用户名: 密码: 验证码:
microRNA相关的生物信息学与进化分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
microRNA (miRNA)是一类长度大约为22个核苷酸左右的内源性非编码RNA分子,通过与mRNA互补结合抑制蛋白翻译或导致mRNA降解,干扰mRNA指导蛋白合成过程,从而负向调节蛋白编码基因的表达。作为一种重要的基因表达调控因子,miRNA在多种基因表达调控途径中发挥重要作用,调节胚胎发育、细胞分裂与分化、细胞凋亡、造血作用以及癌症发生在内的多个细胞过程。目前在人类基因组中已1000条miRNA基因。对于miRNA分子特点、转录机制、进化以及对已成为分子生物学与生物信息学研究的热点。在本文中,我们利用生物信息学及统计学方法,对包括癌症相关的miRNA筛选、miRNA对靶基因的表达调控模式、内含子编码的miRNA基因特征及miRNA基因家族的进化等问题进行了初步研究。
     miRNA与人类疾病关系是目前生物医学领域的一个研究热点,越来越多的证据表明,多种miRNA的突变或表达异常可能与癌症的发生密切相关。因此,miRNA可能成为一种用于癌症诊断与治疗的潜在分子标记。为了整合已有的癌症相关miRNA资源,我们从Gene Expression Omnibus数据库中搜索出miRNA在癌症中的表达谱数据,并利用芯片显著性分析方法挖掘出在miRNA在癌症组织中差异表达的信息,最终获得607个癌症相关的miRNA。我们同时设计了一个界面友好的数据库dbDEMC (a DataBase of Differentially Expressed miRNAs in human Cancers),以方便用户访问及获取相关信息。挖掘癌症相关miRNA为癌症相关研究提供了新的潜在分子靶标。
     miRNA对于靶基因的调控模式是另一个研究热点,miRNA对于靶基因可能存在两种不同的调控模式,即调节靶基因平均表达水平和降低靶基因表达波动性。我们从人类全基因组表达数据出发,首先从Gene Expression Omnibus数据库中选取多套基于HGU133 plus2.0芯片平台的蛋白编码基因表达谱,通过Meta-分析方法筛选出数百个稳定表达基因及波动表达基因。在此基础上利用miRNA靶基因预测软件分析了miRNA对两组基因的调控偏好性,分析表明miRNA更倾向于调控稳定表达基因,即miRNA可增强靶基因表达稳定性。此外,对于转录因子对靶基因的调节作用分析表明,转录因子和miRNA对于基因表达稳定性具有相反的效应。这一研究对揭示基因表达调控机制差异背后的内在机制提供了新的线索。
     已有研究表明,miRNA基因多数位于蛋白编码基因间区域,独立转录而行使功能。而某些miRNA基因可能位于蛋白编码基因的内含子内,其转录过程可能利用宿主基因的某些调控元件,因而表达状况可能与宿主基因存在一定关联。内含子编码的miRNA基因由于其表达调控的特殊性而越来越引起人们的兴趣。我们对编码miRNA的宿主基因特征进行了分析,发现miRNA宿主基因长度普遍高于非宿主基因,其原因可能为宿主基因内含子与外显子数量的显著增加。此外,对内含子编码的miRNA基因的系统发育分布分析后发现,其数量在脊椎动物,真兽类哺乳动物及灵长类动物形成过程中出现过三次爆发性增长。
     最后,我们以一个脊椎动物中特有的miRNA基因家族miR一181家族为例,分析了高等动物基因组中miRNA基因家族的起源与进化历程。该基因家族在低等尾索动物中只存在单基因拷贝,而在高等脊椎动物基因组中多存在六个拷贝。我们发现,该miRNA基因家族在脊椎动物基因组中由祖先基因经历两次整体复制及一次片段复制而成。对该基因家族调控的靶基因功能分析后发现,该miRNA调控的靶基因功能主要涉及基因表达调控、细胞间通讯、细胞生长、分裂、增殖等方面。
microRNAs (miRNAs) are endogenously expressed small noncoding RNAs with transcripts ranging between 18-23 nt in length, they can regulate the expression of protein-coding genes through translational inhibition or processing mRNAs by base pairing to mRNAs 3'-untranslated regions (3'-UTRs). As an important kind of gene expression regulator, profound influences of miRNAs on diverse regulatory pathways, such as embryo development, cell division, differentiation, apoptosis, hematopoiesis and cancer development, are widely recognized. At this time, more than one thousand miRNA genes have been identified in the human genome. The properties, expression mechanism, evolution miRNAs have turned into the hotspots of molecular biology and bioinformatics. In this analysis, we mainly concentrate on the cancer related miRNAs, expression regulation mode of the target genes, intronic miRNAs and evolution of specific miRNA family, carried out some initial research by bioinformatic and statistical tools.
     Recently, more and more evidence suggests that aberrant expression of miRNAs may contribute to many types of human diseases, including cancer. miRNAs can be a novel kind of biomarker for the digonesis and treatment. For integrate the expression information about cancer related miRNAs, we first searched for the miRNA expression profiles in various kinds of human cancers in the Gene Expression Omnibus (GEO) database, and then used the method of Significance Analysis of Microarrays to screen the differentially expressed miRNAs in human cancers. Totally 607 cancer related miRNAs were finally identified. We also designed and constructed a database, called the dbDEMC, a database of differentially expressed miRNAs, to explore aberrantly expressed miRNAs among different cancers. This database is expected to be a valuable source for identification of cancer-related miRNAs, thereby helping with the improvement of classification, diagnosis and treatment of human cancers.
     The expression mode of miRNAs on target genes turned out to be another hotspot of bioinformatics. It is suggests that there are two different kind of gene expression mode of microRNAs:adjust the average expression level and/or reduce the fluctuation of target genes. We first screened out more than one hundred expression profiles based on the HGU133 plus2.0 microarray platform in the GEO database, and then filtered out different group of genes that have different expression mode, including the steady expressed genes and fluctuate genes, the preferential regulation of miRNA regulation on these genes was analyzed. We found that miRNAs preferentially regulate the steady expressed genes, which suggests they can enhance the stability of the expression of target genes. Further more, we found opposite effect between transcription factors and miRNAs. This analysis provide novel clue for understanding the mechanism of gene expression regulation.
     Most miRNAs genes locate in the intergenetic region, whereas some of them locate in the intronic region of protein coding genes. Their transcription may depend on the transcriptional elements of the host genes. Here we also analyzed the characteristics of the host gene of miRNAs. We found that the lengths of host genes are larger than the non-host genes, this is due to the increased number of their introns and exons. The phylogenetic distribution analysis of the intronic miRNAs among various species demonstrated that intronic miRNAs genes mainly emerged at three different time point, including the origin of vertebrate, eutheria and primate.
     At last, we use a vertebrate specific miRNA family, the miR-181 as an example, to analysis the origin and evolution of miRNA gene families in vertebrate genomes. There is only one copy of the miR-181 family was found in the urochordata genome, whereas there are six copies of this family in the vertebrate genome. We found that it is the whole genome duplication for twice and tandem duplication between them that form this family in the vertebrate genome. The functional analysis of the target genes of this family demonstrates that they mainly involved in the expression regulation, inter-cellular signaling, cell growth, division and proliferation.
引文
[1]陈芳.殷勤伟.调控基因表达的miRNA [J]科学通报,2005,50(13):1289-99.
    [2]LEE R C, FEINBAUM R L, AMBROS V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 [J]. Cell,1993, 75(5):843-54.
    [3]REINHART B J, SLACK F J, BASSON M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans [J]. Nature,2000, 403(6772):901-6.
    [4]GRIFFITHS-JONES S, SAINI H K, VAN DONGEN S, et al. miRBase:tools for microRNA genomics [J]. Nucleic Acids Res,2008,36(Database issue):D154-8.
    [5]KOZOMARA A, GRIFFITHS-JONES S. miRBase:integrating microRNA annotation and deep-sequencing data [J]. Nucleic Acids Res,39(Database issue): D152-7.
    [6]AMBROS V. The functions of animal microRNAs [J]. Nature,2004,431(7006): 350-5.
    [7]KLOOSTERMAN W P, PLASTERK R H. The diverse functions of microRNAs in animal development and disease [J]. Dev Cell,2006,11(4):441-50.
    [8]ALVAREZ-GARCIA I, MISKA E A. MicroRNA functions in animal development and human disease [J]. Development,2005.132(21):4653-62.
    [9]杨桢,黄登宇.病毒microRNA研究进展[J].生物物理学报,2007,23(1):1-10.
    [10]LEE Y, KIM M, HAN J, et al. MicroRNA genes are transcribed by RNA polymerase II [J]. Embo J,2004,23(20):4051-60.
    [11]BORCHERT G M, LANIER W, DAVIDSON B L. RNA polymerase Ⅲ transcribes human microRNAs [J]. Nat Struct Mol Biol,2006,13(12):1097-101.
    [12]CAI X, HAGEDORN C H, CULLEN B R. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs [J]. Rna. 2004.10(12):1957-66.
    [13]HAN J, LEE Y, YEOM K H, et al. The Drosha-DGCR8 complex in primary microRNA processing [J]. Genes Dev,2004,18(24):3016-27.
    [14]LEE Y, AHN C. HAN J, et al. The nuclear RNase Ⅲ Drosha initiates microRNA processing [J]. Nature.2003,425(6956):415-9.
    [15]BOHNSACK M T, CZAPLINSKI K, GORLICH D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs [J]. Rna,2004,10(2):185-91.
    [16]KIM V N. MicroRNA precursors in motion:exportin-5 mediates their nuclear export [J]. Trends Cell Biol,2004,14(4):156-9.
    [17]YI R, QIN Y, MACARA I G, et al. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs [J]. Genes Dev,2003,17(24):3011-6.
    [18]CHENDRIMADA T P, GREGORY R I, KUMARASWAMY E, et al. TRBP recruits the Dicer complex to Ago2 for micro RNA processing and gene silencing [J]. Nature,2005,436(7051):740-4.
    [19]HUTVAGNER G, MCLACHLAN J, PASQUINELLI A E, et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA [J]. Science,2001,293(5531):834-8.
    [20]HAMMOND S M, BERNSTEIN E, BEACH D, et al. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells [J]. Nature,2000, 404(6775):293-6.
    [21]MOURELATOS Z, DOSTIE J, PAUSHKIN S, et al. miRNPs:a novel class of ribonucleoproteins containing numerous micro RNAs [J]. Genes Dev,2002,16(6): 720-8.
    [22]李伟.金由辛miRNA的生物合成过程[J].生物化学与生物物理进展,2005,32(8):707-11.
    [23]李佩旺,卢向阳,李昌珠,et al植物microRNA研究进展[J].遗传,2007,29(3):283-88.
    [24]KURIHARA Y, WATANABE Y. Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions [J]. Proc Natl Acad Sci U S A,2004,101(34):12753-8.
    [25]PARK M Y, WU G, GONZALEZ-SULSER A, et al. Nuclear processing and export of microRNAs in Arabidopsis [J]. Proc Natl Acad Sci U S A,2005,102(10): 3691-6.
    [26]LEWIS B P, SHIH I H, JONES-RHOADES M W, et al. Prediction of mammalian microRNA targets [J]. Cell,2003,115(7):787-98.
    [27]STARK A, BRENNECKE J, RUSSELL R B, et al. Identification of Drosophila MicroRNA targets [J]. PLoS Biol,2003,1(3):E60.
    [28]DOENCH J G, PETERSEN C P. SHARP P A. siRNAs can function as miRNAs [J]. Genes Dev,2003,17(4):438-42.
    [29]HUTVAGNER G, ZAMORE P D. A microRNA in a multiple-turnover RNAi enzyme complex [J]. Science,2002.297(5589):2056-60.
    [30]ZENG Y, YI R, CULLEN B R. MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms [J]. Proc Natl Acad Sci U S A,2003. 100(17):9779-84.
    [31]BAULCOMBE D. DNA events. An RNA microcosm [J]. Science,2002, 297(5589):2002-3.
    [32]YEKTA S, SHIH I H, BARTEL D P. MicroRNA-directed cleavage of HOXB8 mRNA [J]. Science,2004,304(5670):594-6.
    [33]LIM L P, LAU N C, GARRETT-ENGELE P, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs [J]. Nature, 2005,433(7027):769-73.
    [34]LLAVE C, XIE Z, KASSCHAU K D, et al. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA [J]. Science,2002,297(5589): 2053-6.
    [35]AMBROS V. microRNAs:tiny regulators with great potential [J]. Cell,2001, 107(7):823-6.
    [36]HE L, THOMSON J M, HEMANN M T, et al. A microRNA polycistron as a potential human oncogene [J]. Nature,2005,435(7043):828-33.
    [37]OTA A, TAGAWA H, KARNAN S, et al. Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma [J]. Cancer Res,2004,64(9):3087-95.
    [38]AMBROS V, BARTEL B, BARTEL D P, et al. A uniform system for microRNA annotation[J]. Rna,2003,9(3):277-9.
    [39]GRIFFITHS-JONES S. The microRNA Registry [J]. Nucleic Acids Res,2004, 32(Database issue):D109-11.
    [40]相丽,葛志强miRNA功能的研究进展[J].生物学杂志,2007,24(4):821-24.
    [41]CHEN X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development [J]. Science,2004,303(5666):2022-5.
    [42]AIDA M, ISHIDA T. FUKAKI H, et al. Genes involved in organ separation in Arabidopsis:an analysis of the cup-shaped cotyledon mutant [J]. Plant Cell,1997, 9(6):841-57.
    [43]MCCONNELL J R, EMERY J, ESHED Y, et al. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots [J]. Nature,2001,411(6838): 709-13.
    [44]JIA X, WANG W X, REN L, et al. Differential and dynamic regulation of miR398 in response to ABA and salt stress in Populus tremula and Arabidopsis thaliana [J]. Plant Mol Biol,2009,71(1-2):51-9.
    [45]ZHANG X, ZOU Z, GONG P, et al. Over-expression of microRNA169 confers enhanced drought tolerance to tomato [J]. Biotechnol Lett,33(2):403-9.
    [46]段成国,王春晗,郭惠珊microRNA对植物生长发育和病毒侵染的调控[J].科学通报,2006,54(1):369-77.
    [47]JOHNSTON R J, HOBERT O. A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans [J]. Nature,2003,426(6968):845-9.
    [48]MELTON C, JUDSON R L, BLELLOCH R. Opposing microRNA families regulate self-renewal in mouse embryonic stem cells [J]. Nature,463(7281):621-6.
    [49]ZHANG Y, CHAO T, LI R, et al. MicroRNA-128 inhibits glioma cells proliferation by targeting transcription factor E2F3a [J]. J Mol Med,2009,87(1): 43-51.
    [50]FISH J E, SRIVASTAVA D. MicroRNAs:opening a new vein in angiogenesis research [J]. Sci Signal,2009,2(52):pel.
    [51]YU Z, RAABE T, HECHT N B. MicroRNA Mirn122a reduces expression of the posttranscriptionally regulated germ cell transition protein 2 (Tnp2) messenger RNA (mRNA) by mRNA cleavage [J]. Biol Reprod,2005,73(3):427-33.
    [52]TESFAYE D, WORKU D, RINGS F, et al. Identification and expression profiling of microRNAs during bovine oocyte maturation using heterologous approach [J]. Mol Reprod Dev,2009,76(7):665-77.
    [53]BRENNECKE J, HIPFNER D R, STARK A, et al. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila [J]. Cell,2003,113(1):25-36.
    [54]LI Y, XU X, LIANG Y, et al. miR-375 enhances palmitate-induced lipoapoptosis in insulin-secreting NIT-1 cells by repressing myotrophin (V1) protein expression [J]. Int J Clin Exp Pathol,3(3):254-64.
    [55]GIRALDEZ A J, CINALLI R M, GLASNER M E, et al. MicroRNAs regulate brain morphogenesis in zebrafish [J]. Science,2005,308(5723):833-8.
    [56]XIE Z, KASSCHAU K D, CARRINGTON J C. Negative feedback regulation of Dicer-Like 1 in Arabidopsis by microRNA-guided mRNA degradation [J]. Curr Biol, 2003,13(9):784-9.
    [57]VAUCHERET H. VAZQUEZ F, CRETE P. et al. The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development [J]. Genes Dev,2004,18(10):1187-97.
    [58]LAGOS-QUINTANA M, RAUHUT R. LENDECKEL W, et al. Identification of novel genes coding for small expressed RNAs [J]. Science,2001.294(5543):853-8.
    [59]LAU N C, LIM L P, WEINSTEIN E G, et al. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans [J]. Science,2001, 294(5543):858-62.
    [60]LEE R C, AMBROS V. An extensive class of small RNAs in Caenorhabditis elegans [J]. Science,2001,294(5543):862-4.
    [61]ARAVIN A A, LAGOS-QUINTANA M, YALCIN A, et al. The small RNA profile during Drosophila melanogaster development [J]. Dev Cell,2003,5(2): 337-50.
    [62]AMBROS V, LEE R C, LAVANWAY A, et al. MicroRNAs and other tiny endogenous RNAs in C. elegans [J]. Curr Biol,2003,13(10):807-18.
    [63]HOUBAVIY H B, MURRAY M F, SHARP P A. Embryonic stem cell-specific MicroRNAs [J]. Dev Cell,2003,5(2):351-8.
    [64]DOSTIE J, MOURELATOS Z, YANG M, et al. Numerous microRNPs in neuronal cells containing novel microRNAs [J]. Rna,2003,9(2):180-6.
    [65]KIM J, KRICHEVSKY A, GRAD Y, et al. Identification of many microRNAs that copurify with polyribosomes in mammalian neurons [J]. Proc Natl Acad Sci U S A,2004,101(1):360-5.
    [66]WANG J F, ZHOU H, CHEN Y Q, et al. Identification of 20 microRNAs from Oryza sativa [J]. Nucleic Acids Res,2004,32(5):1688-95.
    [67]PFEFFER S, ZAVOLAN M, GRASSER F A, et al. Identification of virus-encoded microRNAs[J]. Science,2004,304(5671):734-6.
    [68]SEMPERE L F. FREEMANTLE S, PITHA-ROWE I, et al. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation [J]. Genome Biol,2004. 5(3):R13.
    [69]JIANG J, LEE E J. GUSEV Y et al. Real-time expression profiling of microRNA precursors in human cancer cell lines [J]. Nucleic Acids Res.2005,33(17):5394-403.
    [70]SCHMITTGEN T D, JIANG J, LIU Q, et al. A high-throughput method to monitor the expression of microRNA precursors [J]. Nucleic Acids Res,2004,32(4): e43.
    [71]JUAREZ M T, KUI J S. THOMAS J, et al. microRNA-mediated repression of rolled leafl specifies maize leaf polarity [J]. Nature,2004,428(6978):84-8.
    [72]NEELY L A, PATEL S, GARVER J, et al. A single-molecule method for the quantitation of microRNA gene expression [J]. Nat Methods,2006,3(1):41-6.
    [73]KRICHEVSKY A M, KING K S, DONAHUE C P, et al. A microRNA array reveals extensive regulation of microRNAs during brain development [J]. Rna,2003, 9(10):1274-81.
    [74]MISKA E A, ALVAREZ-SAAVEDRA E, TOWNSEND M, et al. Microarray analysis of microRNA expression in the developing mammalian brain [J]. Genome Biol,2004,5(9):R68.
    [75]LIM L P, GLASNER M E, YEKTA S, et al. Vertebrate microRNA genes [J]. Science,2003,299(5612):1540.
    [76]LIM L P, LAU N C, WEINSTEIN E G, et al. The microRNAs of Caenorhabditis elegans [J]. Genes Dev,2003,17(8):991-1008.
    [77]LAI E C, TOMANCAK P, WILLIAMS R W, et al. Computational identification of Drosophila microRNA genes [J]. Genome Biol,2003,4(7):R42.
    [78]HUANG T H, FAN B, ROTHSCHILD M F, et al. MiRFinder:an improved approach and software implementation for genome-wide fast microRNA precursor scans [J]. BMC Bioinformatics,2007,8(341.
    [79]WANG X, ZHANG J, LI F, et al. MicroRNA identification based on sequence and structure alignment [J]. Bioinformatics,2005,21(18):3610-4.
    [80]ADAI A, JOHNSON C, MLOTSHWA S, et al. Computational prediction of miRNAs in Arabidopsis thaliana [J]. Genome Res,2005,15(1):78-91.
    [81]ENRIGHT A J, JOHN B, GAUL U, et al. MicroRNA targets in Drosophila [J]. Genome Biol,2003,5(1):R1.
    [82]LAI E C. Micro RNAs are complementary to 3'UTR sequence motifs that mediate negative post-transcriptional regulation [J]. Nat Genet,2002,30(4):363-4.
    [83]LEWIS B P, BURGE C B, BARTEL D P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets [J]. Cell,2005,120(1):15-20.
    [84]REHMSMEIER M, STEFFEN P, HOCHSMANN M, et al. Fast and effective prediction of microRNA/target duplexes [J]. Rna,2004,10(10):1507-17.
    [85]KLOOSTERMAN W P, WIENHOLDS E, KETTING R F, et al. Substrate requirements for let-7 function in the developing zebrafish embryo [J]. Nucleic Acids Res,2004.32(21):6284-91.
    [86]JOHN B, ENRIGHT A J, ARAVIN A, et al. Human MicroRNA targets [J]. PLoS Biol,2004,2(11):e363.
    [87]KREK A, GRUN D, POY M N, et al. Combinatorial microRNA target predictions [J]. Nat Genet,2005,37(5):495-500.
    [88]KIRIAKIDOU M, NELSON P T, KOURANOV A, et al. A combined computational-experimental approach predicts human microRNA targets [J]. Genes Dev,2004,18(10):1165-78.
    [89]MIRANDA K C, HUYNH T, TAY Y, et al. A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes [J]. Cell,2006,126(6):1203-17.
    [90]姚绛,罗玉萍,李思光.与肿瘤相关的MicroRNA研究进展[J].生物技术通报,2008,6(52-5.
    [91]AQEILAN R I, CALIN G A, CROCE C M. miR-15a and miR-16-1 in cancer: discovery, function and future perspectives [J]. Cell Death Differ,17(2):215-20.
    [92]TAKAMIZAWA J, KONISHI H, YANAGISAWA K, et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival [J]. Cancer Res,2004,64(11):3753-6.
    [93]MICHAEL M Z, SM O C, VAN HOLST PELLEKAAN N G, et al. Reduced accumulation of specific microRNAs in colorectal neoplasia [J]. Mol Cancer Res, 2003,1(12):882-91.
    [94]EIS P S, TAM W, SUN L, et al. Accumulation of miR-155 and BIC RNA in human B cell lymphomas [J]. Proc Natl Acad Sci U S A,2005,102(10):3627-32.
    [95]HAYASHITA Y. OSADA H, TATEMATSU Y, et al. A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation [J]. Cancer Res,2005,65(21):9628-32.
    [96]VENTURINI L, BATTMER K, CASTOLDI M, et al. Expression of the miR-17-92 polycistron in chronic myeloid leukemia (CML) CD34+ cells [J]. Blood, 2007,109(10):4399-405.
    [97]YANAIHARAN, CAPLEN N. BOWMAN E. et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis [J]. Cancer Cell,2006,9(3):189-98.
    [98]JOHNSON S M. GROSSHANS H, SHINGARA J, et al. RAS is regulated by the let-7 microRNA family [J]. Cell,2005,120(5):635-47.
    [99]CHAN J A, KRICHEVSKY A M, KOSIK K S. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells [J]. Cancer Res,2005,65(14):6029-33.
    [100]IORIO M V, FERRACIN M, LIU C G, et al. MicroRNA gene expression deregulation in human breast cancer [J]. Cancer Res,2005,65(16):7065-70.
    [101]IORIO M V, CASALINI P, PIOVAN C, et al. microRNA-205 regulates HER3 in human breast cancer [J]. Cancer Res,2009,69(6):2195-200.
    [102]VOLINIA S, CALIN G A, LIU C G, et al. A microRNA expression signature of human solid tumors defines cancer gene targets [J]. Proc Natl Acad Sci U S A, 2006,103(7):2257-61.
    [103]LI T, LI D, SHA J, et al. MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells [J]. Biochem Biophys Res Commun,2009,383(3):280-5.
    [104]TSAI W C, HSU P W, LAI T C, et al. MicroRNA-122, a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma [J]. Hepatology,2009,49(5):1571-82.
    [105]ZANETTE D L, RIVADAVIA F, MOLFETTA G A, et al. miRNA expression profiles in chronic lymphocytic and acute lymphocytic leukemia [J]. Braz J Med Biol Res,2007,40(11):1435-40.
    [106]MARCUCCI G, RADMACHER M D, MAHARRY K, et al. MicroRNA expression in cytogenetically normal acute myeloid leukemia [J]. N Engl J Med,2008, 358(18):1919-28.
    [107]ISKEN F, STEFFEN B, MERK S, et al. Identification of acute myeloid leukaemia associated microRNA expression patterns [J]. Br J Haematol,2008,140(2): 153-61.
    [108]KARUBE Y, TANAKA H, OSADA H, et al. Reduced expression of Dicer associated with poor prognosis in lung cancer patients [J]. Cancer Sci,2005,96(2): 111-5.
    [109]BLOOMSTON M, FRANKEL W L. PETROCCA F, et al. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis [J]. Jama,2007,297(17):1901-8.
    [110]SOOD P, KREK A, ZAVOLAN M, et al. Cell-type-specific signatures of microRNAs on target mRNA expression [J]. Proc Natl Acad Sci U S A,2006,103(8): 2746-51.
    [111]FARH K K. GRIMSON A, JAN C, et al. The widespread impact of mammalian MicroRNAs on mRNA repression and evolution [J]. Science,2005, 310(5755):1817-21.
    [112]YU Z, JIAN Z, SHEN S H, et al. Global analysis of microRNA target gene expression reveals that miRNA targets are lower expressed in mature mouse and Drosophila tissues than in the embryos [J]. Nucleic Acids Res,2007,35(1):152-64.
    [113]张雁峰,张锐,宿兵MicroRNA基因簇的多样性与进化[J].中国科学C辑:生命科学,2009,39(1):114-20.
    [114]GRIMSON A, SRIVASTAVA M, FAHEY B, et al. Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals [J]. Nature,2008, 455(7217):1193-7.
    [115]ALTUVIA Y, LANDGRAF P, LITHWICK G, et al. Clustering and conservation patterns of human microRNAs [J]. Nucleic Acids Res,2005,33(8): 2697-706.
    [116]YU J, WANG F, YANG G H, et al. Human microRNA clusters:genomic organization and expression profile in leukemia cell lines [J]. Biochem Biophys Res Commun,2006,349(1):59-68.
    [117]FORBES S A, TANG G, BINDAL N, et al. COSMIC (the Catalogue of Somatic Mutations in Cancer):a resource to investigate acquired mutations in human cancer [J]. Nucleic Acids Res,38(Database issue):D652-7.
    [118]ELFILALI A, LAIR S, VERBEKE C, et al. ITTACA:a new database for integrated tumor transcriptome array and clinical data analysis [J]. Nucleic Acids Res, 2006,34(Database issue):D613-6.
    [119]WANG X, ZHAO H, XU Q, et al. HPtaa database-potential target genes for clinical diagnosis and immunotherapy of human carcinoma [J]. Nucleic Acids Res, 2006,34(Database issue):D607-12.
    [120]LI H, HE Y, DING G, et al. dbDEPC:a database of differentially expressed proteins in human cancers [J]. Nucleic Acids Res,38(Database issue):D658-64.
    [121]CALIN G A, DUMITRU C D, SHIMIZU M, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia [J]. Proc Natl Acad Sci U S A,2002.99(24):15524-9.
    [122]O'DONNELL K A, WENTZEL E A, ZELLER K I. et al. c-Myc-regulated microRNAs modulate E2F1 expression [J]. Nature,2005.435(7043):839-43.
    [123]KUTAY H, BAI S, DATTA J, et al. Downregulation of miR-122 in the rodent and human hepatocellular carcinomas [J]. J Cell Biochem,2006,99(3):671-8.
    [124]CALIN G A, SEVIGNANI C, DUMITRU C D, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers [J]. Proc Natl Acad Sci U S A,2004,101(9):2999-3004.
    [125]LU J, GETZ G, MISKA E A, et al. MicroRNA expression profiles classify human cancers [J]. Nature,2005,435(7043):834-8.
    [126]BETEL D, WILSON M, GABOW A, et al. The microRNA.org resource: targets and expression [J]. Nucleic Acids Res,2008,36(Database issue):D149-53.
    [127]NAM S, KIM B, SHIN S, et al. miRGator:an integrated system for functional annotation of microRNAs [J]. Nucleic Acids Res,2008,36(Database issue): D159-64.
    [128]JIANG Q, WANG Y, HAO Y, et al. miR2Disease:a manually curated database for microRNA deregulation in human disease [J]. Nucleic Acids Res,2009, 37(Database issue):D98-104.
    [129]LU M, ZHANG Q, DENG M, et al. An analysis of human microRNA and disease associations [J]. PLoS One,2008,3(10):e3420.
    [130]SARVER A L, PHALAK R, THAYANITHY V, et al. S-MED:sarcoma microRNA expression database [J]. Lab Invest,90(5):753-61.
    [131]BARRETT T, TROUP D B, WILHITE S E, et al. NCBI GEO:archive for high-throughput functional genomic data [J]. Nucleic Acids Res,2009,37(Database issue):D885-90.
    [132]TUSHER V G, TIBSHIRANI R, CHU G. Significance analysis of microarrays applied to the ionizing radiation response [J]. Proc Natl Acad Sci U S A, 2001,98(9):5116-21.
    [133]ALTSCHUL S F, MADDEN T L, SCHAFFER A A, et al. Gapped BLAST and PSI-BLAST:a new generation of protein database search programs [J]. Nucleic Acids Res,1997,25(17):3389-402.
    [134]RHODES D R, YU J, SHANKER K, et al. Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression [J]. Proc Natl Acad Sci U S A,2004,101(25): 9309-14.
    [135]XIA L, ZHANG D, DU R, et al. miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells [J]. Int J Cancer,2008, 123(2):372-9.
    [136]SLABY O, SVOBODA M, FABIAN P, et al. Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer [J]. Oncology,2007,72(5-6):397-402.
    [137]AKAO Y, NAKAGAWA Y, KITADE Y, et al. Downregulation of microRNAs-143 and -145 in B-cell malignancies [J]. Cancer Sci,2007,98(12): 1914-20.
    [138]SCHIMANSKI C C, FRERICHS K, RAHMAN F, et al. High miR-196a levels promote the oncogenic phenotype of colorectal cancer cells [J]. World J Gastroenterol,2009,15(17):2089-96.
    [139]MARU D M, SINGH R R, HANNAH C, et al. MicroRNA-196a is a potential marker of progression during Barrett's metaplasia-dysplasia-invasive adenocarcinoma sequence in esophagus [J]. Am J Pathol,2009,174(5):1940-8.
    [140]ZHAO J J, LIN J, YANG H, et al. MicroRNA-221/222 negatively regulates estrogen receptor alpha and is associated with tamoxifen resistance in breast cancer [J]. J Biol Chem,2008,283(45):31079-86.
    [141]LI W, DUAN R, KOOY F, et al. Germline mutation of microRNA-125a is associated with breast cancer [J]. J Med Genet,2009,46(5):358-60.
    [142]GUTTILLA I K, WHITE B A. Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells [J]. J Biol Chem,2009,284(35): 23204-16.
    [143]CHEUNG V G, CONLIN L K, WEBER T M, et al. Natural variation in human gene expression assessed in lymphoblastoid cells [J]. Nat Genet,2003,33(3): 422-5.
    [144]STRANGER B E, NICA A C, FORREST M S, et al. Population genomics of human gene expression [J]. Nat Genet,2007,39(10):1217-24.
    [145]CHEUNG V G, SPIELMAN R S, EWENS K G, et al. Mapping determinants of human gene expression by regional and genome-wide association [J]. Nature,2005, 437(7063):1365-9.
    [146]STRANGER B E, FORREST M S, DUNNING M, et al. Relative impact of nucleotide and copy number variation on gene expression phenotypes [J]. Science, 2007,315(5813):848-53.
    [147]CUI Q, YU Z. PURISIMA E O. et al. MicroRNA regulation and interspecific variation of gene expression [J]. Trends Genet,2007,23(8):372-5.
    [148]ZHANG R, SU B. MicroRNA regulation and the variability of human cortical gene expression [J]. Nucleic Acids Res,2008.36(14):4621-8.
    [149]LI J, MUSSO G, ZHANG Z. Preferential regulation of duplicated genes by microRNAs in mammals [J]. Genome Biol,2008,9(8):R132.
    [150]HAO P, ZHENG S, PING J, et al. Human gene expression sensitivity according to large scale meta-analysis [J]. BMC Bioinformatics,2009,10 Suppl 1(S56.
    [151]ASHBURNER M, BALL C A, BLAKE J A, et al. Gene ontology:tool for the unification of biology. The Gene Ontology Consortium [J]. Nat Genet,2000,25(1): 25-9.
    [152]ZHENG Q, WANG X J. GOEAST:a web-based software toolkit for Gene Ontology enrichment analysis [J]. Nucleic Acids Res,2008,36(Web Server issue): W358-63.
    [153]MEGRAW M, SETHUPATHY P, CORDA B, et al. miRGen:a database for the study of animal microRNA genomic organization and function [J]. Nucleic Acids Res,2007,35(Database issue):D149-55.
    [154]KERTESZ M, IOVINO N, UNNERSTALL U, et al. The role of site accessibility in microRNA target recognition [J]. Nat Genet,2007,39(10):1278-84.
    [155]FUJITA P A, RHEAD B, ZWEIG A S, et al. The UCSC Genome Browser database:update 2011 [J]. Nucleic Acids Res,39(Database issue):D876-82.
    [156]XIE X, LU J, KULBOKAS E J, et al. Systematic discovery of regulatory motifs in human promoters and 3'UTRs by comparison of several mammals [J]. Nature,2005,434(7031):338-45.
    [157]RUTHERFORD S L, LINDQUIST S. Hsp90 as a capacitor for morphological evolution [J]. Nature,1998,396(6709):336-42.
    [158]STARK A, LIN M F, KHERADPOUR P, et al. Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures [J]. Nature,2007, 450(7167):219-32.
    [159]SEMPERE L F, COLE C N, MCPEEK M A, et al. The phylogenetic distribution of metazoan microRNAs:insights into evolutionary complexity and constraint [J]. J Exp Zool B Mol Dev Evol,2006,306(6):575-88.
    [160]NAKAHARA K, KIM K, SCIULLI C, et al. Targets of microRNA regulation in the Drosophila oocyte proteome [J]. Proc Natl Acad Sci U S A,2005,102(34): 12023-8.
    [161]CHEN K. RAJEWSKY N. The evolution of gene regulation by transcription factors and microRNAs [J]. Nat Rev Genet,2007,8(2):93-103.
    [162]WU C I, SHEN Y, TANG T. Evolution under canalization and the dual roles of microRNAs:a hypothesis [J]. Genome Res,2009,19(5):734-43.
    [163]MARTINEZ N J, OW M C, BARRASA M I, et al. A C. elegans genome-scale microRNA network contains composite feedback motifs with high flux capacity [J]. Genes Dev,2008,22(18):2535-49.
    [164]TANG T, KUMAR S, SHEN Y, et al. Adverse interactions between micro-RNAs and target genes from different species [J]. Proc Natl Acad Sci U S A, 107(29):12935-40.
    [165]YING S Y, LIN S L. Intron-derived microRNAs--fine tuning of gene functions [J]. Gene,2004,342(1):25-8.
    [166]OKAMURA K, HAGEN J W, DUAN H, et al. The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila [J]. Cell,2007,130(1): 89-100.
    [167]RUBY J G, JAN C H, BARTEL D P. Intronic microRNA precursors that bypass Drosha processing [J]. Nature,2007,448(7149):83-6.
    [168]BEREZIKOV E, CHUNG W J, WILLIS J, et al. Mammalian mirtron genes [J]. Mol Cell,2007,28(2):328-36.
    [169]RODRIGUEZ A, GRIFFITHS-JONES S, ASHURST J L, et al. Identification of mammalian microRNA host genes and transcription units [J]. Genome Res,2004, 14(10A):1902-10.
    [170]ZHOU H, LIN K. Excess of microRNAs in large and very 5'biased introns [J]. Biochem Biophys Res Commun,2008,368(3):709-15.
    [171]GOLAN D, LEVY C, FRIEDMAN B, et al. Biased hosting of intronic microRNA genes [J]. Bioinformatics,26(8):992-5.
    [172]MONTEYS A M, SPENGLER R M, WAN J, et al. Structure and activity of putative intronic miRNA promoters [J]. Rna,16(3):495-505.
    [173]LONG Y S, DENG G F, SUN X S, et al. Identification of the transcriptional promoters in the proximal regions of human microRNA genes [J]. Mol Biol Rep,
    [174]WANG D, LU M, MIAO J, et al. Cepred:predicting the co-expression patterns of the human intronic microRNAs with their host genes [J]. PLoS One,2009, 4(2):e4421.
    [175]ISIK M, KORSWAGEN H C, BEREZIKOV E. Expression patterns of intronic microRNAs in Caenorhabditis elegans [J]. Silence,1(1):5.
    [176]LUTTER D, MARR C, KRUMSIEK J, et al. Intronic microRNAs support their host genes by mediating synergistic and antagonistic regulatory effects [J]. BMC Genomics.11(224.
    [177]BLANCHETTE M, KENT W J, RIEMER C, et al. Aligning multiple genomic sequences with the threaded blockset aligner [J]. Genome Res,2004,14(4): 708-15.
    [178]HOEPPNER M P, WHITE S, JEFFARES D C, et al. Evolutionary stable association of intronic snoRNAs and microRNAs with their host genes [J]. Genome Biol Evol,2009,1(420-8.
    [179]PASQUINELLI A E, REINHART B J, SLACK F, et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA [J]. Nature, 2000,408(6808):86-9.
    [180]OHLER U, YEKTA S, LIM L P, et al. Patterns of flanking sequence conservation and a characteristic upstream motif for microRNA gene identification [J]. Rna,2004,10(9):1309-22.
    [181]HERTEL J, LINDEMEYER M, MISSAL K, et al. The expansion of the metazoan microRNA repertoire [J]. BMC Genomics,2006,7(25.
    [182]WANG Q H, ZHOU M, SUN J, et al. Systematic analysis of human microRNA divergence based on evolutionary emergence [J]. FEBS Lett,585(1): 240-8.
    [183]OLIVE V, JIANG I, HE L. mir-17-92, a cluster of miRNAs in the midst of the cancer network [J]. Int J Biochem Cell Biol,42(8):1348-54.
    [184]TANZER A, STADLER P F. Molecular evolution of a microRNA cluster [J]. J Mol Biol,2004,339(2):327-35.
    [185]ZHANG R, PENG Y, WANG W, et al. Rapid evolution of an X-linked microRNA cluster in primates [J]. Genome Res,2007,17(5):612-7.
    [186]LI J, LIU Y, DONG D, et al. Evolution of an X-linked primate-specific micro RNA cluster [J]. Mol Biol Evol,27(3):671-83.
    [187]GLAZOV E A, MCWILLIAM S, BARRIS W C, et al. Origin, evolution, and biological role of miRNA cluster in DLK-DIO3 genomic region in placental mammals [J]. Mol Biol Evol,2008,25(5):939-48.
    [188]PIRIYAPONGSA J, MARINO-RAMIREZ L, JORDAN I K. Origin and evolution of human microRNAs from transposable elements [J]. Genetics,2007, 176(2):1323-37.
    [189]PIRIYAPONGSA J, JORDAN I K. A family of human microRNA genes from miniature inverted-repeat transposable elements [J]. PLoS One,2007,2(2): e203.
    [190]STROM J G, JR., MILLER S W. Stability of drugs with enteral nutrient formulas [J]. Dicp,1990,24(2):130-4.
    [191]ZHANG R, WANG Y Q, SU B. Molecular evolution of a primate-specific microRNA family [J]. Mol Biol Evol,2008,25(7):1493-502.
    [192]NAGUIBNEVA I, AMEYAR-ZAZOUA M, POLESSKAYA A, et al. The microRNA miR-181 targets the homeobox protein Hox-All during mammalian myoblast differentiation [J]. Nat Cell Biol,2006,8(3):278-84.
    [193]PEKARSKY Y, SANTANAM U, CIMMINO A, et al. Tcll expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181 [J]. Cancer Res, 2006,66(24):11590-3.
    [194]SHI L, CHENG Z, ZHANG J, et al. hsa-mir-181a and hsa-mir-181b function as tumor suppressors in human glioma cells [J]. Brain Res,2008,1236(185-93.
    [195]KANEHISA M, GOTO S, KAWASHIMA S, et al. The KEGG resource for deciphering the genome [J]. Nucleic Acids Res,2004,32(Database issue):D277-80.
    [196]KENT W J. BLAT--the BLAST-like alignment tool [J]. Genome Res,2002, 12(4):656-64.
    [197]ZUKER M. Mfold web server for nucleic acid folding and hybridization prediction [J]. Nucleic Acids Res,2003,31(13):3406-15.
    [198]EDGAR R C. MUSCLE:a multiple sequence alignment method with reduced time and space complexity [J]. BMC Bioinformatics,2004,5(113.
    [199]TAMURA K, DUDLEY J, NEI M, et al. MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0 [J]. Mol Biol Evol,2007,24(8): 1596-9.
    [200]ZHANG B, KIROV S, SNODDY J. WebGestalt:an integrated system for exploring gene sets in various biological contexts [J]. Nucleic Acids Res,2005, 33(Web Server issue):W741-8.
    [201]CHEN G. ZHU W, SHI D, et al. MicroRNA-181a sensitizes human malignant glioma U87MG cells to radiation by targeting Bcl-2 [J]. Oncol Rep,23(4): 997-1003.
    [202]YANG C C, HUNG P S, WANG P W, et al. miR-181 as a putative biomarker for lymph-node metastasis of oral squamous cell carcinoma [J]. J Oral Pathol Med,

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700