appl Catal A: Gen,2010,378:119~123
    [19] Flanigen E M, Lok B N, Patton R L, et al. Aluminophosphate molecular sieves and theperiodic table. Pure Appl Chem,58(1986)1351~1358
    [20] Ma Y F, Li N, Xiang S H. Synthesizing pure AlPO4-41phase from the gels containingH3PO3as the phosphorous source: A new reproducible route. Micropor Mesopor Mater,2005,86:329~334
    [21] Treacy M M J, Higgins J B. Collection of Simulated XRD Powder Patterns for Zeolites, FifthRevised Edition. Elsevier,2007
    [22] Niwa M, Katada N, Sawa M, et al. Temperature-Programmed Desorption of Ammonia withReadsorption Based on the Derived Theoretical Equation. J Phys Chem,1995,99(21):8812~8816
    [23] Katada N, Igi H, Kim J H, et al. Determination of the Acidic Properties of Zeolite byTheoretical Analysis of Temperature-Programmed Desorption of Ammonia Based onAdsorption Equilibrium. J Phys Chem B,1997,101:5969~5977
    [1] Guisnet M, Magnoux P. Coking and deactivation of zeolites. Influence of the Pore Structure.Appl Catal A: Gen,1989,54:1~27
    [2] Chen D, Rebo H P, Moljord K, et al. Influence of Coke Deposition on Selectivity in ZeoliteCatalysis. Ind Eng Chem Res,1997,36:3473-3479
    [3] St cker M. Methanol-to-hydrocarbons: catalytic materials and their behavior. MicroporMesopor Mater,1999,29:3~48
    [4] Froment G F. Single event kinetic modeling of complex catalytic processes. Catal Rev,2005,47:83~124
    [5] Marchi A J, Froment G F. Catalytic conversion of methanol to light alkenes on SAPOmolecular sieves. Appl Catal A: Gen,1991,71:139~152
    [6] Chen D, Rebo H P, Gr nvold A, et al. Methanol conversion to light olefins over SAPO-34:Kinetic modeling of coke formation. Micropor Mesopor Mater,2000,35-36:121~135
    [7] Qi G Z, Xie Z K, Yang W M, et al. Behaviors of coke deposition on SAPO-34catalystduring methanol conversion to light olefins. Fuel Processing Technology,2007,88:437~441
    [8] Lucas A, Canizares P, Duran A, et al. Coke formation, location, nature andregeneration on dealuminated HZSM-5type zeolites. Appl Catal A: Gen,1997,156:299~317
    [9] Guisnet M, Costa L, Ribeiro F R. Prevention of zeolite deactivation by coking. J Mol CatalA: Chem,2009,305:69~83
    [10] K rger J, Ruthven D M. Diffusion in Zeolites and Other Microporous Solids; Wiley: NewYork,1992
    [11] K rger J. Diffusion Measurements by NMR Techniques. In Molecular Sieves, Adsorption andDiffusion; Karge H G., Weitkamp J, Eds.; Springer-Verlag: Berlin,2008,7:85~113
    [12] B r N K, K rger J, Pfeifer H, et al. Diffusion anisotropy in natural chabazite. MicroporMesopor Mater1998,22:289~295
    [13] Hedin N, DeMartin G J, Roth W J, et al. PFG NMR self-diffusion of small hydrocarbons inhigh silica DDR, CHA and LTA structures. Micropor Mesopor Mater,2008,109:327~334
    [14] Einstein A. Investigations on the Theory of Brownian Movement; Dover Publications:Mineola, NY,1926,119
    [15] Treacy M M J, Higgins J B. Collection of Simulated XRD Powder Patterns for Zeolites, FifthRevised Edition. Elsevier,2007
    [16] Dahl I M, Kolboe S. On the Reaction Mechanism for Hydrocarbon Formation from Methanolover SAPO-34: I. Isotopic Labeling Studies of the Co-Reaction of Ethene and Methanol. JCatal,1994,149:458~464
    [17] Dahl I M, Kolboe S. On the Reaction Mechanism for Hydrocarbon Formation from Methanolover SAPO-34:2. Isotopic Labeling Studies of the Co-Reaction of Ethene and Methanol. JCatal,1996,161:304~309
    [18] Arstad B, Kolboe S. The Reactivity of Molecules Trapped within the SAPO-34Cavities inthe Methanol-to-Hydrocarbons Reaction. J Am Chem Soc,2001,123:8137~8138
    [19] Haw J F, Song W G, Marcus D M, et al. The mechanism of methanol to hydrocarboncatalysis. Acc Chem Res,2003,36:317~326
    [20] Olsbye U, Bj rgen M, Svelle S, et al. Mechanistic insight into the methanol-to-hydrocarbonsreaction. Catal Today,2005,106:108~111
    [21] Jiang Y Y, Huang J, Marthala V R R, et al. In situ MAS NMR-UV/Vis investigation ofH-SAPO-34catalysts partially coked in the methanol-to-olefin conversion undercontinuous-flow conditions and of their regeneration. Microporous Mesoporous Mater,2007,105:132~139
    [22] Kirisci I, F rster H, Tasi G, et al. Generation, Characterization, and Transformations ofUnsaturated Carbenium Ions in Zeolites. Chem Rev,1999,99:2085~2114
    [23] Bj rgen M, Bonino F, Kolboe S, et al. Spectroscopic Evidence for a Persistent BenzeniumCation in Zeolite H-Beta. J Am Chem Soc,2003,125:15863~15868
    [24] Kalinowski H O, Berger S, Braun S.13C NMR Spektroskopie; Thieme Verlag: Stuttgart,1984; p134~142
    [25] Friebolin H. Ein-und zweidimensionale NMR-Spektroskopie, Wiley-VCH, Weinheim,1999
    [26] H NMR Predictor, Product Version9.08, Advanced Chemistry Development Inc.,2006
    [27] Caro J, Bülow M, Schirmer W, et al. Microdynamics of methane, ethane and propane inZSM-5type zeolites. J Chem Soc Faraday Trans,1,1985,81:2541~2550
    [28] Chmelik C, Freude D, Bux H, et al. Ethene/ethane mixture diffusion in the MOF sieve ZIF-8studied by MAS PFG NMR diffusometry. Micropor Mesopor Mater,2011,147,135-141

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700