用户名: 密码: 验证码:
环糊精超分子功能材料的制备及应用—从大分子到纳米材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环糊精作为第二代超分子主体分子,由于其特殊分子结构——疏水性空腔和亲水性表面,能够与许多疏水分子通过非共价键形成超分子包合物,因此在电分析、生物工程、环境保护等领域中,被广泛使用。本文将具有超分子主-客体识别特性的环糊精及其水溶性聚合物与纳米材料相结合,设计和制备多种具有超分子识别性能的纳米材料,拓展了环糊精纳米材料在电化学和水处理中的应用。本论文主要分为以下五个部分:
     1.静电纺丝法制备p-环糊精/聚乙烯醇纳米纤维膜及其超分子捕集性能的研究
     将p-环糊精引入静电纺丝体系,以水溶性高分子聚乙烯醇为母体制备了p-环糊精/聚乙烯醇纳米纤维。利用红外光谱、扫描电镜对纤维的形貌、理化性质进行了表征,研究了环糊精对纳米纤维形貌的影响,证明环糊精的浓度可以调节纤维的直径与形貌,通过对纺丝溶液核磁氢谱与流变性质的研究,揭示了β-环糊精与聚乙烯醇之间的氢键相互作用,并探讨了p-环糊精对静电纺丝的影响。此外,利用这种具有超分子识别能力的纳米纤维制备了高效的分子捕集电极,通过循环伏安法检测了其对模型分子二茂铁的捕集。
     2.p-环糊精功能化聚丙烯腈纳米纤维的制备及对亚甲基蓝吸附性能的研究
     以有机溶剂N,N-二甲基甲酰胺为纺丝溶剂,利用静电纺丝法制备了聚丙烯腈/β-环糊精纳米纤维。采用扫描电镜、红外光谱、X射线衍射等测试对纳米纤维进行了表征,并研究了纺丝溶液的电导率和粘度。结果表明,调节p-环糊精的添加量可以显著改善纳米纤维的形貌,而且固定在纤维上的p-环糊精保留了空腔结构,为其在纳米纤维中发挥超分子特性提供了可能。通过紫外光谱法详细研究了聚丙烯腈/β-环糊精纳米纤维对亚甲基蓝溶液的吸附性能和吸附机理。结果表明,纳米纤维中的p-环糊精显著提高了纳米纤维的超分子吸附能力,这种纳米纤维在吸附分离过程、电化学传感器、药物控制释放等领域有潜在的应用价值。
     3.静电纺丝法制备羟丙基-p-环糊精纳米纤维及其吸附性能的研究
     在之前环糊精静电纺丝的工作基础上,选用羟丙基-p-环糊精在不掺杂任何聚合物的条件下进行直接静电纺丝研究。通过对纺丝溶液浓度的调控,成功制备了形貌良好的环糊精纳米纤维。研究了不同浓度纺丝溶液的核磁氢谱,及流变性质对静电纺丝的影响,揭示了高浓度环糊精溶液具有与聚合物溶液相似的性质,通过分子间氢键形成的自组装聚集体缠结是环糊精静电纺丝形成纤维的重要原因,并分析了溶液浓度与特性粘度的关系,得出环糊精自组装聚集体的缠结浓度。此外,研究了这种环糊精纳米纤维对有机染料中性红的吸附性能,25℃时其平衡吸附量为18.41mg g-1,拟二级动力学常数为9.83×10-4g mg-1min-1。
     4.水溶性二茂铁环糊精聚合物的制备及其电化学特性的研究
     鉴于β-环糊精自身的低水溶性,在许多领域的应用受到很大限制,因此将β-环糊精与交联剂环氧氯丙烷进行聚合反应,制备高水溶性β-环糊精聚合物以克服环糊精自身的不足。首先,选取电化学领域广泛使用的非水溶性二茂铁作为客体分子,设计了一种高水溶性二茂铁-环糊精聚合物超分子包合物。通过核磁氢谱、元素分析、X射线衍射、热失重、红外光谱、紫外光谱、电化学循环伏安法等,对包合物进行了研究。和二茂铁本身及二茂铁-β-环糊精包合物对比,这种包合物的水溶性有着显著提高。包合物二茂铁分子与环糊精单元的摩尔比为1:1,25℃时的解离常数为3.65mM。此外,还详细研究了包合物的电化学性质,氧化态与还原态的扩散系数分别为3.52×10-7cm2s-1和3.93×10-7cm2s-1,标准速率常数为1.95×10-3cm s-1,扩散活化能为21.8kJmol-1。
     5.水溶性环糊精聚合物-碳纳米材料的制备及其超分子识别性能研究
     本课题组已经研究了β-环糊精聚合物对于不同客体分子的包合增溶效果,证明了这种主体超分子聚合物能够包合各种尺寸的疏水分子(如β-环糊精空腔尺寸相匹配的二茂铁,大于β-环糊精空腔尺寸的金丝桃素等)。为了制备具有超分子识别功能的纳米材料,将β-环糊精聚合物与多种碳纳米材料(从零维结构到二维结构,如富勒烯、单壁碳纳米管、多壁碳纳米管、石墨烯)通过非共价键相互作用进行负载,设计了一系列水溶性超分子功能化的碳纳米材料。通过紫外光谱、拉曼光谱、红外光谱、透射电镜、扫描电镜、热失重测试,对环糊精聚合物-碳纳米材料进行了研究,证明环糊精聚合物与碳纳米材料之间的非共价键相互作用使碳纳米材料稳定分散在水相中。此外,利用电化学循环伏安法研究了功能化碳材料的超分子识别能力。并且,通过在多壁碳纳米管表面发生对氨基硫酚与β-环糊精聚合物的超分子包合,实现了金、铂纳米粒子在碳纳米管壁上地直接修饰,并对铂修饰碳纳米管的甲醇电催化性能进行了研究。
Cyclodextrins (CDs) are the Second-generation supramolecular host molecules. Given the hydrophobic internal cavity and hydrophilic external surface of CDs, the special molecular structures can form supramolecular host-guest complexes with various hydrophobic molecules. Therefore, CDs are used in various fields, such as in electroanalysis, biotechnology, and environmental protection, because of their distinct physical and chemical properties. In this article, it was studied the combination between CDs and their water-soluble polymers with nanomaterials, and designed a variety of cyclodextrin functional materials with supramolecular recognition, expanded cyclodextrin nano-materials in the applications of electrochemistry and water treatment. This dissertation was divided into the following five parts:
     1. Electrospinning β-cyclodextrin/poly (vinyl alcohol) nanofibrous membrane for molecular capture
     A novel β-cyclodextrin/poly (vinyl alcohol) nanofibrous membrane (β-CD/PVAnfm) with the function of molecular capture was successfully prepared by electrospinning homogeneous aqueous solutions of β-CD and PVA. p-CD/PVAnfm was characterized by scanning electronic microscopy and Fourier transform infrared spectroscopy. The viscosity of β-CD/PVA solution increased with the concentration of β-CD and high viscosity of β-CD/PVA solution was beneficial to form more uniform nanofibers. The interaction between β-CD and PVA in the solution was studied by rheological measure and1H NMR. The rheological change of electrospinning solutions was attributed to the intermolecular hydrogen bonding between β-CD and PVA in the solution, which was confirmed by1H NMR. The electrochemical measurement showed that β-CD/PVAnfm could recognize small hydrophobic molecules such as ferrocene (Fc) by forming inclusion complexes. The molecular capturing ability of β-CD/PVAnfm increased with the amount of β-CD in the composite nanofibrous membrane. The results suggested that the composite nanofibrous membrane could be potentially applied to purification/separation processes, electrochemical sensor, drug delivery, and so on.
     2. Preparation of β-cyclodextrin functionalized polyacrylonitrile nanofibers and its adsorption for methylene blue
     A novel Polyacrylonitrile/β-cyclodextrin (PAN/β-CD) nanofibrous membrane (PAN/β-CDnfm) for molecular adsorption was successfully prepared by electrospinning from a homogeneous solution of β-CD and PAN in DMF. PAN/β-CDnfm with the different wt.%was characterized by scanning electronic microscopy, Fourier transform infrared spectroscopy and X-ray powder diffraction. The SEM results showed that the increasing concentration of β-CD in the fibrous membrane improved the fibrous morphology. The viscosity and conductivity of electrospinning solutions were influenced by the addition of β-CD. The studies of FTIR and XRD proved that β-CD molecules combined with the PAN nanofibers. In the adsorption study, methylene blue (MB) was used as a model molecule. By UV-vis spectrometry, PAN/β-CDnfm showed the efficient adsorption ability for MB via the formation of the inclusion complex with β-CD, which indicated that the β-CD functionalized nanofibers might be utilized in purification/separation processes, electrochemical sensor, drug delivery, and so on.
     3. Correlation of polymer-like solution behaviors with electrospun fiber formation of hydroxypropyl-β-cyclodextrin and the adsorption study on the fiber
     Based on our previous study of CD/polymer, the formation of hydroxypropyl-β-cyclodextrin (HPCD) nanofiber in electrospinning and the adsorption on HPCD nanofiber for organic molecule were studied. The properties of polymer-like solution from highly concentrated HPCD/N,N-dimethylformamide (DMF) solution revealed the formation of HPCD supramolecular aggregates. The entanglements of HPCD self-organized aggregates were one of the most important factors that significantly influenced fiber formation during cyclodextrin electrospinning. The HPCD self-organized aggregates entanglement concentration (Ce) was investigated. Analyzing the dependence of specific viscosity (ηsp) on concentration enabled the determination of the aggregates unentangled and entangled regimes for HPCD polymer-like solutions. The dynamic light scattering (DLS) measurements and the 'H NMR spectra of HPCD solutions confirmed the presence of considerable HPCD self-organized aggregates in high concentrated HPCD/DMF solutions due to the intermolecular hydrogen bonding. The scanning electron microscopy (SEM) showed the electrospinning morphology transitioned from regular beads to uniform fibers with the HPCD concentration increased. The dependence of the fiber diameter on the zero shear rate viscosity (η0) was determined. Static adsorption behavior of HPCD fibers was studied. Neutral red (NR) was a model organic molecule. The adsorption of NR onto HPCD fibers fitted the pseudo-second-order kinetic model. The equilibrium adsorption amount of NR was18.41mg g-1, and the apparent adsorption rate constant was9.83×10-4g mg-1min-1at25℃.
     4. Preparation and electrochemical behavior of water-soluble inclusion complex of ferrocene with β-cyclodextrin polymer
     A new water-soluble inclusion complex of ferrocene (Fc) with β-cyclodextrin polymer (β-CDP) was prepared by a facile strategy and characterized by1H-NMR spectroscopy, elemental analysis, powder X-ray diffractometry, thermogravimetry, UV-vis spectroscopy and cyclic voltammetry. Compared with Fc and the inclusion complex of Fc with β-cyclodextrin (Fc-β-CD), the solubility of ferrocene-β-cyclodextrin polymer (Fc-β-CDP) was greatly enhanced due to the water-soluble β-CDP host. The ratio of β-cyclodextrin (β-CD) unit in β-CDP to Fc was determined as1:1. At25℃, the dissociated constant of Fc-β-CDP was measured as3.65mM by UV-vis spectroscopy and cyclic voltammetry. The electrochemical properties of Fc-β-CDP in water were studied. The diffusion coefficients of oxidation state and reduction state were calculated as3.52×10-7cm2s-1and3.93×10-7cm2s-1. The resulting value of standard rate constant was measured as1.95×10-3cm s-1. The diffusion activation energy was calculated as21.8kJmol-1.
     5. Universal water-soluble cyclodextrin polymer-carbon nanomaterials with supramolecular recognition
     Functionalization of carbon nanomaterials (CNMs)(including fullerenes, single-walled carbon nanotubes, multi-walled carbon nanotubes (MWCNTs), and graphene sheets) dispersed in water with macromolecules was achieved by a one-step strategy using β-cyclodextrin polymer (CDP). CDP-CNMs were characterized by ultraviolet-visible, Raman, and Fourier transform infrared spectroscopies, transmission and scanning electron microscopies, and thermogravimetric analysis. These nanomaterials showed high solubility and stability in water because of the noncovalent interaction between CNMs and CDP. The supramolecular recognition abilities of CDP-CNMs were studied by cyclic voltammetry (CV). CDP-MWCNTs were also decorated by p-aminothiophenol (PATP) which formed inclusion complexes with the CDP. The conjugates (PATP-CDP-MWCNTs) were ideal templates for the highly efficient assembly of noble metal nanoparticles (Au and Pt) with dramatically different properties. Methanol oxidation of Pt-decorated PATP-CDP-MWCNTs in CV analyses indicated its potential application in direct methanol fuel cells, facilitating the feasibility of metal-decorated CDP-CNMs in real technological applications. This universal method of producing CNMs ftmctionalized with macromolecules is beneficial for investigating the structure-performance relationship of CNMs for designing compounds with specialized functions.
引文
[1]Lehn, J. M. Science 1993,260,1762-1763.
    [2]Oshovsky, G. V.; Reinhoudt, D. N.; Verboom, W. Angew. Chem., Int. Ed.2007,46, 2366-2393.
    [3]Pedersen, C. J. J. Am. Chem. Soc.1967,89,7017
    [4]Mandl C. P.; Konig B. J. Org. Chem.2005,70,670
    [5]Szejtli, J. Chem. Rev.1998,98,1743.
    [6]Dondoni, A.; Marra, A. Chem. Rev.2010,110,4949
    [7]Desiraju, G. R. Nature 412,397
    [8]刘育,尤长城,张衡益.超分子化学——合成受体的分子识别与组装.天津:南开大学出版社,2001
    [9]Harada, A. Acc. Chem. Res.2001,34,456
    [10]童林荟.环糊精化学——基础与应用.北京:科学出版社,2001
    [11]Szejtli, J.; Osa, T. Comprehensive Supramolecular Chemistry. Pergamon:Oxford UK, 1996.
    [12]Bender, M. L.; Komiyama, M. Cyelodextrin Chemistry. NY:Springer-Verlag,1978
    [13]Fromming, K.H.; Szejtli, J. Cyclodextrins in Pharmacy. Netherlands:Kluwer Academic Press,1994.
    [14]Connors, K. A. Chem. Rev.1997,97,1325
    [15]Schneider, H. J.; Hacket, F.; Rudiger, V. Chem. Rev.1998,98,1755
    [16]Rekharsky, M. V.; Inoue, Y. Chem. Rev.1998,98,1875
    [17]Khan, A. R.; Forgo, P.; Stine, K. J.; D'Souza, V. T. Chem. Rev.1998,98,1977
    [18]Engeldinger, E.; Armspach, D.; Matt, D.; Chem. Rev.2003,103,4147
    [19]Hapiot, F.; Tilloy, S.; Monflier, E. Chem. Rev.2006,106,767
    [20]Wenz, G.; Han, B. H.; Muller, A. Chem. Rev.2006,106,782
    [21]Yang, B.; Lin, J; Chen, Y.; Liu,Y. Bioorg. Med Chem.2009,17,6311
    [22]Del Valle, E. M. M. Process Biochem.2004,39,1033
    [23]Saenger, W.Angew. Chem., Int. Ed.1980,19,344.
    [24]Nelson, G.; Patonay, G.; Warner I. M. Appl. Spectroscopy 1987,41,1235
    [25]Isnin, R.; Salam, C.; Kaifer, A. E. J. Org. Chem.1991,56,35
    [26]Palepu, R.; Reinsborough, V. C. Aust. J. CheM.1990,43,2119
    [27]Vogtle, F.; Miiller, W. M. Angew. Chem., Int. Ed.1979,18,623.
    [28]Harada, A.; Takahashi, S. J. Chem. Soc, Chem. Commun.1984,645
    [29]Harada, A.; Takahashi, S. J. Chem. Soc, Dalton Trans.1988,729
    [30]Odagaki, Y.; Hirotsu, K.; Higuchi, T.; Harada, A.; Takahashi, S. J. Chem. Soc, Perkin Trans.1 1990,1230
    [31]Harada, A.; Kamachi, S. Macromolecules,1990,23,2821
    [32]Huh, K. M.; Ooya, T.; Lee, W. K.; Sasaki, S.; Kwon, I. C.; Jeong, S. Y.; Yui, N. Macromolecules,2001,34,8657
    [33]Choi, H. S.; Kontani, K.; Huh, K. M; Sasaki, S.; Ooya, T.; Lee, W. K.; Yui; N. Macromol. Biosci.2002,2,298
    [34]Huh, K. M.; Cho, Y. W.; Chung, H.; Kown, I. C.; Jeong, S. Y.; Ooya, T.; Lee, W. K.; Sasaki, S. Macromol. Biosci.2004,4,92
    [35]Kidowaki, M.; Zhao, C. M.; Kataoka, T.; Ito, K. Chem. Commun.2006,39,4102
    [36]Karino,T.; Okumura, Y.; Zhao, C.; Kidowaki, M.; Kataoka, T.; Ito, K.; Shibayama, M. Marcromolecules,2006,39,9435
    [37]Kataoka, T.; Kidowaki, M.; Zhao, C.; Minamikawa, H.; Shimizu, T.; Ito, K.J.Phys. Chem. 52006,110,24377
    [38]Wei, H. L.; Yu, H. Q.; Zhang, A. Y.; et al. Marcromolecules,2005,38,8833
    [39]Wintgens, V.; Charles, M.; Allouache, F. Marcromol. Chem. Phys.2005,206,1853
    [40]Liu, J.; Chen, G.; Guo, M.; Jiang, M. Marcromolecules,2010,43,8086
    [41]Zheng, Y.; Hashidzume, A.; Takashima, Y.; Yamaguchi, H.; Harada, A. ACS Macro Lett. 2012,1,1083
    [42]Chui, H. S.; Yui, N. Prog. Polym. Sci.2006,31,121
    [43]Choi, H. S.; Ooya, T.; Huh, K. M.; Yui, N. Biomacromolecules 2005,6,1200
    [44]Lee, S. C.; Choi, H. S.; Ooya, T.; Yui, N. Marcromolecules,2004,37,7464
    [45]Layre, A.; Volet, G.; Wintgens, V.; Amiel, C. Biomacromolecules,2009,10,3283
    [46]Doyaguez, E. G.; Rodriguez-Hernandez, J.; Corrales G.; Fernandez-Mayoralas, A.; Gallardo, A. Macromolecules,2012,45,7676
    [47]Matsue, T.; Evans, D. H.; Osa, T.; Kobayashi, N. J. Am. Chem. Soc.1985,107,3411
    [48]Matsue,T.; Kato, T.; Akiba, U.; Osa, T. Chem. Lett.1986,843
    [49]Buriez, O.; Heldt, J.M.; Labbe, E.; Vessieres, A.; Jaouen, G.; Amatore, C. Chem. Eur. J. 2008,14,8195
    [50]Casas-Solvas, J. M.; Ortiz-Salmeron, E.; Fernandez, I.; Garcia-Fuentes, L.; Santoyo-Gonzalez, F.; Vargas-Berenguel, A. Chem. Eur. J.2009,15,8146
    [51]Yang, L.; Gomez-Casado, A.; Young, J. F.; Nguyen, H. D.; Cabanas-Danes, J.; Huskens, J.; Brunsveld, L.; Jonkheijm, P. J. Am. Chem. Soc.2012,134,19199
    [52]Yan, Q.; Yuan, J.; Cai, Z.; Xin, Y.; Kang, Y.; Yin, Y. J. Am. Chem. Soc.2010,132,9268
    [53]Tomatsu, I.; Hashidzume, A.; Harada, A. Macromol. Rapid. Commun.2006,27,238
    [54]Tamai, Naoto.; Miyasaka, H. Chem. Rev.2000,100,1875
    [55]Tomatsu, I.; Hashidzume, A.; Harada, A. Macromolecules 2005,38,5223
    [56]Zou, J.; Tao, F. G.; Jiang, M. Langmuir 2007,23,12791
    [57]Zou, J.; Guan, B.; Liao, X. J.; Jiang, M. Macromolecules 2009,42,7465
    [58]Peng, K.; Tomatsu, I.; Kros, A. Chem. Commun.2010,46,4094
    [59]Zhang, Y.; Han, M.; Chen, H.; Zhang, Y.; Liu, Yu. Org. Lett.2013,15,124
    [60]Kanaya, A.; Takashima, Y.; Harada, A. J. Org. Chem.,2011,76,492
    [61]Kuad, P.; Miyawaki, A.; Takashima, Y.; Yamaguehi, H.; Harad, A.J. Am. Chem. Soc.2007, 129,12630
    [62]Lahav, M.; Ranjit, K. T.; Katz, E.; Willner, I. Chem. Commun.1997,3,259
    [63]Wang, Y. P.; Ma, N.; Wang, Z. Q.; Zhang, X. Angew. Chem., Int. Ed.2007,46,2823
    [64]Cromwell, W. C.; Bystrom, K.; Eftink, M. R. J. Phys. Chem.1985,89,326
    [65]Liu, Z.; Jiang, M. J. Mater. Chem.2007,17,4249
    [66]Wei, K.; Li, J.; Chen, G.; Jiang, M. ACS Macro Lett.2013,2,278
    [67]Van de Manakker, F.; Vermonden, T.; Van Nostrum, C. F.; Hennink, W. E. Biomacromolecules 2009,10,3157
    [68]Morin-Crini, N.; Crini, G. Prog. Polym. Sci.2013,38,344
    [69]Renard, E.; Deratani, A.; Volet, G.; Sebille, B. Eur. Polym. J.1997,33,49
    [70]Chen, M.; Wang, J.; Zhang, W.; Diao, G. J. Electroanal. Chem.2013,696,1
    [71]Taupitz, T.; Dressman, J. B.; Buchanan, C. M.; Klein, S. Eur. J. Pharm. Biopharm.2013,83, 378
    [72]Cappello, B.; Carmignani, C.; Iervolino, M.; La Rotonda, M. I.; Saettone, M. F. Int. J. Pharm.2001,213,75
    [73]Lia, J.; Xiao, H.; Li, J.; Zhong, Y. Int. J. Pharm.2004,278,329
    [74]Zhang, W.; Gong, X.; Cai, Y.; Zhang, C.; Yu, X.; Fan, J.; Diao, G. Carbohyd. Polym.2013, 95,366
    [75]Crini, G. Bioresour. Technol.2003,90,193
    [76]Crini, G. Bioresour. Technol.2006,97,1061
    [77]Crini, G.; Peindy, H. N. Dyes Pigment.2006,70,204
    [78]Crini, G. Dyes Pigment.2008,77,415
    [79]Crini, G.; Bertini S.; Torri, G.; Naggi, A.; Sforzini, D.; Veechi, C.; Janus, L.; Lekchiri, Y.; Morcellet, M.Appl.Polym.Sci.1998,68,1973
    [80]Crini, G.; Cosentino, C.; Bertini, S.; Naggi, A.; Torri. G.; Vecchi, C.; Janusc, L.; Morcellet, M. Carbohydr. Res.1998,308,37
    [81]Gonzalez, H.; Hwang, S. J.; Davis, M. E. Bioconjugate Chem.1999,10,1068
    [82]Hwang. S. J.; Bellocq, N. C.; Davis, M. E. Bioconjugate Chem.2001,12,280
    [83]Reineke, T. M.; Davis, M. E. Bioconjugate Chem.2003,14,247
    [84]Cheng, J.; Khin, K. T.; Jensen, G. S.; Liu, A. Bioconjugate Chem.2003,14,247
    [85]Pun, S. H.; Bellocq, N. C. Liu, A.; Jensen, G.; Machemer, T.; Quijano, E.; Schluep, T. Wen, S.; Engler, H.; Heidel, J.; Davis, M. E. Bioconjugate Chem.2004,15,831
    [86]Davis, M. E. Mol. Pharmaceutics 2009,6,659
    [87]Zhao, F.; Yin, H.; Zhang, Z.; Li, J. Biomacromolecules,2013,14,476
    [88]Kalpana, N.; Shailendra, K. Chem. Pharm. Bull.2010,58,1423
    [89]刘吉平,郝向阳.纳米科学与技术北京:科学出版社,2002
    [90]吴大诚.纳米纤维.北京:化学工业出版社,2003
    [91]王世敏,许祖勋,傅晶.纳米材料制备技术.北京:化学工业出版社,2002
    [92]Rayleigh, F. R. S. Phil. Mag 1882,44,184.
    [93]王策,卢晓峰.有机纳米功能材料:高压静电纺丝技术与纳米纤维.北京:科学出版社,2011
    [94]Formhals, A. US Patent 1975504,1934
    [95]Formhals, A. US Patent 2077373,1937
    [96]Formhals, A. US Patent 2158416,1939
    [97]Formhals, A. US Patent 2160962,1939
    [98]Formhals, A. US Patent 2187306,1940
    [99]Formhals, A. US Patent 2323025,1940
    [100]Formhals, A. US Patent 2349950,1944
    [101]Taylor, G. I. Proc. R. Soc. London Ser. A 1964,280,383
    [102]Taylor, G. I. J. Fluid Meck 1965,22,1
    [103]Taylor, G. I. Proc. R. Soc. London Ser. A 1966,291,145
    [104]Taylor, G. I. Proc. R. Soc. London Ser. A 1969,313,453
    [105]Simons, H. L. US Patent 3280229,1966
    [106]Baumgarten. P. K. J. Colloid Interface Sci.1971,36,71
    [107]Larrondo, L.; Manley, R. ST. J. J. Polym. Sci. Pol. Phys.1981,19,909
    [108]Hayati, I.; Bailey, A. I.; Tadros, T. F. J. Colloid Interface Sci.1987,117,205
    [109]Doshi, J.; Reneker, D. H. J. Electrostal.1995,35,151
    [110]Kim, J. S.; Reneker, D. H. Polym. Eng. Sci.1999,39,849
    [111]Fong, H.; Chun, I.; Reneker, D. H. Polymer 1999,40,4585
    [112]Fong, H.; Reneker, D. H. J. Polym. Sci., Part B:Polym. Phys.2000,37,3488
    [113]Yarin, A. L.; Koombhongse, S.; Reneker, D. H. J. Appl. Phys.2001,90,4836
    [114]Hou, H.; Reneker, D. H. Adv. Mater.2004,16,69
    [115]Hansen, L.M.; Smith, D. J.; Reneker, D. H.; Kataphinan, W. J. Appl. Polym. Sci.2005,95, 427
    [116]Han, T.; Reneker, D. H.; Yarin, A. L. Polymer 2007,48,6064
    [117]Yarin, A. L.; Reneker, D. H. Polymer 2008,49,2387
    [118]Li, D.; Xia, Y. Adv. Mater.2004,16,1151
    [119]Teo, W. E.; Ramakrishna, S. Nanotechnology 2006,17, R89
    [120]Frenot, A.; Chronakis, I. S. Curr. Opin. Colloid Interface Sci.2003,8,64
    [121]Greiner, A.; Wendorff, J. Angew. Chem., Int. Ed. 2007,46,5670
    [122]Larrondo, L.; Manley, R. ST. J. J. Polym. Sci. Pol. Phys.1981,19,933
    [123]Lyons, J.; Li, C.; Ko, F. Polymer 2004,45,7597
    [124]Rangkupan, R.; Reneker, D. H. J. Met. Mater. Miner.2003,12,81
    [125]Lee, S.; Obendorf, S. K. J. Appl. Polym. Sci.2006,102,3430
    [126]Gu, S. Y.; Ren, J.; Vancso, G. J. Eur. Polym. J.2005,41,2559
    [127]Wang, T.; Kumar, S. J. Appl. Polym. Sci.2006,102,1023
    [128]Koombhongse, S.; Liu, W.; Reneker, D. H. J. Polym. Sci. Part B 2001,39,2598
    [129]Jia, H.; Zhu, G.; Vugrinovich, B.; Kataphinan, W.; Reneker, D. H.; Wang, P. Biolechnol. Prog.2002,18,1027
    [130]Theron, S. A.; Zussman, E.; Yarin, A. L. Polymer 2004,45,2017
    [131]Koski, A.; Yim, K.; Shivkumar, S. Mater. Lett.2004,58,493
    [132]Lee, J. S.; Choi, K. H.; Ghim, H. D.; Kim, S. S. Chun, D. H.; Kim, H. Y.; Lyoo, W. S. J. Appl. Polym. Sci.2004,93,1638
    [133]Son, W. K.; Youk, J. H.; Lee, T. S.; Park, W. H. Mater. Lett.2005,59,1571
    [134]Zhang, C.; Yuan, X.; Wu, L.; Han, Y.; Sheng, J. Eur. Polym. J.2005,41,423
    [135]Matthews, J. A.; Wnek, G. E.; Simpson, D. G.; Bowlin, G. L. Biomacromolecules 2002, 3,232
    [136]Rho, K. S.; Jeong, L.; Lee, G.; Seo, B. M.; Park, Y. J.; Hong, S. D.; Roh, S.; Cho, J. J.; Park, W. H.; Min, B. M. Biomaterials 2006,27,1452
    [137]Li, M.; Mondrinos, M. J.; Gandi, R. M.; Ko, F. K.; Weiss, A. S.; Lelkes, P. I. Biomaterials 2005,26,5999
    [138]Buttafoco, L.; Kolkman, N. G.; Engbers-Buitjenhuijs, P.; Poot, A. A.; Dijkstra, P. J.; Vermes, I. Feijen, J. Biomaterials 2006,27,724
    [139]Zhang, Y.; Ouyang, H.; Lim, C. T.; Ramakrishna, S. Huang, Z. M. J. Biomed. Mater. Res. Part B 2005,72,156
    [140]Kim, S. H.; Nam, Y. S.; Lee, T. S.; Park, W. H. Polym. J.2003,35,185
    [141]Min, B. M.; Lee, G.; Kim, S. H.; Nam, Y. S.; Lee, T. S.; Park, W. H. Biomaterials 2004, 25,1289
    [142]Min, B. M.; Jeong, L.; Nam, Y. S.; Kim, J. M. Jin, J. Y.; Park, W. H. Int. J. Biol. Macromol.2004,34,223
    [143]Wang, H.; Zhang, Y.; Shao, H.; Hu, X. J. Mater. Sci.2005,40,5359.
    [144]Wang, H.; Shao, H.; Hu, X. J. Appl. Polym. Sci.2006,101,961
    [145]Jeong, L.; Lee, K. Y.; Liu, J. W.; Park, W. H. Int. J. Biol. Macromol.2006,38,140
    [146]Ramakrishna, S.; Fujihara, K.; Teo, W. E.; Yong, T.; Ma, Z.; Ramaseshan, R. Mater. Today 2006,9,40-50.
    [147]Kim C.; Ngoc, B. T. N.; Yang, K. S.; Kojima, M.; Kim, Y. J.; Endo, M.; Yang, S. C. Adv. Mater 2007,19,2341
    [148]Priya, A R S.; Subramania, A.; Jung, Y.; Kim, K. Langmuir 2008,24,9816
    [149]Li, L.; Peng, S.; Wang, J.; Cheah, Y. L.; Teh, P.; Ko, Y.; Wong, P.; Srinivasan, M. ACS Appl. Mater. Interfaces 2012,4,6005
    [150]Hwang, T. H.; Lee, Y. M.; Kong, B.; Seo, J.; Choi, J. W. Nano Lett.2012,12,802
    [151]Wang, X.; He, G.; Fong, H.; Zhu, Z. J. Phys. Chem. C 2013,117,1641
    [152]Tan, W.; Krishnaraj, R.; Deasi, T. A. Tissue Eng.2001,7,203
    [153]Bhattarai, S. R.; Battarai, N.; Yi, H. K.; Hwang, P. H.; Cha, D. I.; Kim, H. Y. Biomaterials 2004,25,2595
    [154]Boudriot, U.; Dersch, R.; Goetz, B.; Griss, P.; Greiner, A.; Wendorff, J. H. Biomed. Tech. 2004,49,242
    [155]Zhang, X.; Gao, X.; Jiang, L.; Qin, J. Langmuir 2012,28,10026
    [156]Kenawy, E. R.; Bowlin, G. L.; Mansfield, K.; Layman, J.; Simpson, D. G.; Sanders, E. H.; Wnek, G. E. Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem.2002,43,457
    [157]Kim, K.; Luu, Y. K.; Chang, C.; Fang, C. D.; Hsiao, B. S.; Chu, B.; Hadjiargyrou, B. M. J. Controlled Release 2004,98,47
    [158]Tchemtchoua, V. T.; Atanasova, G.; Aqil, A.; Filee, P.; Garbacki, N.; Vanhooteghem, O.; Deroanne, C.; Noel, A.; Jerome, C.; Nusgens, B.; Poumay, Y.; Colige. A. Biomacromolecules 2011,12,3194
    [159]Lalani, R.; Liu, L. Biomacromolecules 2012,13,1853
    [160]Jiang, H.; Fang, D.; Hsiao, B. S.; Chu, B.; Chen, W. Biomacromolecules 2004,5,326
    [161]Casper, C. L.; Yamaguchi, N.; Klick, K. L.; Rabolt, J. F. Biomacromolecules 2005,6, 1998
    [162]Cui, W.; Li, X.; Zhu, X.; Yu, G.; Zhou, S.; Weng, J. Biomacromolecules 2006,7,1623
    [163]Wang, C.; Yan, K.; Lin Y.; Hsieh. P. C. H. Macromolecules 2010,43,6389
    [164]Agarwal, S.; Wendorff, J. H.; Greiner. A. Polymer 2008,49,5603
    [165]Wang, H.; Li, M. Hu, J.; Wang, C.; Xu, S.; Han, C. C. Biomacromolecules DOI: 10.1021/bm301997e
    [166]Ding, B.; Wang, M.; Wang, X.; Yu, J.; Sun, G. Mater. Today 2006,9,40
    [167]Li, Z.; Zhang, H.; Zheng, W.; Wang, W.; Huang, H.; Wang, C.; MacDiarmid, A. G.; Wei, Y. J. Am. Chem. Soc.2008,130,5036
    [168]Ding, Y.; Wang, Y.; Li, B.; Lei. Y. Biosens. Bioelectron.2010,25,2009
    [169]Wang, Z. G.; Wang, Y.; Xu, H.; Li, G.; Xu, Z. J. Phys. Chem. C 2009,113,2955
    [170]Barhate, R. S.; Ramakrishna, S. J. Membr. Sci.2007,296,1
    [171]Doh, S. J.; Kim, C; Lee, S. G.; Lee, S. J.; Kim, H. J. Hazard. M.2008,154,118-127
    [172]Dai, Y.; Niu, J.; Yin, L.; Xu, J.; Xi, Y. J. Hazard. M.2011,192,1409
    [173]Ma, Z.; Ji, H.; Teng, Y.; Dong, G.; Zhou, J.; Tan, D.; Qiu, J. J. Colloid Interface Sci. 2011,358,547
    [174]Yuan, Y.; Zhao, Y.; Li, H.; Li, Y.; Gao, X.; Zheng,C.; Zhang, J. J. Hazard. M.2012, 227-228,427
    [175]Vu, D.; Li, Z.; Zhang, H.; Wang, Z.; Wang, Z.; Xu, X.; Dong, B.; Wang, C. J. Colloid Interface Sci.2012,367,429
    [176]Zhu, H.; Qiu, S.; Jiang, W.; Wu, D.; Zhang, C. Environ. Sci. Technol.2011,45,4527
    [177]Dai, Y.; Yin, L.; Niu, J. Environ. Sci. Technol 2011,45,10611
    [178]Miao, Y.; Wang, R.; Chen, D.; Liu, Z.; Liu, T. ACS Appl. Mater. Interfaces 2012,4,5353
    [179]Wang, J.; Pan, K.; He, Q.; Cao B. J. Hazard. Mater.2013,244-245,121
    [180]Bui, N.; McCutcheon, J. R. Environ. Sci. Technol.2013,47,1761
    [1]Szejtli, J. Chem. Rev.1998,98,1743
    [2]Li, S.; Purdy, W. C. Chem. Rev.1992,92,1457
    [3]Jozefaciuk, G.; Muranyi, A.; Fenyvesi, E. Environ. Sci. Technol.2003,37,3012
    [4]Zhao, J.; Lin, D.; Wang, Y.; Yao, S. Carbohydr. Polym.2010,80,1085
    [5]Yang, Y.; Gu, Z.; Xu, H.; Li, F.; Zhang, G. J. Agr. Food Chem.2010,58,5620
    [6]Namazi, H.; Kanani, A. Carbohydr. Polym.2009,76,46
    [7]Xu, F.; Zhang, Z.; Ping, Y.; Li, J.; Kang, E.; Neoh, K. Biomacromolecules 2009,10,285
    [8]Greiner, A.; Wendorff, J. H. Angew. Chem. Int. Ed.2007,46,5670
    [9]Li, D.; Xia, Y. Adv. Mater.2004,16,1151
    [10]Reneker, D. H.; Yarin, A. L. Polymer,2008,49,2387
    [11]Jia, Y. T.; Gong, J.; Gu, X. H.; Kim, H. Y.; Dong, J.; Shen, X. Y. Carbohydr. Polym.2007, 67,403
    [12]Wang, X.; Chen, X.; Yoon, K.; Fang, D.; Hsiao, B. S.; Chu, B. Environ. Sci. Technol.2005, 39,7684
    [13]Shan, D.; Qian, B.; Ding, S. N.; Zhu, W.; Cosnier, S.; Xue, H. G. Anal. Chem.2010,82, 5892
    [14]Yu, Y.; Gu, L.; Zhu, C.; Aken, P. A.; Maier, J. J. Am. Chem. Soc.2009,131,15984
    [15]Barhate, R. S.; Ramakrishna, S. J. Membr. Sci.2007,296,1
    [16]Chen, M.; Diao, G.; Zhang, E. Chemosphere 2006,63,522
    [17]Uyar, T.; Balan, A.; Toppare, L.; Besenbacher, F. Polymer,2009,50,475
    [18]Uyar,T.; Kingshott, P.; Besenbacher, F. Angew. Chem. Int. Ed.2008,47,9108
    [19]Otsubo, Y. Langmuir 1995,11,1893
    [20]Fong, H.; Chun, I.; Reneker, D. H. Polymer 1999,40,4585
    [21]Gholap, S. G.; Jog, J. P.; Badiger, M. V. Polymer 2004,45,5863
    [22]Matsue, T.; Evans, D. H.; Osa, T.; Kobayashi, N. J. Am. Chem. Soc.1985,107,3411
    [23]Buriez, O.; Heldt, J. M.; Labbe, E.; Vessieres, A.; Jaouen, G.; Amatore, C. Chem. Eur. J. 2008,14,8195.
    [1]Szejtli, J. Chem. Rev.1998,98,1743
    [2]Lehn, J. M. Science 1993,260,1762
    [3]Ren, S.; Chen, D.; Jiang, M. Chem. J. Chinese U.2010,31,167
    [4]Kang, S.; Chen, Y.; Shi, J.; Ma, Y.; Liu, Y. Chem. J. Chinese U.2007,28,458
    [5]Liu, Y.; Chen, G.; Chen, Y.; Cao, D.; Ge, Z. Bioorg. Med. Chem.2004,12,5767
    [6]Liu, Y.; Yu, Z. L.; Zhang, Y. M.; Guo, D. S.; Liu, Y. P. J. Am. Chem. Soc.2008,130,10431
    [7]Yang, Y.; Gu, Z.; Xu, H.; Li, F.; Zhang, G. J. Agr. Food. Chem.2010,58,5620
    [8]Chen, M.; Cui, L.; Li, C. H.; Diao G. J. Hazard. Mater.2009,162,23
    [9]Chen, M.; Diao G. Talanta 2009,80,815
    [10]Zhang, W.; Chen, M.; Diao, G. Electrochim. Acta 2011,56,5129
    [11]Greiner, A.; Wendorff, J. H. Angew. Chem. Int. Edit.2007,46,5670
    [12]Huang, Z.; Zhang, Y. Chem. J. Chinese U.2005,26,968
    [13]Kongkhlang, T.; Tashiro K, Kotaki M.; Chirachanchai, S. J. Am. Chem. Soc.2008,130, 15460
    [14]Huang, F.; Wang, Z.; Wan, L.; Huang, X.; Xu, Z. Chem. J. Chinese U.2010,31,1060
    [15]Hong, Y.; Shang, T.; Jin, Y.; Yang, F.; Wang, C. Chem. J. Chinese U.2005,26,985
    [16]Sun, H.; Zhang, H.; Ju, J.; Zhang, J.; Li, M; Tang, Y.; Yang, B. Chem. J. Chinese U.2009, 30,2071
    [17]Wang, Li.; Zhao, Y.; Jiang, L.; Wang, F. Chem. J. Chinese U.2009,30,731
    [18]Uyar T., Balan A., Toppare L., Besenbacher F. Polymer 2009,50,475
    [19]Zhang, W.; Chen, M.; Diao, G. Carbohyd. Polym.2011,86,1410
    [20]Lagergren, S. K. Sven. Vetenskapsakad Handl.1898,24,1
    [21]Ho, Y. S.; McKay, G. Process Biochem.1999,34,451
    [22]Ho, Y.S. J. Hazard. Mater.2006,136,681
    [23]Weber, W. J.; Morris, J. C. J. Sanitary Eng. Div. Am. Soc. Civ. Eng.1963,89,31
    [24]Chen, M.; Shang, T.; Fang, W.; Diao G. J. Hazard. Mater.2011,185,914
    [1]Li,D.;Xia,Y.Adv.Mater.2004,16,1151
    [2]Ramakrishna,S.;Fujihara,K.;Teo,W.E.;Yong,T.;Ma,Z.;Ramaseshan,R.Mater.Today 2006,9,40
    [3]Greiner,A.;Wendorff, J.Angew.Chem.,In.Ed.2007,46,5670
    [4]Reneker,D.H.;Yarin,A.L.Polymer 2008,49,2387
    [5]Huang,C.;Tang,Y.;Liu,X.;Sutti,A.;Ke,Q.;Mo,X.;Wang,X.;Morsi Y.;Lin,T.Soft Matter 2011,7,10812
    [6]Wang, X.; Chen, X.; Yoon, K.; Fang, D.; Hsiao, B. S.; Chu, B. Eniron. Sci. Technol.2005, 39,7684
    [7]Sharma, N.; Mckeown, S. J.; Ma, X.; Pochan, D. J.; Cloutier, S. G. ACS Nano 2010,4,5551
    [8]Yu, Y.; Gu, L.; Zhu, C.; Aken, P. A.;Maier, J.J. Am. Chem. Soc.2009,131,15984
    [9]McKee, M. G.; Wilkes, G. L.; Colby, R. H.; Long, T. E. Macromolecules 2004,37,1760
    [10]Shenoy, S. L.; Bates,W. D.; Frisch, H. L.; Wnek, G. E. Polymer 2005,46,3372
    [11]Gupta, P.; Elkins, C.; Long, T. E.; Wilkes, G. L. Polymer 2005,46,4799
    [12]Hunley, M. T.; England, J. P.; Long, T. E. Macromolecules,2010,43,9998
    [13]McKee, M.; Layman, J.; Cashion, M.; Long, T. E. Science 2006,311,353
    [14]Cashion, M. P.; Li, X.; Geng, Y.; Hunley, M. T.; Long, T. E. Langmuir 2010,26,678
    [15]Szejtli, J. Chem. Rev.1998,98,1743
    [16]Yu, J.; Fan, H.; Huang, J.; Chen, J. Soft Matter 2011,7,7386
    [17]Zhang, W.; Chen, M.; Diao, G. Electrochim. Acta 2011,56,5129
    [18]Bauer, M.; Charitat, T.; Fajolles, C.; Fragneto G.; Daillant, J. Soft Matter 2012,8,942
    [19]Chen, M.; Diao, G.; Zhang, E. Chemosphere 2006,63,522
    [20]Uyar, T.; Havelund, R.; Hacaloglu, J.; Besenbacher, F.; Kingshott, P. ACS Nano 2010,4, 5121
    [21]Uyar, T.; Balan, A.; Toppare, L.; Besenbacher, F. Polymer 2009,50,475
    [22]Uyar, T.; Havelund, R.; Nur, Y.; Hacaloglu, J.; Besenbacher, F.; Kingshott, P. J. Membr. Sci.2009,332,129
    [23]Uyar, T.;Nur, Y.;Hacaloglu, J.; Besenbacher, F. Nanotechnology 2009,20,125703.
    [24]Kim, T. G.; Ragupathy, D.; Gopalan, A. I.; Lee, K. P. Nanotechnology 2010,21,134021
    [25]Uyar, T.; Kingshott, P.; Besenbacher, F. Angew. Chem., Int. Ed.2008,47,9108
    [26]Celebioglu, A.; Uyar, T. Chem. Commun.2010,46,6903
    [27]Celebioglu, A.; Uyar, T. Nanoscale 2012,4,621
    [28]Celebioglu, A.; Uyar, T. Langmuir 2011,27,6218
    [29]Manasco, J. L.; Saquing, C. D.; Tang, C.; Khan, S. A. RSC Adv.2012,2,3778
    [30]Zhang, W.; Chen, M.; Diao, G. Carbohyd. Polym.2011,86,1410
    [31]Yang, B.; Lin, J; Chen, Y.; Liu,Y. Bioorg. Med. Chem.2009,17,6311
    [32]Hausler, O.; Muller-Goymann, C. C. Starch/Starke 1993,45,183
    [33]Bonini, M.; Rossi, S.; Karlsson, G.; Almgren, M.; Nostro, P. L.; Baglioni, P. Langmuir 2006,22,1478
    [34]Colby, R. H. Macromolecules 1991,24,3873
    [35]Colby, R. H.; Fetters, L. J.; Funk, W. G.; Graessley, W. W. Macromolecules 1991,24, 3873
    [36]Magid, L. J. J. Phys. Chem. B 1998,102,4064
    [37]Rubinstein, M.; Semenov, A. N. Macromolecules 2001,34,1058
    [38]Danino, D.; Talmon, Y.; Zana, R. Langmuir 1995,11,1448
    [39]Bernheim-Groswasser, A.; Zana, R.; Talmon, Y. J. Phys. Chem. B 2000,104,4005
    [40]Oda, R.; Huc, I.; Homo, J.-C.; Heinrich, B.; Schmutz, M.; Candau, S. Langmuir 1999,15, 2384
    [41]Kern, F.; Lequeux, F.; Zana, R.; Candau, S. J. Langmuir 1994,10,1714
    [42]Messner, M.; Kurkov, S. V.; Jansook, P.; Loftsson, T. Int. J. Pharm.2010,387,199
    [43]Azaroual-Bellanger, N.; Perly, B. Magn. Reson. Chem.1994,32,8
    [44]McKee, M. G.; Elkins, C. L.; Long, T. E. Polymer 2004,45,8705
    [45]Fong, H.; Chun, I.; Reneker, D. H. Polymer 1999,40,4585
    [46]Ganan-Calvo, A. M. Phys. Rev. Lett.1997,79,217
    [47]Lagergren, S. K. Sven. Vetenskapsakad Hand1. 1898,24,1
    [48]Ho, Y. S.; McKay, G. Process Biochem 1999,34,451
    [49]Ho, Y.S. J. Hazard. Mater.2006,136,681
    [50]Weber, W. J.; Morris, J. C. J. Sanitary Eng. Div. Am. Soc. Civ. Eng.1963,89,31
    [51]Chen, P.; Liang, H.; Lv X.; Zhu, H.; Yao, H.; Yu, S. ACS Nano 2011,5,5928
    [52]Shannon, M. A.; Bohn, P. W.; Elimelech, M.; Georgiadis, J. G.; Marinas, B. J.; Mayes, A. M. Nature 2008,452,301
    [1]Staveren, D. R.; Metzler-Nolte, N. Chem. Rev.2004,104,5931
    [2]Fernandez, L.; Carrero, H. Electrochim. Acta 2005,50,1233
    [3]Cosnier, S.; Shan, D.; Ding, S. N. Electrochem. Commun.2010,12,266
    [4]Shan, D.; Yao, W. J.; Xue, H. G. Biosens. Bioelectron.2007,23,432
    [5]Watkins, J. D.; Amemiya, F.; Atobe, M.; Bulman-Page, P. C.; Marken, F..Electrochim. Acta 2010,55,8808
    [6]Zhao, N.; He, Y.; Mao, X.; Sun, Y.; Zhang, X.; Li, C.; Lin, Y.; Liu, G. Electrochem. Commun.2010,12,471
    [7]Cass, A. E.; Davis, G.; Francis, G. D.; Hill, H. A.; Aston, W. J.; Higgins, I. J.; Plotkin, E. V.; Scott, L. D.; Turner, A. P. Anal. Chem.1984,56,667
    [8]Szejtli, J. Chem. Rev.1998,98,1743
    [9]Harada, A.; Takahashi, S. J. Chem. Soc.1984,10,645
    [10]Harada, A.; Takahashi, S. J. Incl. Phenom.1984,2,791
    [11]Zhang, G.; Wang, X. Talanta 2000,51,1019
    [12]Chmurski, K.; Temeriusz, A.; Bilewicz, R. Anal. Chem.2003,75,5687.
    [13]Chen, M.; Diao, G. Talanta 2009,80,815
    [14]Amatore, C.; Buriez, O.; Labbe, E.; Verpeaux, J. J. Electroanal Chem.2008,621,134
    [15]Mertins, O.; Buriez, O.; Labbe, E.; Fang, P.; Hillard, E.; Vessieres, A.; Jaouen, G.; Tian, Z.; Amatore, C. J. Electroanal. Chem.2009,635,13
    [16]Szente, L.; Szejtli, J. Trends. Food Sci. Technol.2004,15,137.
    [17]Matsue, T.; Evans, D. H.; Osa, T.; Kobayashi, N. J. Am. Chem. Soc.1985,107,3411
    [18]Strelets, V. V.; Mamedjarova, I. A.; Nefedova, M. N.; Pysnograeva, N. I.; Sokolov, V. I.; Pospis□il, L.; Hanzlik, J. J. Electroanal. Chem.1991,310,179
    [19]Renard, E.; Deratani, A.; Volet, G.; Sebille, B. Eur. Polym. J.1997,33,49
    [20]Qian, L.; Guan, Y.; Xiao, H. Int. J. Pharm.2008,357,244
    [21]Pralhad, T.; Rajendrakumar, K. J. Pharm. Biomed. Anal.2004,34,333
    [22]Chen, M.; Diao, G.; Zhang, E. Chemosphere 2006,63,522
    [23]Yilmaz, V. T.; Karadag, A.; Icbudak, H. Thermchim. Acta 1995,261,107
    [24]Wu, J. S.; Toda, K. Bull. Chem. Soc. Jpn.1998,71,1615
    [25]Page, J. A.; Wilkinson, G. J. Am. Chem. Soc.1952,74,6149
    [26]Isnin, R.; Salam, C.; Kaifer, A. E. J. Org. Chem.1990,56,35
    [27]Nicholson, R. S. Anal. Chem.1965,37,1351
    [28]Bourdillon, C.; Demaille, C.; Moiroux, J. Saveant, J. J. Am. Chem. Soc.1995,117,11499
    [29]Diao, G.; Liu, Y. Electroanal. Acta 2005,17,1279
    [30]Abreu, F. C.; Ferreira, D. C.; Goulart, M. O.; Buriez, O.; Amatore, C. J. Electroanal. Chem. 2007,608,125.
    [31]Buriez, O.; Heldt, J. M.; Labbe, E.; Vessieres, A.; Jaouen, G.; Amatore, C. Chem. Eur. J. 2008,14,8195
    [32]Taraszewska, J.; Piasecki, A. K. J. Electroanal. Chem.1987,226,137
    [33]Wang, X. P.; Pan, J. H.; Li, W. H.; Zhang, Y. Talanta 2001,54,805.
    [1]Bonifazi, D.; Enger, O.; Diederich, F. Chem. Soc. Rev.2007,36,390
    [2]Ajayan, P. M. Chem. Rev.1999,99,1787
    [3]Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chem. Rev.2006,106,1105
    [4]Rao, C. N.R.; Sood, A. K.; Subrahmanyam, K. S.; Govindaraj, A. Angew. Chem. Int. Ed. 2009,48,7752
    [5]Zhao, B.; Hu, H.; Yu, A.; Perea, D.; Haddon, R. C. J. Am. Chem. Soc.2005,127,8197
    [6]Chen, Z.; Kobashi, K.; Rauwald, U.; Booker, R.; Fan, H.; Hwang, WF.; et al. J. Am. Chem. Soc.2006,128,10568
    [7]Si, Y.; Samulski, E. T. Nano Lett.2008,8,1679
    [8]Arrais, A.; Diana, E.; Rossetti, R.; Boccaleri, E. Carbon 2007,45,2502
    [9]Kim, S. W.; Kim, T.; Kim, Y. S.; Choi, H. S.; Lim, H. J.; Yang, S. J.; et al. Carbon 2012,50, 3
    [10]Moore, V. C.; Strano, M. S.; Haroz, E. H.; Hauge, R. H.; Smalley, R. E. Nano Lett.2003,3, 1379
    [11]Liu, Y.; Yu, Z. L.; Zhang, Y. M.; Guo, D. S.; Liu, Y. P. J. Am. Chem. Soc.2008,130, 10431
    [12]Guo, Y.; Guo, S.; Ren, J.; Zhai, Y.; Dong, S.; Wang, E.ACS Nano 2010,4,4001
    [13]Hu, C.; Chen, Z.; Shen, A.; Shen, X.; Li, J.; Hu, S. Carbon 2006,44,428
    [14]Tung, V. C.; Huang, J. H.; Tevis, I.; Kim, F.; Kim, J.; Chu, C. W.; et al. J. Am. Chem. Soc. 2011,133,4940
    [15]White, R. J.; Luque, R.; Budarin, V. L.; Clark, J. H, Macquarrie, D. J. Chem. Soc. Rev. 2009,38,481
    [16]Xu, C.; Wang, X.; Zhu, J. J. Phys. Chem. C 2008,112,19841
    [17]Liu, J.; Fu, S.; Yuan, B.; Li, Y.; Deng, Z. J. Am. Chem. Soc.2010,132,7279
    [18]Szejtli, J. Chem. Rev.1999,98,1743
    [19]Zhang, W.; Chen, M.; Diao, G. Carbohyd. Polym.2011,86,1410
    [20]Yang, B.; Lin, J.; Chen, Y.; Liu, Y. Bioorg. Med. Chem.2009,17,6311
    [21]Zhang, W.; Chen, M.; Zha, B.; Diao, G. Phys. Chem. Chem. Phys.2012,14,9729
    [22]Renard, E.; Deratani, A.; Volet, G.; Sebille, B. Eur. Polym. J.1997,33,49
    [23]Zhang, W.; Chen, M.; Diao, G.Electrochim. Acta 2011,56,5129
    [24]Liu, R.; Zhang, Y.; Feng, P. J. Am. Chem. Soc.2009,131,15128
    [25]Davis, M. E. Mol Pharmaceutics 2009,6,659
    [26]Hummers, W.; Offeman, R. J. J. Am. Chem. Soc.1958,80,1339
    [27]Stankovich, S.; Dikin, D.A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; et al. Carbon 2007,45,1558
    [28]Jana, N. R.; Gearheart, L.; Murphy, C. J. Langmuir 2001,17,6782
    [29]Yang, J.; Lee, J. Y.; Too, H. P. Anal. Chim. Acta 2006,571,206
    [30]Liu, Y.; Chen, G. S.; Chen, Y.; Zhang, N.; Chen, J.; Zhao, Y. L.Nano Lett.2006,6,2196
    [31]Chen, J.; Dyer, M. J.; Yu, M. F. J. Am. Chem. Soc.2001,123,6201
    [32]Chambers, G.; Carroll, C.; Farrell, G. F.; Dalton, A. B.; McNamara, M.; Panhuis, M.; et al. Nano Lett.2003,3,843
    [33]Li, D.; Muller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Nat. Nanotechnol.2008,3, 101
    [34]Schar, P.; Risch, K.; Carta-Abelmann, L.; Dmytruk, I. M.; Bilyi, M. M.; Golub, O. A.; et al Carbon 2004,42,1203.
    [35]Sinani, V.A.; Gheith, M. K.; Yaroslavov, A.A.; Rakhnyanskaya, A. A.; Sun, K.; Mamedov, A. A.; et al. J. Am. Chem. Soc.2005,127,3463
    [36]Li, Y.; Gao, W.; Ci, L.; Wang, C.; Ajayan, P. M. Carbon 2010,48,1124
    [37]Zheng, S. F.; Hu, J. S.; Zhong, L. S.; Wan, L. J.; Song, W. G. J. Phys. Chem. C 2007,111, 11174
    [38]Mu, Y.; Liang, H.; Hu, J.; Jiang, L.; Wan, L. J. Phys. Chem. B 2005,109,22212
    [39]Kakaei, K. Carbon 2013,51,195
    [40]Dong, L.; Gari, R. R. S.; Li, Z.; Craig, M. M.; Hou, S. Carbon 2010,48,781
    [41]Guo, S.; Dong, S.; Wang, E. ACS Nano 2010,4,547

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700