用户名: 密码: 验证码:
琯溪蜜柚汁胞发育过程的差异蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质组学是后基因组学的主要内容之一,近年来得到了迅速发展,在生物分子的分析方面广泛应用。本研究以琯溪蜜柚(Citrus grandis cv.Guanximiyou)汁胞为材料,利用双向电泳、质谱技术,对琯溪蜜柚汁胞不同发育时期进行了差异蛋白质组学的分析。建立了适合琯溪蜜柚汁胞蛋白质组学研究的技术平台。获得与汁胞发育、成熟和衰老相关的差异蛋白质,进行了差异蛋白质组分析和生物信息学的研究,并对其中的部分差异蛋白质进行cDNA克隆及原核表达分析。主要研究结果如下:
     1.建立了适合琯溪蜜柚汁胞蛋白质分离的、稳定性好、分辨率高的双向电泳技术体系,对汁胞发育不同时期和不同粒化程度的蛋白质组差异进行比较。汁胞共检测到1037±60个蛋白质点,其中有100个蛋白质点在不同发育时期上调表达, 217个蛋白质点下调表达,完全特异的蛋白质点有85~511个;有108个蛋白质点在不同粒化程度中上调表达,107个蛋白质下调表达,约400个完全特异的蛋白质点。
     2.选取琯溪蜜柚不同发育时期的汁胞50个差异蛋白质点进行MALDI-TOF/TOF质谱分析,48个获得了完整的肽指纹图谱,将肽段数据导入NCBInr Viridiplantae蛋白质数据库,用MASCOT搜索鉴定出24个蛋白质点;通过生物信息学分析,根据蛋白质的功能可以把他们划分为调控蛋白,转录因子,能量代谢,细胞骨架,防卫反应,代谢酶,以及未知功能的蛋白质。另外有10个只能在柑橘EST中得到鉴定。蛋白、核酸和EST序列数据库的综合应用提高了蛋白质鉴定的成功率。还有一些差异表达没有鉴定成功可能与现在的蛋白质数据库不够全面有关。选取琯溪蜜柚正常与粒化汁胞中的30个差异蛋白质点进行MALDI-TOF/TOF质谱分析,其中27个获得了完整的肽指纹图谱,将肽段数据导入NCBInr Viridiplantae和NCBI CitrusEST数据库进行检索,鉴定出19个蛋白质点,其中有8个只能在柑橘EST中得到鉴定,通过生物信息学分析是关于转录活性因子蛋白、GTP结合蛋白、Hsp70、APX、温度诱导脂质运载蛋白和Actin。
     3.鉴定出的差异蛋白质点G6能够与序列号gi|188431972的Citrus EST序列匹配上,通过RACE技术进行G6的cDNA克隆,得到一个902bp片段的序列。通过Blast和DNAMAN同源性比较分析,推测其是一个Germin-like protein。Germin蛋白的多糖部分为HS-GGAX,是细胞壁半纤维素的直接前体,与植物细胞壁伸展性的增加密切相关,同时,Germin具有草酸氧化酶活性。推测Germin通过控制细胞壁的伸展性在琯溪蜜柚汁胞的粒化中起作用。
     4.质谱鉴定结果中有3个和APX匹配的差异蛋白质点,表明APX与汁胞发育(粒化)是密切相关的。为此,对APX在汁胞发育过程和不同粒化程度中的活性动态和分子克隆方面作了进一步的研究。
     (1)选取不同发育时期的琯溪蜜柚汁胞进行它们的APX活性测定及同工酶分析,随着成熟度的增加,APX活性成一个上升趋势,到果实成熟时趋向稳定。取不同粒化程度的汁胞进行它们的APX活性测定及同工酶分析。APX与汁胞发育是密切相关的,同时发现粒化样品的APX活性随着粒化指数的提高而变大。
     (2)根据已克隆的其他植物的APX基因的保守序列设计引物,采用同源克隆的方法从琯溪蜜柚汁胞中获得了APX1 cDNA片段,根据获得的cDNA片段的序列设计RACE引物,通过RACE法获得了全长为1118 bp的琯溪蜜柚汁胞APX1 cDNA全序列,包含750bp的开放读码框,编码250个通读的氨基酸序列。具有过氧化物酶活性位点信号和亚铁血红素结合基信号。琯溪蜜柚APX1的氨基酸序列与已报道的拟南芥、烟草、番茄、水稻等植物APX有很高的同源性。其核酸序列与龙眼的APX同源性高达87%,与荔枝的同源性86%,与胡杨的同源性85%,与葡萄的同源性84%,与番茄的同源性81%。目前APX1cDNA序列已在GenBank上注册,登录号为gb|FJ595794.1。通过构建重组质粒p32-APX1,转化至Trans Rosetta(DE3)中,当诱导温度为37℃,IPTG浓度为1mM,诱导时间为4h时,其在大肠杆菌宿主中获得了表达。
     (3)根据鉴定出的蛋白质氨基酸序列反推出碱基序列,设计特异的APX引物,通过RT-PCR克隆的方法从琯溪蜜柚汁胞中获得了APX2cDNA片段,根据获得的cDNA片段的序列设计RACE引物,通过RACE法获得了全长为1061 bp琯溪蜜柚汁胞APX2的cDNA全序列,包含753 bp的开放读码框,编码250个通读的氨基酸序列。对已报道的拟南芥、烟草、番茄、水稻等植物APX与琯溪蜜柚APX 2的氨基酸序列分析,与可可的APX同源性高达82%,与橡胶、茶树、桉树的同源性81%,与甘薯的同源性80%,与葡萄、胡杨的同源性79%,与花生、大豆的同源性78%。同时,进行2个APX cDNA编码的氨基酸产物同源性分析,发现它们的同源性为81.67%,都含有APX基因家族的保守结构域。与差异蛋白质点的肽指纹数据分析,推测APX2是差异蛋白质点Aa。目前APX2 cDNA已在GenBank上注册,登录号为gb|FJ595795。通过构建重组质粒p28-APX2,转化至BL21(DE3)中,当诱导温度为37℃,IPTG浓度为1mM,诱导时间为4h时,其在大肠杆菌宿主中获得了表达。
     5.根据鉴定出的差异蛋白质ACTIN和HSP的氨基酸序列反推出碱基序列,设计ACTIN和HSP的特异引物,通过RT-PCR克隆的方法从琯溪蜜柚汁胞中获得了ACTIN cDNA的开放读码框和一个1879bp的HSP cDNA片段序列。ACTIN cDNA ORF共有1131个碱基组成,编码377个氨基酸。
Progresses have been made enormously in proteomics in recent years. Means of proteomics have been widely applied in many research fields of plant science. In this thesis, the juice sacs of pomelo (Citrus grandis cv. Guanximiyou) were utilized as material, and the techniques of two dimensional electrophoresis(2-DE), biology mass spectrometry(MS), molecular cloning etc. were performed to investigate the mechanism of fruit development and granulation(sclerification) in citrus. The main results showed as follows:
     1. A system of 2-DE involving the preparation of protein sample, the electrophoresis and staining for the proteomic extracted from juice sac was developed. And, the changes of proteomic were studied in the process of fruit development and juice sac granulation in pomelo. The silver stained gel images were analyzed with Image MasterTM 2D Platinum software and about 1037±60 protein spots were determined. There are 100 protein spots up-regulated expression and 217 protein spots down-regulated expression, 85~511 specific protein spots in the juice sacs during the fruit development. There are 100 protein spots up-regulated expression and 217 protein spots down-regulated expression, about 400 specific protein spots in juice sac granulation.
     2. 50 spots of differential proteins on the juice sacs development were selected and identified through MALDI-TOF/TOF MS analysis, and fragment fingerprint (FFP) alignment followed by peptide mass fingerprint (PMF) MASCOT and ProFound engine respectively. Using complementary protein, nucleotide, and EST sequence libraries, we were able to achieve a protein identification success rate of 70% for our representative protein dataset. 24 protein spots were successfully identified, 12 protein spots were identified exclusively by searching Citrus EST database, and they falls into several functional categories including regulatory protein, transcription factor, energy metabolism, cytoskeleton, defense response, metabolic enzymes and others. 30 spots of differential proteins on the juice sacs granulation were selected and identified through MALDI-TOF/TOF MS analysis, and fragment fingerprint (FFP) alignment followed by peptide mass fingerprint (PMF) MASCOT and ProFound engine respectively. Using complementary protein, nucleotide, and EST sequence libraries. 19 protein spots were successfully identified, 8 protein spots were identified exclusively by searching Citrus EST database.
     3. The differential protein spot G6 was matched to the deduced amino acid sequence encoded by Citrus EST of No. gi|188431972. And a 902 bp of cDNA fragment encoding G6 was obtained by RACE technique. Homology analysis showed that the G6 can be classified into a germin-like protein. The polysaccharide part of germin protein was HS-GGAX, which was the direct precursor of hemicellulose and closely related to the extensibility and lignification of plant cell wall. Meanwhile, germin protein exhibited activity of oxalic acid oxidase. The results indicated that the germin might play a role in the granulation of pomelo by regulating the lignifcation of juice sac.
     4. Among the total of 80 differential protein spots analyzed by MALDI-TOF MS, three distinct protein spots were identified as ascorbate peroxidase (APX), suggested that APX might play a role in the development and/or granulation of juice sac. Hence, the fluctuation of APX and molecular cloning of cDNA encoding APX in juice sac were performed in the subsequent studies.
     (1) The changes of APX activity and zymogram in the process of pomelo juice sac development and granulation were studied. The results showed that the activity of APX increased gradually with the development of juice sacs, and then it kept constant relatively when the fruit tended to maturation. A new isozyme band (Rf 0.66) located in juice sacs was visualized at Sep 18th, and it’s staining intensity increased in the process of fruit development. Compared with normal juice sac, granulated juice sac exhibited higher activity of APX.
     (2) Total RNA of pomelo juice sacs was extracted, and conserved region of APX cDNA was obtained by degenerated oligonucleotide primed RT-PCR. After that, the rapid amplification of cDNA ends (RACE) was performed to the 3' and 5' direction, and full length cDNA encoding APX1 was obtained from pomelo juice sacs. The full sequence is 1118bp in length, containing a 753 bp-nucleotide of open reading frame (ORF), encoding a putative protein of 250 amino acid residues, which were 87%, 86%, 85%, 84% and 81% homology to that of Longan, Litchi, Populus, Vitis and Lycopersicon, respectively. When aligned with primary structure of APX by scanning Prosite, the active site and heme binding site of APX were found in the deduced amino acid sequence. APX1 cDNA was submitted to GenBank, the accession No. is FJ595794.1. The coding region of the cDNA was ligated into pET-32a vector to build a recombinant vector p32-APX1, which was expressed in Escherichia Coli Trans Rosetta (DE3) strain when induced with 1mM IPTG and grown for 4 hours at 37℃.
     (3) The nucleotide sequence was obtained from identified protein amino acid sequence. Based on the nucleotide sequence, the specific APX primers were designed. The APX2 gene segment in pomelo juice was amplified by RT-PCR. According to APX2 sequence, the RACE primers were designed and the full length cDNA sequence of APX2 cDNA was amplified by RACE method. The APX2 full length cDNA sequence is 1061bp, containing a 753bp ORF coding 250 amino sequence. The APX2 sequence of pomelo was compared with APX reported in Arabidopsis thaliana, Nicotiana tabacum, Solanum lycopersicum and Oryza sativa. The results show that it has a 82%, 81%, 81%, 81%, 80%, 79%, 79% 78%, 78% homology with theobroma cacao, Hevea brasiliensis, Camellia Sinensis, eucalyptus, sweet potato, vitis, Populus euphratica, Arachis Hypogaea, soybean respectively. The APX2 sequence of pomelo was compared with APX1. The results show that it has a 81.67% homology. Based on the nucleotide sequence homology analysis showed that the APX2 can be the differential protein spot Aa. APX2 cDNA was submitted to GenBank, the accession No. is FJ595795. The coding region of the cDNA was ligated into pET-28a vector to build a recombinant vector p28-APX2, which was expressed in Escherichia Coli BL21 (DE3) strain when induced with 1mM IPTG and grown for 4 hours at 37℃.
     5. Specific primers for PCR amplifying ACTIN ORF and HSP fragment from juicy sac of pomelo were designed from the reversely translated nucleotide sequences of differential proteins ACTIN and HSP. ACTIN ORF was composed of 1131 bases coding for 377 amino acids, while the HSP fragment was 1879 bases in length.
引文
[1]刘穆.种子植物形态解剖学导论[M].科学出版社, 2001.
    [2]韦茜.沙田柚果实发展规律探索[J].广西园艺, 1998, 3: 2-3.
    [3] Komatsu A, Moriguchi T, Koyama K, et al. Analysis of sucrose synthase genes in citrus suggests different roles and phylogenetic relationships. In: Soc Experiment Biol; 2002:61-71.
    [4] Echeverria E, Gonzalez P C, Brune A. Characterization of proton and sugar transport at the tonoplast of sweet lime (Citrus limmetioides) juice cells[J]. Physiologia Plantarum, 1997, 101(2): 291-300.
    [5] Lowell C A, Tomlinson P T, Koch K E. Sucrose-Metabolizing Enzymes in Transport Tissues and Adjacent Sink Structures in Developing Citrus Fruit 1[J]. Plant Physiology, 1989, 90(4): 1394-1402.
    [6] Tadeo J L, Ortiz J M, Estelles A. Sugar changes in clementine and orange fruit during ripening[J]. Journal of horticultural science, 1987, 62(4): 531-537.
    [7] Echeverria E, Burns J K. Vacuolar Acid Hydrolysis as a Physiological Mechanism for Sucrose Breakdown 1[J]. Plant Physiology, 1989, 90(2): 530-533.
    [8]赵智中,陈昆松.蔗糖代谢相关酶在温州蜜柑果实糖积累中的作用[J].园艺学报, 2001, 28(002): 112-118.
    [9]王利芬,夏仁学,周开兵.纽荷尔脐橙果肉糖分积累和蔗糖代谢相关酶活性的变化[J].果树学报, 2004, 21(003): 220-223.
    [10]刘永忠,李道高.柑橘果实糖积累与蔗糖代谢酶活性的研究[J].园艺学报, 2003, 30(004): 457-459.
    [11]刘永忠,李道高.脐橙果实发育中糖分积累与SPS活性研究[J].西南农业大学学报, 2002, 24(004): 340-342.
    [12]肖家欣,彭抒昂,何华平.柑橘果实发育成熟中果肉游离糖,肌肌醇及钾含量的变化[J].中国农学通报, 2005, 21(006): 255-258.
    [13]赵智中,张上隆.柑橘品种间糖积累差异的生理基础[J].中国农业科学, 2002, 35(005): 541-545.
    [14]赵静,冯叙桥.柑橘果实成熟期中果胶质的变化[J].果树科学, 1995, 12(002): 101-103.
    [15]张丽,牛一丁.果实成熟与多聚半乳糖醛酶基因的研究进展[J].内蒙古大学学报:自然科学版, 2002, 33(005): 596-599.
    [16]程杰山,沈火林,朱鑫,等.果实成熟过程中细胞壁多糖的变化[J].北方园艺, 2006, (005): 70-72.
    [17] Hubbard N L, Pharr D M, Huber S C. Sucrose phosphate synthase and other sucrose metabolizing enzymes in fruits of various species[J]. Physiologia Plantarum, 1991, 82(2): 191-196.
    [18]潘一山,蔡晓东,曹芳.龙柚果肉糖积累与蔗糖代谢相关酶活性的研究[J].亚热带植物科学, 2006, 35(003): 16-17.
    [19]罗安才,杨晓红,邓英毅,等.柑橘果实发育过程中有机酸含量及相关代谢酶活性的变化[J].中国农业科学, 2003, 36(008): 941-944.
    [20] Yamaki Y T. Effect of lead arsenate on citrate synthase activity in fruit pulp of satsama mandarin[J]. J Japan Soc Hort Sci, 1990, 58: 899-905.
    [21] Sadka A, Artzi B, Cohen L, et al. Arsenite reduces acid content in citrus fruit, inhibits activity of citrate synthase but induces its gene expression[J]. JOURNAL-AMERICAN SOCIETY FOR HORTICULTURAL SCIENCE, 2000, 125(3): 288-293.
    [22] Clark R B, Wallace A. Dark CO2 fixation in organic acid synthesis and accumulation in citrus fruit vesicles. In; 1963: 322-332.
    [23]龚荣高,吕秀兰,张光伦,等.脐橙果实发育过程中有机酸代谢相关酶的研究[J].四川农业大学学报, 2006, 24(004): 402-404.
    [24]骆蒙,甄东生.河套蜜瓜成熟软化中PG,果胶质和细胞壁超微结构的变化[J].内蒙古大学学报:自然科学版, 1997, 28(001): 107-111.
    [25] Bird C R, Smith C J S, Ray J A, et al. The tomato polygalacturonase gene and ripening-specific expression in transgenic plants[J]. Plant Molecular Biology, 1988, 11(5): 651-662.
    [26] Echeverria E, Valich J. Carbohydrate and enzyme distribution in protoplasts from Valencia orange juice sacs[J]. Phytochemistry, 1988, 27(1): 73-76.
    [27]彭宜本.苹果果实发育的细胞生物学研究:着重于果实内糖卸载的细胞学机制[D]:博士学位论文; 2000.
    [28] Leshem Y A Y, Cojocaru M, Margel S, et al. A biophysical study of abscisic acid interaction with membrane phospholipid components[J]. New Phytologist, 1990: 487-498.
    [29]庄伊美,潘东明,李健.琯溪蜜柚果实粒化症矫治研究[J]. 2000,29(4):1-4.
    [30]郑宴义.琯溪蜜柚果实汁胞粒化的研究现状与展望[J].福建农业学报, 2006, 21(001): 63-65.
    [31]潘东明,郑国华,陈桂信,等.琯溪蜜柚汁胞粒化原因分析[J].果树科学, 1999, 16(3): 202-209.
    [32]谢志南,庄伊美,王仁玑,等.琯溪蜜柚果实粒化,裂瓣症与矿质营养关系的探讨[J].福建农业大学学报, 1998, 27(1): 42~46.
    [33]王向阳.椪柑萎缩型枯水病和?涂菟〖钢稚碇副瓴钜斓难芯縖J].果树学报, 2005, 22(003): 216-219.
    [34]佘文琴,赵晓玲,潘东明.授粉处理对琯溪蜜柚粒化过程中果皮若干生理生化指标的影响[J].福建农林大学学报:自然科学版, 2008, 37(4): 355-359.
    [35]佘文琴,赵晓玲,潘东明,等.细胞壁代谢与琯溪蜜柚果实成熟过程汁胞粒化的关系[J].热带亚热带植物学报, 2008, 16(6): 545-550.
    [36]潘东明,陈桂信,郑国华,等.植物生长调节剂对琯溪蜜柚汁胞粒化的影响[J].福建农业大学学报, 1998, 27(2): 155-159.
    [37]黄育宗.琯溪蜜柚果实粒化、裂瓣症的矫治研究[J].福建热作科技, 2002, 27(2): 14-16.
    [38]潘东明.柚果实采后组织含水量、保护酶活性与汁胞粒化的关系[J].世界热带农业信息, 2000, (10): 12.
    [39]张上隆,刘春荣.柑桔授粉处理和单性结实子房(幼果)内源IAA, ABA和ZT含量的变化[J].园艺学报, 1994, 21(002): 117-123.
    [40]张建和,陆军.玉环柚果实发育后期内源激素IAA, GA3和ABA的含量及分布[J].浙江林业科技, 1992, 12(005): 23-28.
    [41]文泽富,黄国评.冷激对柚果实酶活性变化及膜脂过氧化的影响[J].果树科学, 1999, 16(002): 159-160.
    [42]陈昆松,徐昌杰,张上隆.猕猴桃果实后熟软化及其调控[J]. 1996.
    [43]郑国华,潘东明,丘友萍,等.柚果实采后组织含水量、保护酶活性与汁胞粒化的关系[J].福建农业大学学报, 1999, 28(4): 428~433.
    [44]许文宝,庄伊美,谢志南,等.琯溪蜜柚园有机-无机肥不同配比试验[J].亚热带植物通讯, 1999, 28(1): 9-13.
    [45]黄育宗.琯溪蜜柚果实粒化症矫治研究[J].亚热带植物科学, 2000, (04).
    [46]陈克玲,陈力耕.温州蜜柑与甜橙的无核少核杂种育性研究[J].中国柑桔, 1993, 22(002): 22-23.
    [47] Sk K,林日健.六个甜橙品种的生长,产量和果实质量比较[J].热带作物译丛, 1991, (001): 37-38.
    [48]解建勋,蒲小平.蛋白质组分析技术进展[J].生物物理学报, 2001, 17(001): 19-26.
    [49]曾嵘,夏其昌.蛋白质组学研究进展与趋势[J].中国科技信息, 2003, (012): 49-51.
    [50] Tanaka K, Takeuchi E, Kubo A, et al. Two immunologically different isozymes of ascorbate peroxidase from spinach leaves[J]. Archives of biochemistry and biophysics (USA), 1991,286(2):371-375.
    [51] Steinberg T H, Haugland R P, Singer V L. Applications of SYPRO Orange and SYPRO Red protein gel stains[J]. Analytical Biochemistry, 1996, 239(2): 238-245.
    [52] Unlu M, Morgan M E, Minden J S. Difference gel electrophoresis. A single gel method for detecting changes in protein extracts[J]. Electrophoresis, 1997, 18(11):2071-2077.
    [53] Pandey A, Mann M. Proteomics to study genes and genomes[J]. Nature, 2000, 405(6788): 837-846.
    [54]王海龙,杨静,祁振国,等.质谱技术在蛋白质组学中的应用[J].包头医学院学报, 2006, 22(002): 231-233.
    [55]姜颖,徐朗莱,贺福初.质谱技术解析磷酸化蛋白质组[J].生物化学与生物物理进展, 2003, 30(003): 350-356.
    [56]聂松,陈平,梁宋平. MALDI-TOF质谱源后衰变技术鉴定2D胶蛋白点[J].激光生物学报, 2003, 12(004): 249-253.
    [57] Gygi S P, Gibb J W, Hanson G R. Differential effects of antipsychotic and psychotomimetic drugs on neurotensin systems of discrete extrapyramidal and limbic regions[J]. Journal of Pharmacology and Experimental Therapeutics, 1994, 270(1): 192-197.
    [58]钟春英,彭蓉,彭建新,等.蛋白质芯片技术[J].生物技术通报, 2004, (002): 34-37.
    [59] Oh S J, Hong B J, Choi K Y, et al. Surface modification for DNA and protein microarrays[J]. OMICS: A journal of Integrative Biology, 2006, 10(3): 327-343.
    [60] Vidal M, Endoh H. Prospects for drug screening using the reverse two-hybrid system[J]. Trends in Biotechnology, 1999, 17(9): 374-381.
    [61] Smith J C, Figeys D. Proteomics technology in systems biology[J]. Molecular BioSystems, 2006, 2(8): 364-370.
    [62] Cekaite L, Hovig E, Sioud M. Protein arrays: a versatile toolbox for target identification and monitoring of patient immune responses[J]. Methods in molecular biology (Clifton, NJ), 2007, 360: 335.
    [63] Warthaka M, Karwowska-Desaulniers P, Pflum M K. Phosphopeptide modification and enrichment by oxidation-reduction condensation[J].ACS Chem. Biol.,2006,1(11):697-701.
    [64]王京兰,张养军,蔡耘,等.生物质谱结合IMAC亲和提取和磷酸酶水解分析蛋白质磷酸化修饰[J].生物化学与生物物理学报:英文版, 2003, 35(005): 459-466.
    [65] Ndassa Y M, Orsi C, Marto J A, et al. Improved immobilized metal affinity chromatography for large-scale phosphoproteomics applications[J]. J Proteome Res, 2006, 5(10): 2789-2799.
    [66]刘康,高起飞,万振昆,等.蛋白质组学研究中的质谱鉴定与生物信息学分析[J].棉花学报, 2008, 20(004): 281-288.
    [67]张国安,许雪姣,张素艳,等.蛋白质组的分离与分析及其应用进展[J].分析化学, 2003, 31(005): 611-618.
    [68] Fukuda H. Tracheary element formation as a model system of cell differentiation[J]. International Review of Cytology–a Survey of Cell Biology, 1992, 136: 289–332.
    [69] Koller A, Washburn M P, Lange B M, et al. Proteomic survey of metabolic pathways in rice[J]. Proceedings of the National Academy of Sciences, 2002, 99(18): 11969-11974.
    [70] Santoni V, Rouquie D, Doumas P, et al. Use of a proteome strategy for tagging proteins present at the plasma membrane[J]. The Plant Journal, 1998, 16(5): 633-641.
    [71] Gallardo K, Job C, Groot S P C, et al. Proteomics of Arabidopsis seed germination. A comparative study of wild-type and gibberellin-deficient seeds[J]. Plant Physiology, 2002, 129(2): 823-837.
    [72] Touzet P, Riccardi F, Morin C, et al. The maize two-dimensional gel protein database: towards an integrated genome analysis program[J]. Theoretical and Applied Genetics (Germany), 1996.
    [73] Watson B S, Asirvatham V S, Wang L, et al. Mapping the proteome of barrel medic (Medicago truncatula)[J]. Plant Physiology, 2003, 131(3): 1104-1123.
    [74] Hirano H. Varietal differences of leaf protein profiles in mulberry[J]. Phytochemistry, 1982, 21: 1513-1518.
    [75] Kehr J, Haebel S, Blechschmidt-Schneider S, et al. Analysis of phloem protein patterns from different organs of Cucurbita maxima Duch. by matrix-assisted laser desorption/ionization time of flight mass spectroscopy combined with sodium dodecyl sulfate-polyacrylamide gel electrophoresis[J]. Planta, 1999, 207(4): 612-619.
    [76] Mayfield J A, Fiebig A, Johnstone S E, et al. Gene families from the Arabidopsis thaliana pollen coat proteome. In; 2001:2482-2485.
    [77] Porubleva L, Velden K V, Kothari S, et al. The proteome of maize leaves: use of gene sequences and expressed sequence tag data for identification of proteins with peptide mass fingerprints[J]. Electrophoresis, 2001, 22(9):1724-1738.
    [78] Bardel J, Louwagie M, Jaquinod M, et al. A survey of the plant mitochondrial proteome in relation to development[J]. Proteomics, 2002, 2(7):880-898.
    [79] Amor Y, Haigler C H, Johnson S, et al. A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants[J]. Proceedings of the National Academy of Sciences, 1995, 92(20): 9353-9357.
    [80] Boudart G, Jamet E, Rossignol M, et al. Cell wall proteins in apoplastic fluids of Arabidopsis thaliana rosettes: identification by mass spectrometry and bioinformatics[J]. Proteomics, 2005, 5(1):212–221.
    [81] Ciambella C, Roepstorff P, Aro E M, et al. A proteomic approach for investigation of photosynthetic apparatus in plants[J]. Proteomics, 2005, 5(3)746-757.
    [82] Shen X, Zhang T, Guo W, et al. Mapping fiber and yield QTLs with main, epistatic, and QTL×environment interaction effects in recombinant inbred lines of upland cotton[J]. Crop Science, 2006, 46(1): 61-66.
    [83] Finnie C, Melchior S, Roepstorff P, et al. Proteome analysis of grain filling and seed maturation in barley[J]. Plant Physiology, 2002, 129(3): 1308-1319.
    [84] Maltman D J, J S W, H W C, et al. Proteomic analysis of the endoplasmic reticulum from developing and germinating seed of castor (Ricinus communis)[J]. Electrophoresis, 2002, 23: 626-639.
    [85] Wilson K A, McManus M T, Gordon M E, et al. The proteomics of senescence in leaves of white clover, Trifolium repens (L.)[J]. Proteomics, 2002, 2(9):1114-1122.
    [86] Konishi H, Komatsu S. A proteomics approach to investigating promotive effects of brassinolide on lamina inclination and root growth in rice seedlings[J]. Biological & pharmaceutical bulletin, 2003, 26(4): 401-408.
    [87] Tanaka N, Konishi H, Khan M, et al. Proteome analysis of rice tissues by two-dimensional electrophoresis: an approach to the investigation of gibberellin regulated proteins[J]. Molecular Genetics and Genomics, 2004, 270(6): 485-496.
    [88] Konishi H, Ishiguro K, Komatsu S. A proteomics approach towards understanding blast fungus infection of rice grown under different levels of nitrogen fertilization[J]. Proteomics, 2001, 1: 1162-1171.
    [89] Tafforeau M, Verdus M C, Charlionet R, et al. Two-dimensional electrophoresis investigation of short-term response of flax seedlings to a cold shock[J]. Electrophoresis, 2002, 23(15):2534-2540
    [90] Cui S, Huang F, Wang J, et al. A proteomic analysis of cold stress responses in rice seedlings[J]. Proteomics, 2005, 5(12):3162-3172
    [91] Majoul T, Bancel E, Triboi E, et al. Proteomic analysis of the effect of heat stress on hexaploid wheat grain: Characterization of heat-responsive proteins from non-prolamins fraction[J]. Proteomics, 2004, 4(2):505-513
    [92] Riccardi F, Gazeau P, de Vienne D, et al. Protein Changes in Response to Progressive Water Deficit in Maize Quantitative Variation and Polypeptide Identification[J]. Plant Physiology, 1998, 117(4): 1253-1263.
    [93] Rey P, Pruvot G, Becuwe N, et al. A novel thioredoxin-like protein located in the chloroplast is induced by water deficit in Solanum tuberosum L. plants[J]. The Plant Journal, 1998, 13(1): 97-107.
    [94] Salekdeh G H, Siopongco J, Wade L J, et al. Proteomic analysis of rice leaves during drought stress and recovery[J]. Proteomics, 2002, 2(9):1131-1145.
    [95] Ramani S, Apte S K. Transient Expression of Multiple Genes in Salinity-Stressed Young Seedlings of Rice (Oryza sativaL.) cv. Bura Rata[J]. Biochemical and Biophysical Research Communications, 1997, 233(3): 663-667.
    [96] Kang J G, Pyo Y J, Cho J W, et al. Comparative proteome analysis of differentially expressed proteins induced by K+ deficiency in Arabidopsis thaliana[J]. Proteomics, 2004, 4(11):3549-3559.
    [97] Dani V, Simon W J, Duranti M, et al. Changes in the tobacco leaf apoplast proteome in response to salt stress[J]. Proteomics, 2005, 5(3):737-745.
    [98] Agrawal G K, Rakwal R, Yonekura M, et al. Proteome analysis of differentially displayed proteins as a tool for investigating ozone stress in rice (Oryza sativa L.) seedlings[J]. Proteomics, 2002, 2(8):947-959.
    [99] Hirano H, Komatsu S, Nakamura A, et al. Structural homology between semidwarfism-related proteins and glutelin seed protein in rice (Oryza sativa L.)[J]. TAG Theoretical and Applied Genetics, 1991, 83(2): 153-158.
    [100] Damerval C, Le Guilloux M. Characterization of novel proteins affected by the o2 mutation and expressed during maize endosperm development[J]. Molecular Genetics and Genomics, 1998, 257(3): 354-361.
    [101] Thiellement H, Bahrman N, Damerval C, et al. Proteomics for genetic and physiological studies in plants[J]. Electrophoresis, 1999, 20(10):2013-2026.
    [102] Albertin W, Brabant P, Catrice O, et al. Autopolyploidy in cabbage (Brassica oleracea L.) does not alter significantly the proteomes of green tissues[J]. Proteomics, 2005, 5(8):2131-2139.
    [103] Marques K, Sarazin B, Chane-Favre L, et al. Comparative proteomics to establish genetic relationships in the Brassicaceae family[J]. Proteomics, 2001, 1(11):1457-1462.
    [104] Weiss W, Huber G, Engel K H, et al. Identification and characterization of wheat grain albumin/globulin allergens[J]. Electrophoresis, 1997, 18(5):826-833.
    [105] Gorg A, Postel W, Gunther S. The current state of two-dimensional electrophoresis with immobilized pH gradients[J]. Electrophoresis, 1988, 9(9):1037-1053.
    [106] Gottlieb D M, Schultz J, Petersen M, et al. Determination of wheat quality by mass spectrometry and multivariate data analysis[J]. Rapid Communications in Mass Spectrometry, 2002, 16(21):2034-2039.
    [107] Mamone G, Addeo F, Chianese L, et al. Characterization of wheat gliadin proteins by combined two-dimensional gel electrophoresis and tandem mass spectrometry[J]. Proteomics, 2005, 5(11):2859-2865.
    [108] Asada K, Takahashi M. Production and scavenging of active oxygen in photosynthesis[J]. Photoinhibition Elsevier, Amsterdam, 1987: 227–287.
    [109] Kato M, Shimizu S. Chlorophyll metabolism in higher plants VI. Involvement of peroxidase in chlorophyll degradation[J]. Plant and cell physiology, 1985, 26(7): 1291-1301.
    [110] Asada K, Kiso K, Yoshikawa K. Univalent reduction of molecular oxygen by spinach chloroplasts on illumination[J]. Journal of Biological Chemistry, 1974, 249(7): 2175-2181.
    [111] Asada K. Ascorbate peroxidase-a hydrogen peroxide-scavenging enzyme in plants[J]. Physiologia Plantarum, 1992, 85(2): 235-241.
    [112] Mittler R, Zilinskas B A. Molecular cloning and characterization of a gene encoding pea cytosolic ascorbate peroxidase[J]. The Journal of biological chemistry (USA), 1992,267(30):21802-21807.
    [113] Kubo A, Saji H, Tanaka K, et al. Cloning and sequencing of a cDNA encoding ascorbate peroxidase from Arabidopsis thaliana[J]. Plant Molecular Biology, 1992, 18(4): 691-701.
    [114] Caldwell C R, Turano F J, McMahon M B. Identification of two cytosolic ascorbate peroxidase cDNAs from soybean leaves and characterization of their products by functional expression in E. coli[J]. Planta, 1998, 204(1): 120-126.
    [115]马长乐,王萍萍.盐地碱蓬(Suaeda salsa) APX基因的克隆及盐胁迫下的表达[J].植物生理与分子生物学学报, 2002, 28(004): 261-266.
    [116] Koshiba T. Cytosolic ascorbate peroxidase in seedlings and leaves of maize (Zea mays)[J]. Plant and cell physiology, 1993, 34(5): 713-721.
    [117] Chen G X, Sano S, Asada K. The amino acid sequence of ascorbate peroxidase from tea has a high degree of homology to that of cytochrome c peroxidase from yeast[J]. Plant and cell physiology, 1992, 33(2): 109-116.
    [118] Miyake C, Asada K. Thylakoid-bound ascorbate peroxidase in spinach chloroplasts andphotoreduction of its primary oxidation product monodehydroascorbate radicals in thylakoids[J]. Plant and cell physiology, 1992, 33(5): 541-553.
    [119] Yoshimura K, Yabuta Y, Ishikawa T, et al. Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses[J]. Plant Physiology, 2000, 123(1): 223-234.
    [120] Yamaguchi K, Mori H, Nishimura M. A novel isoenzyme of ascorbate peroxidase localized on glyoxysomal and leaf peroxisomal membranes in pumpkin[J]. Plant and cell physiology, 1995, 36(6): 1157-1162.
    [121] Ishikawa T, Sakai K, Yoshimura K, et al. cDNAs encoding spinach stromal and thylakoid-bound ascorbate peroxidase, differing in the presence or absence of their 3′-coding regions[J]. FEBS letters, 1996, 384(3): 289-293.
    [122] Yamaguchi K, Hayashi M, Nishimura M. cDNA cloning of thylakoid-bound ascorbate peroxidase in pumpkin and its characterization[J]. Plant and cell physiology, 1996, 37(3): 405-409.
    [123]秦新民,吕建珍,李惠敏,等.沙田柚和酸柚花粉壁蛋白的双向电泳分析[J].广西师范大学学报, 2004, 22(04): 83-87.
    [124] O'Farrell P H. High resolution two-dimensional electrophoresis of proteins[J]. Journal of Biological Chemistry, 1975, 250(10): 4007-4021.
    [125]周玮,刘晓慧,周新文,等.糖蛋白结构质谱解析的样品前处理[J].色谱, 2007, 25(005): 623-627.
    [126]王贤纯,范春明,唐新科,等.牛血清白蛋白胰蛋白酶酶解产物的色谱-质谱联用分析及其三种数据库搜寻鉴定方法的比较[J].中国生物化学与分子生物学报, 2004, 20(003): 393-398.
    [127]梁宇,荆玉祥,沈世华.植物蛋白质组学研究进展[J].植物生态学报, 2004, 28(001): 114-125.
    [128] Fenn J B, Mann M, Meng C K, et al. Electrospray ionization for mass spectrometry of large biomolecules[J]. Science, 1989, 246(4926): 64-71.
    [129] Mann M, Ong S E, Gronborg M, et al. Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome[J]. TRENDS in Biotechnology, 2002, 20(6): 261-268.
    [130] Mooney B, J. T J. High-troughput peptide mass fingerprinting of soybean seed proteins: automated workflow and utility of Unigene expressed sequence tag databases for protein identification[J]. Phytochemistry, 2004, 65: 1733-1744.
    [131]余爱丽,姚伟,徐景升,等.斑茅20S蛋白酶体α亚基5基因的克隆与序列分析[J].热带作物学报, 2004, (02): 55-60.
    [132]沈喜妹. 3-磷酸甘油醛脱氢酶的多功能性及其在糖尿病的作用[J].福建医科大学学报, 2007, 41(5): 484-486.
    [133]江海洪,谢燕.线粒体呼吸链功能调控机制的研究进展[J].生理科学进展, 2001, 32(004): 359-361.
    [134]唐功利,施定基.丙糖磷酸异构酶,果糖-1, 6-二磷酸醛缩酶及果糖-1, 6-二磷酸酶的共表达[J].生物化学与生物物理学报:英文版, 2001, 33(001): 131-136.
    [135]吴焱秋,柴家科.泛素—蛋白酶体途径的组成及其生物学作用[J].生理科学进展, 2001, 32(004): 331-333.
    [136] Jackson S E, Queitsch C, Toft D. Hsp90: from structure to phenotype[J]. Nature structural & molecular biology, 2004, 11: 1152-1155.
    [137] Hanson D D, Hamilton D A, Travis J L, et al. Characterization of a pollen-specific cDNA clone from Zea mays and its expression[J]. The Plant Cell Online, 1989, 1(2): 173-179.
    [138]成军,李克,陆荫英,等.丙型肝炎病毒核心蛋白结合蛋白6基因和蛋白的生物信息学分析[J].世界华人消化杂志, 2003, 11(004): 378-384.
    [139] Delmer A, Ajchenbaum-Cymbalista F, Tang R, et al. Overexpression of cyclin D2 in chronic B-cell malignancies[J]. Blood, 1995, 85(10): 2870.
    [140]邵映田,朱立煌.小麦抗条锈病基因Yr10的AFLP标记[J].科学通报, 2001, 46(008): 669-672.
    [141]王静,王艇.高等植物光敏色素的分子结构,生理功能和进化特征[J].植物学通报, 2007, 24(005): 649-658.
    [142]张振钰.琯溪蜜柚汁囊分化和粒化过程的解剖学观察[J].植物学报, 1999, 41(1): 16-19.
    [143] Schrick K, Nguyen D, Karlowski W, et al. START lipid/sterol-binding domains are amplified in plants and are predominantly associated with homeodomain transcription factors[J]. Genome Biology, 2004, 5(6): 41.
    [144] Di Cristina M, Sessa G, Dolan L, et al. The Arabidopsis Athb-10 (GLABRA2) is an HD-Zip protein required for regulation of root hair development[J]. Plant Journal, 1996, 10(3): 393.
    [145] Rerie W G, Feldmann K A, Marks M D. The GLABRA2 gene encodes a homeo domain protein required for normal trichome development in Arabidopsis[J]. Genes & Development, 1994, 8(12): 1388-1399.
    [146] Ohashi Y, Oka A, Rodrigues-Pousada R, et al. Modulation of phospholipid signaling by GLABRA2 in root-hair pattern formation[J].. In: American Association for the Advancement of Science; 2003:1427-1430.
    [147]叶帅,朱正歌,缪军.植物GTP结合蛋白的研究进展[J].山东农业科学, 2008, (005): 27-33.
    [148]马立安,张忠明. Ran的GTPase活性及其生物学功能研究进展[J].长江大学学报:农学卷, 2008, 5(003): 52-57.
    [149]Queitsch C, Sangster T A, Lindquist S. Hsp90 as a capacitor of phenotypic variation[J]. Nature, 2002, 417: 618-624.
    [150] Mascarenhas B. Strategic group dynamics[J]. Academy of Management Journal, 1989: 333-352.
    [151]徐雯,潘俊.受体介导脂质体的研究进展[J].国外医药:合成药生化药制剂分册, 2002, 23(005): 293-297.
    [152] Thompson E W, Lane B G. Relation of protein synthesis in imbibing wheat embryos to the cell-free translational capacities of bulk mRNA from dry and imbibing embryos[J]. Journal of Biological Chemistry, 1980, 255(12): 5965-5970.
    [153] Lane B G. Cellular desiccation and hydration: developmentally regulated proteins, and the maturation and germination of seed embryos[J]. The FASEB Journal, 1991, 5(14): 2893-2901.
    [154] Lane B G, Dunwell J M, Ray J A, et al. Germin, a protein marker of early plant development, is an oxalate oxidase[J]. Journal of Biological Chemistry, 1993, 268(17): 12239-12242.
    [155] Kotsira V P, Clonis Y D. Oxalate oxidase from barley roots: purification to homogeneity and study of some molecular, catalytic, and binding properties[J]. Archives of Biochemistry and Biophysics, 1997, 340(2): 239-249.
    [156] Kotsira V P, Clonis Y D. Chemical modification of barley root oxalate oxidase shows the presence of a lysine, a carboxylate, and disulfides, essential for enzyme activity[J]. Archives ofBiochemistry and Biophysics, 1998, 356(2): 117-126.
    [157] Hurkman W J, Tao H P, Tanaka C K. Germin-like polypeptides increase in barley roots during salt stress[J]. Plant Physiology, 1991, 97(1): 366-374.
    [158] Hurkman W J, Tanaka C K. Effect of salt stress on germin gene expression in barley roots. In: Am Soc Plant Biol; 1996:971-977.
    [159] Berna A, Bernier F. Regulation by biotic and abiotic stress of a wheat germin gene encoding oxalate oxidase, a H 2 O 2-producing enzyme[J]. Plant molecular biology, 1999, 39(3): 539-549.
    [160] Brisson L F, Tenhaken R, Lamb C. Function of oxidative cross-linking of cell wall structural proteins in plant disease resistance[J]. The Plant Cell Online, 1994, 6(12): 1703-1712.
    [161] Barthou H, Petitprez M, Briere C, et al. RGD-mediated membrane-matrix adhesion triggers agarose-induced embryoid formation in sunflower protoplasts[J]. Protoplasma, 1999, 206(1): 143-151.
    [162] Sharma P, Dubey R S. Ascorbate peroxidase from rice seedlings: properties of enzyme isoforms, effects of stresses and protective roles of osmolytes[J]. Plant Science, 2004, 167(3): 541-550.
    [163] Yoshimura K, Ishikawa T, Wada K, et al. Characterization of monoclonal antibodies against ascorbate peroxidase isoenzymes: purification and epitope-mapping using immunoaffinity column chromatography[J]. BBA-General Subjects, 2001, 1526(2): 168-174.
    [164] Foyer C H, Halliwell B. Purification and properties of dehydroascorbate reductase from spinach leaves[J]. Phytochemistry, 1977, 16: 1347-1350.
    [165]汪家政,范明.蛋白质技术手册. In: Beijing: Science Press, 2001.10-12.
    [166] Mittler R, Zilinskas B A. Purification and Characterization of Pea Cytosolic Ascorbate Peroxidase 1[J]. Plant Physiology, 1991, 97(3): 962-968.
    [167] Banerji I. Morphological and cytological studies on Citrus grandis Osbeck[J]. Phytomorphology, 1954, 4: 390-396.
    [168] Foyer C H, Lelandais M, Kunert K J. Photooxidative stress in plants[J]. Physiologia Plantarum, 1994, 92(4): 696-717.
    [169]蔡志全,曹坤芳.热带雨林冠层树种绒毛番龙眼两种发育阶段叶片的光抑制[J].植物生态学报, 2003, 27(002): 210-217.
    [170] Schoner S, Heinrich Krause G. Protective systems against active oxygen species in spinach: response to cold acclimation in excess light[J]. Planta, 1990, 180(3): 383-389.
    [171]陈惠萍,徐朗莱.壳聚糖调节植物生长发育及诱发植物抗病性研究进展[J].云南植物研究, 2005, 27(006): 613-619.
    [172]安华明,陈力耕,樊卫国,等.刺梨叶衰老过程中维生素C含量和部分抗氧化酶活性的变化[J].园艺学报, 2005, 32(006): 994-997.
    [173]黄培堂,王嘉玺,朱厚础.分子克隆实验指南(第三版). In:北京:科学出版社; 2002.
    [174] Kornyeyev D, Logan B A, Payton P, et al. Enhanced photochemical light utilization and decreased chilling-induced photoinhibition of photosystem II in cotton overexpressing genes encoding chloroplast-targeted antioxidant enzymes[J]. Physiol Plant, 2001, 113(3): 323-331.
    [175]王庆斌,王方正,薛庆中. APX基因转化水稻及其功能的研究,中国植物生理学会全国学术年会暨成立40周年大会,2003.
    [176] Dong C H, Xia G X, Hong Y, et al. ADF proteins are involved in the control of flowering and regulate F-actin organization, cell expansion, and organ growth in Arabidopsis[J]. ThePlant Cell 2001, 13(6): 1333-1346.
    [177] Heslop-Harrison J, Heslop-Harrison Y. Intracellular motility, the actin cytoskeleton and germinability in the pollen of wheat (Triticum aestivum L.)[J]. Sexual Plant Reproduction, 1992, 5(4): 247-255.
    [178]李岩,徐是雄.百合花粉及花粉管内微丝和微管的分布[J].植物学报, 1998, 40(010): 890-894.
    [179] Mathur J. The actin cytoskeleton is required to elaborate and maintain spatial patterning during trichome cell morphogenesis in Arabidopsis thaliana. In; 1999:5559-5568.
    [180] O'Connor P. Actin-dependent cell elongation in teleost retinal rods: requirement for actin filament assembly[J]. Journal of Cell Biology, 1981, 89(3): 517-524.
    [181] Baluska F, Jasik J, Edelmann H G, et al. Latrunculin B-induced plant dwarfism: plant cell elongation is F-actin-dependent[J]. Developmental Biology, 2001, 231(1): 113-124.
    [182]范小平,范博红,李学宝,等.肌动蛋白基因在棉花纤维中的作用研究[J].华北农学报, 2008, 23(005): 73-75.
    [183] Li X B, Fan X P, Wang X L, et al. The cotton ACTIN1 gene is functionally expressed in fibers and participates in fiber elongation[J]. The Plant Cell Online, 2005, 17(3): 859-875.
    [184] Welch W J. Mammalian stress response: cell physiology, structure/function of stress proteins, and implications for medicine and disease. In: Am Physiological Soc; 1992:1063-1081.
    [185] Flynn G C, Chappell T G, Rothman J E. Peptide binding and release by proteins implicated as catalysts of protein assembly[J]. Science, 1989, 245(4916): 385-390.
    [186] CandéC, Cohen I, Daugas E, et al. Apoptosis-inducing factor (AIF): a novel caspase-independent death effector released from mitochondria[J]. Biochimie, 2002, 84(2-3): 215-222.
    [187] Frese S, Schaper M, Kuster J R, et al. Cell death induced by down-regulation of heat shock protein 70 in lung cancer cell lines is p53-independent and does not require DNA cleavage[J]. The Journal of Thoracic and Cardiovascular Surgery, 2003, 126(3): 748-754.
    [188] Zhu X, Zhao X, Burkholder W F, et al. Structural analysis of substrate binding by the molecular chaperone DnaK[J]. Science, 1996, 272(5268): 1606.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700