用户名: 密码: 验证码:
DEN诱导大鼠肝癌模型的代谢组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分DEN诱导大鼠肝癌模型的代谢组学研究
     [研究目的]
     肝细胞性肝癌(简称肝癌,Hepatocellular Carcinoma, HCC)是我国最常见的恶性肿瘤之一,目前的研究认为:肝炎病毒感染及其他致癌因素是肝癌发生的主要外因。同时,肝癌和其它恶性肿瘤一样,其发生发展是由体内多基因多蛋白参与、多步骤协同的复杂过程。寻找肝癌发生、发展过程中的相关代谢产物有助于研究肝癌发生及发展的机制,从而为肝癌的预防、诊断及治疗提供理论基础。
     组学概念的提出为研究者提供了一个整体研究疾病的新思路,基因组学、转录组学、蛋白组学等已经不为大家所陌生,作为系统生物学最下游的代谢组学,是一门新的科学,主要研究生物体对病理生理刺激或基因修饰所产生代谢物的质和量的动态变化规律。这种整体的研究模式可全面了解代谢物质在疾病发生、发展过程中的变化规律,对发病机制研究以及疾病的诊断、治疗和疗效评估具有重要意义。因此,我们采用该理论,结合现代生物质谱技术,对DEN诱导大鼠肝炎—肝硬化—肝癌模型以及慢性肝炎、肝硬化和肝癌病人进行代谢组学研究。
     本研究拟首先通过DEN诱导建立大鼠肝炎—肝硬化—肝癌动物模型,观察在不同发展阶段血浆代谢小分子的变化情况,从中找出不同发展阶段大鼠血浆中潜在的代谢物分子标签;然后对模型肝脏组织进行代谢组研究,并与疾病的发展阶段进行关联;最后将这些代谢物分子标签在人血浆中进行验证,观察其对肝癌的预测能力。
     [研究方法]
     1.建立DEN诱导大鼠肝炎—肝硬化—肝癌模型;
     2.模型不同阶段大鼠血浆的代谢组检测;
     3.基于大鼠血浆代谢组的预测模型建立;
     4.潜在大鼠血浆代谢产物分子标志物的筛选及鉴定;
     5.模型不同阶段大鼠肝脏组织的代谢组检测;
     6.基于大鼠肝脏组织代谢组的预测模型建立;
     7.潜在血浆代谢产物分子标志物在肝炎、肝硬化、肝癌病人血浆中的验证及筛选。
     [结果]
     1.DEN诱导的大鼠肝癌模型可以很好的模拟人肝炎—肝硬化—肝癌的发展进程;
     2.大鼠血浆的代谢组检测发现相对于NC组而言,DEN组大鼠在炎症期、硬化期及肝癌期,分别有382个、427个以及445个代谢物离子有显著性差异,其中又分别有253个、330个以及383个代谢物离子升高;
     3.基于大鼠血浆代谢组数据建立的PLS-DA分析模型,计算出5个主成份,前两个主成份可以分别表示致癌过程及年龄增长的代谢物变化;
     4.基于肝癌阶段与非肝癌阶段代谢组数据建立的OPLS模型,筛选出对模型贡献最大的50个变量,其中一半与HCC正相关,另一半与非HCC正相关;
     5.用这50个代谢产物另外建立PLS-DA模型,计算出两个主成份,模型能够很好地区分炎症期、硬化期和肝癌期三个阶段;
     6.对50个代谢产物进行鉴定,发现包括氨基酸、胆汁酸、磷脂、游离脂肪酸、神经鞘氨醇以及肉碱等;
     7.基于大鼠肝脏组织的代谢组检测发现相对于NC组而言,DEN组大鼠在炎症期、硬化期及肝癌期,分别有326个、337个以及631个代谢物离子有显著性差异,在肝癌和肿瘤邻近组织中也发现有578个代谢产物存在差异,瘤旁组织与肝硬化组织更为接近,只有146个代谢产物不同;
     8.基于大鼠肝脏组织代谢组数据建立的PLS-DA模型,计算出三个主成份,模型能够很好地区分炎症期、硬化期和肝癌期三个阶段;
     9.基于大鼠肝癌组织和肿瘤邻近组织代谢组数据建立的OPLS模型,发现牛磺酸结合胆汁酸是最重要的代谢产物;
     10.人血浆的代谢组与上述50个不同代谢产物相比,共有29个可以配对上;
     11.用这29个代谢产物所建立的PLS-DA模型,能够很好地区分肝炎、肝硬化及肝细胞癌病人;
     12.二元logistic回归进行计算,方程式显示如下(1,2):5个代谢产物进入最后的肝癌预测方程。这些产物包括:二氢(神经)鞘氨醇(Measured mass:301.2980,X1),棕榈酰肉碱(Measured mass:399.3351,X2),一种胆汁酸衍生物(Measured mass:356.2711,X3),溶血磷脂酰胆碱(LPE(22:5),Measured mass:569.3475,X4),以及溶血磷脂酰乙醇胺(LPC(16:0),Measuredmass:453.2856,X5),5个代谢产物组合后的ROS曲线下面积为0.951;
     13.5个代谢产物在肝癌病人血浆相对浓度与肝炎病人及肝硬化病人相比,除了胆汁酸衍生物在HCC与肝硬化之间差异没有统计学意义,均有显著差异。
     [结论]
     本研究采用液相色谱—质谱联用分析技术(LC-MS),对DEN诱导的大鼠肝癌动物模型血浆及肝脏组织进行代谢组学研究,筛选出区分肝癌与非肝癌的50个代谢产物,与肝炎、肝硬化及肝癌病人的血浆代谢组数据比较,最终寻找到5个潜在代谢标志物:二氢(神经)鞘氨醇,棕榈酰肉碱,一种胆汁酸衍生物,溶血磷脂酰胆碱,以及溶血磷脂酰乙醇胺。研究结果为寻找肝癌分子标志物、肝癌代谢相关通路研究及肝癌的诊断提供了新的思路与方法。
     第二部分Hedgehog信号通路在肝内胆管癌发生发展中的作用
     [研究目的]
     肝内胆管癌(Intrahepatic Cholangiocarcinoma,ICC),又称胆管细胞癌或周围型胆管癌,是来自肝内二级分支以下胆管树上皮的肿瘤。在世界范围内,肝内胆管癌是仅次于肝细胞癌的第二大肝脏恶性肿瘤,占原发性肝脏恶性肿瘤的10%-20%,其发病率近年来呈上升趋势。肝内胆管癌具有发生隐匿、恶性程度高、发展迅速、手术切除率低、复发转移早、临床预后差等特点,严重影响病人的生活质量及生存率。以往对这类非肝细胞起源的肝脏恶性肿瘤的发生与发展过程缺乏系统的了解,研究水平也相对滞后。因此针对临床肝内胆管癌诊治中的难点进行深入研究,尤其是研究其发生、发展以及复发、转移的机制,以寻找新的有效的肝内胆管癌特异性治疗方法十分必要。
     Hedgehog(Hh)基因是编码一系列分泌蛋白的基因家族,1980年首先在果蝇中被发现。Hh信号转导通路最早被发现对胚胎发育过程中的细胞分化和增殖起重要作用。近年来通过对其信号转导途径深入研究,发现Hh通路的异常在人类肿瘤的形成中也有极其重要的作用。HH基因在不同组织中过度表达以及靶基因突变,均可导致细胞特异性的组织增生,参与肿瘤的发生和发展。Hh通路与肿瘤的关系最早在Glioma中被证实,其与脑部神经瘤的形成联系密切,后又发现Hh信号异常与基底细胞癌、肺癌、前列腺癌、口腔癌和消化道肿瘤等的形成均有重要关系。
     Hh信号通路在肝脏发育、细胞分化以及肿瘤发生上均起重要作用,本实验拟分析Hh信号通路相关分子在肝内胆管癌组织及肝内胆管癌细胞系中的表达,体内外调节Hh信号通路观察其对肝内胆管癌细胞系生物学特性的影响,并分析Hh信号通路下游转录分子Gli1、Gli2表达水平与肝内胆管癌病人临床病理资料及预后的相关性。以上工作有助全面揭示肝内胆管癌发生、发展的分子机制,深化对Hh信号通路的认识,为寻找肝内胆管癌新治疗靶点提供线索和思路。
     [研究方法]
     1. Real-time PCR检测正常肝内胆管上皮组织与对肝内胆管细胞癌组织中Hh通路信号分子的mRNA表达水平;
     2.免疫组织化学检测正常肝内胆管上皮组织与对肝内胆管细胞癌组织中Hh通路信号分子的蛋白表达水平;
     3.体外用小分子化合物改变Hh信号通路的活性,观察其对肝内胆管癌细胞系生物学特性的影响;
     4.体内用小分子化合物改变Hh信号通路的活性,观察其对肝内胆管癌细胞系生物学特性的影响;
     5.Hh通路信号分子与肝内胆管癌病人临床病理资料及预后资料的统计分析。
     [结果]
     1.Hh信号通路在肝内胆管癌组织中异常激活:Hh信号通路配体shh和ihh分别有87.8%和78.0%表达升高,受体ptchl有87.8%表达升高,下游分子smo有85.4%表达升高,下游转录分子gli1、gli2及gli3分别有65.9%、87.8%及36.6%表达升高,下游靶分子hhip、bcl2和c-myc分别有17.1%、75.6%和82.9%表达升高;
     2.Hh信号通路在肝内胆管癌细胞系QBC939、RBE及HCCC-9810中也异常激活;
     3.在体外用Hh信号通路特异性抑制剂KAAD-Cyclopamine能够抑制QBC939、RBE和HCCC-9810的增殖,且其抑制程度与KAAD-Cyclopamine呈剂量依赖性;
     4.在体内Cyclopamine能够明显抑制QBC939细胞种植肿瘤的大小;
     5.肝内胆管癌组织中Hh信号通路下游转录分子Gli1蛋白高表达的病人更易发生肝内转移,预后更差;
     6.肝内胆管癌组织中Hh信号通路下游转录分子Gli2蛋白高表达的病人更易发生肝内转移和血管侵犯,预后更差;
     7.单因素分析发现发现血清CA19-9>37units/ml、最大肿瘤直径>5cm、伴有肝内转移、淋巴结转移、血管侵犯、T3/4、TNMⅢ/Ⅳ期和Gli1、Gli2蛋白在肿瘤组织中高表达的肝内胆管癌病人总体生存率更低;
     8.多因素分析发现最大肿瘤直径、肝内转移、淋巴结转移和Gli1的表达高低与肝内胆管癌病人的预后密切相关,是独立的预后因素。
     [结论]本研究从人肝内胆管癌组织标本和体外培养的肝内胆管癌细胞系两个方面,检测发现Hh信号通路在其中异常激活;用Hh信号通路特异性抑制剂在体内外改变通路活性,均能够明显抑制肝内胆管癌细胞系的增殖能力;肝内胆管癌组织中Hh信号通路下游转录分子Gli1的表达高低与肝内转移及病人预后密切相关,Gli2的表达高低与肝内转移、血管侵犯、T分期及病人预后密切相关;Gli1的表达高低是肝内胆管癌的独立预后因素。本研究可加深人们对肝内胆管癌发生发展及其调控机理的认识,为研发肝内胆管癌靶向治疗新策略提供靶点。
Part I Metabonomic investigations of DEN induced hepatocellular carcinoma in SD rats
     Hepatocellular carcinoma (HCC) is a predominant malignancy in the liver. It has become the third leading cause of death worldwide according to the estimation of WTO. HCC has a high incidence level in the East Asia countries. Cirrhosis is considered as the major risk factor for liver carcinogenesis. Hepatitis B and C virus infection, aflatoxin B1 exposure and alcohol drinking are also the commonly risk factors for HCC. In China, HBV infection is the most prevalent cause of HCC and account for more than 80% cases. The HBV related cirrhosis is also accounted for 2.7% of the HCC incidence in East Asia. Although the mechanism of carcinogenesis of HBV is still not very clear, the chronic necroinflammation with subsequent fibrosis and hepatocyte proliferation are generally considered as the major risk factors. CT and MRI are the major tools for the diagnosis, and AFP is a commonly used biomarker in the clinic. The diagnosis of HCC still is a great challenge for the clinic.
     Sprague-Dawley (SD) rats exposed to diethylnitrosamine (DEN) are suitable for the study of the hepatocarcinogenesis. As an environmental carcinogen, DEN can induce HCC by alkylate DNA molecules, and can be converted into highly reactive molecules by P450-dependent mono-oxygenase. Since the DEN induced hepatocarcinogenesis progresses from inflammation to cirrhosis, finally to HCC, it is similar to progress of HBV infection disease. This animal model is widely used in the study of the HCC, either for the mechanism of carcinogenesis or the seeking of diagnostic biomarkers.
     To obtain a systemic understanding and find potential biomarkers of the hepatocarcinogenesis, diethylnitrosamine (DEN) induced rat model of HCC was recruited in this study. Liquid chromatography coupled to time of flight mass spectrometry system was used for data acquisition. As a result,50 differential metabolites between HCC and non-HCC plasma were selected from rat models,29 of which could be found from the patients. A further filtration obtained 5 metabolites which could be considered as potential biomarker candidates for HCC, including dihydrosphingosine, Lysophosphatidyl ethanolamine (LPE,16:0), Palmityl-L-carnitine, Lysophosphatidyl choline (LPC,22:5), and a bile acid derivative. Considering the influences of ageing, LPE (16:0) could be a better one among the group. The metabolic profiling of rat tissue also indicated the latent mechanism of the up-regulation of LPE. The current study represented a suitable template for the searching and validation of potential biomarkers from plasma metabonome.
     Part II Activation of hedgehog signaling in intrahepatic cholangiocarcinoma
     Intrahepatic cholangiocarcinoma (ICC) is a rare malignant tumor which arises from the epithelial cells of intrahepatic bile ducts (beyond the second order bile ducts). The incidence of ICC is reported to be about 10% of primary liver cancers and its lethality is also on the top of primary liver cancers. Chronic cholangitis, HCV/HBV infection, choledochal cysts etal are significantly associated with ICC. ICC has the worst prognosis of any tumor arising in the liver; its 5-year survival is poor, and accompanied by a high recurrence rate. The overall 5-year survival rate ranges 15%-20%. The development and progression of ICC is a complicated process involving multiple genes and transforming steps. But the mechanisms underlying the development of ICC remain unclear. Therefore, searching for new ICC associated molecules may broaden our view to the progress of ICC.
     Activation of the hedgehog (Hh) pathway is shown to be involved in several types of gastrointestinal cancers. Here, we provide evidence to indicate that hedgehog signaling activation occurs frequently in ICC. We detect mRNA expression of Hh molecules in 41 ICC tissues and 8 normal intrahepatic bile duct epithelia. Expression of shh and ptchl are both elevated in about 87.8% of ICC. Consistent with this, hedgehog target genes Gli1 and Gli2 are elevated in 65.9% and 87.8% of the tumors, respectively, suggesting that the hedgehog pathway is frequently activated in ICC. We found QBC939, RBE and HCCC-9810 cells with detectable hedgehog target genes. Specific inhibition of hedgehog signaling in these three cell lines by smoothened (SMO) antagonist, KAAD-cyclopamine, or with Shh neutralizing antibodies decreases expression of hedgehog target genes, inhibits cell growth and results in apoptosis. Our data suggested that abnormal Hh signaling activation plays important roles in the development and progression of ICC.
     We found that a high expression of nuclear Gill was correlated with positive intrahepatic metastasis (P<0.05) and a high expression of nuclear Gil2 was correlated with positive intrahepatic metastasis and venous invasion. The survival curve of the group with high Gill or Gli2 nuclear expression was significantly lower than that of the group with low Gill or Gli2 nuclear expression (P<0.005). According to the multivariate analyses, high Glil expression can be considered an independent prognostic factor whose occurrence indicates a worse prognosis. We conclude that an elevated Gli1 expression adds an independent parameter that can be used when determining the prognosis of patients with ICC. Inhibition of the Hh pathway molecules might be a valid therapeutic strategy for ICC.
引文
[1]Gomaa AI, Khan SA, Toledano MB, Waked I, Taylor-Robinson SD. Hepatocellular carcinoma:Epidemiology, risk factors and pathogenesis. World J Gastroenterol.2008; 14(27):4300-4308.
    [2]Parikh S, Hyman D. Hepatocellular cancer:a guide for the internist. Am J Med.2007; 120(3):194-202.
    [3]Pokorski RJ, Ohlmer U. Long-term morbidity and mortality in Chinese insurance applicants infected with the hepatitis B virus. J Insur Med.2001; 33(2):143-164.
    [4]Horning MG, Murakami S, Horning EC. Analyses of phospholipids, ceramides, and cerebrosides by gas chromatography and gas chromatography-mass spectrometry. Am J Clin Nutr.1971; 24(9):1086-1096.
    [5]Nicholson JK, Lindon JC, Holmes E.'Metabonomics':understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica.1999; 29(11):1181-1189.
    [6]Nicholson JK, Connelly J, Lindon JC, Holmes E. Metabonomics:a platform for studying drug toxicity and gene function. Nat Rev Drug Discov.2002; 1(2):153-161.
    [7]Brindle JT, Antti H, Holmes E, Tranter G, Nicholson JK, Bethell HW, Clarke S, Schofield PM, McKilligin E, Mosedale DE, Grainger DJ. Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nat Med.2002; 8(12):1439-1444.
    [8]Holmes E, Antti H. Chemometric contributions to the evolution of metabonomics: mathematical solutions to characterising and interpreting complex biological NMR spectra. Analyst.2002; 127(12):1549-1557.
    [9]Fiehn O. Metabolic networks of Cucurbita maxima phloem. Phytochemistry.2003; 62(6):875-886.
    [10]Gowda GA, Zhang S, Gu H, Asiago V, Shanaiah N, Raftery D. Metabolomics-based methods for early disease diagnostics. Expert Rev Mol Diagn.2008; 8(5):617-633.
    [11]Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun
    J, Omenn GS, Ghosh D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, Varambally S, Beecher C, Chinnaiyan AM. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature.2009; 457(7231):910-914.
    [12]Li X, Xu Z, Lu X, Yang X, Yin P, Kong H, Yu Y, Xu G. Comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry for metabonomics:Biomarker discovery for diabetes mellitus. Anal Chim Acta.2009; 633(2):257-262.
    [13]Kuhara T. Gas chromatographic-Mass spectrometric urinary metabolome analysis to study mutations of inborn errors of metabolism. Mass Spectrom Rev.2005; 24(6): 814-827.
    [14]Mao Y, Huang X, Yu K, Qu HB, Liu CX, Cheng YY. Metabonomic analysis of hepatitis B virus-induced liver failure:identification of potential diagnostic biomarkers by fuzzy support vector machine. J Zhejiang Univ Sci B.2008; 9(6):474-481.
    [15]van Ginneken V, Verhey E, Poelmann R, Ramakers R, van Dijk KW, Ham L, Voshol P, Havekes L, Van Eck M, van der Greef J. Metabolomics (liver and blood profiling) in a mouse model in response to fasting:a study of hepatic steatosis. Biochim Biophys Acta.2007; 1771(10):1263-1270.
    [16]Wang Y, Tao Y, Lin Y, Liang L, Wu Y, Qu H, Liang T, Cheng Y. Integrated analysis of serum and liver metabonome in liver transplanted rats by gas chromatography coupled with mass spectrometry. Anal Chim Acta.2009; 633(1):65-70.
    [17]Yu K, Sheng G, Sheng J, Chen Y, Xu W, Liu X, Cao H, Qu H, Cheng Y, Li L. A metabonomic investigation on the biochemical perturbation in liver failure patients caused by hepatitis B virus. J Proteome Res.2007; 6(7):2413-2419.
    [18]Chen J, Zhao X, Fritsche J, Yin P, Schmitt-Kopplin P, Wang W, Lu X, Haring HU, Schleicher ED, Lehmann R, Xu G. Practical approach for the identification and isomer elucidation of biomarkers detected in a metabonomic study for the discovery of individuals at risk for diabetes by integrating the chromatographic and mass spectrometric information. Anal Chem.2008; 80(4):1280-1289.
    [19]Hu C, van Dommelen J, van der Heijden R, Spijksma G, Reijmers TH, Wang M, Slee E, Lu X, Xu G, van der Greef J, Hankemeier T. RPLC-ion-trap-FTMS method for lipid profiling of plasma:method validation and application to p53 mutant mouse model. J Proteome Res.2008; 7(11):4982-4991.
    [20]Sakamoto M. Early HCC:diagnosis and Molecular markers. J Gastroenterol.2009;44 Suppl 19:108-111.
    [21]Yin P, Wan D, Zhao C, Chen J, Zhao X, Wang W, Lu X, Yang S, Gu J, Xu G A metabonomic study of hepatitis B-induced liver cirrhosis and hepatocellular carcinoma by using RP-LC and HILIC coupled with mass spectrometry. Mol Biosyst.2009; 5(8): 868-876.
    [22]Pitot HC, Dragan YP, Teeguarden J, Hsia S, Campbell H. Quantitation of multistage carcinogenesis in rat liver. Toxicol Pathol.1996; 24(1):119-128.
    [23]Tessitore L, Marengo B, Vance DE, Papotti M, Mussa A, Daidone MG, Costa A. Expression of phosphatidylethanolamine N-methyltransferase in human hepatocellular carcinomas. Oncology.2003; 65(2):152-158.
    [1]Nusslein-Vollhard C, Wieschaus E. Mutations affecting segment number and polarity in Drosophila. Nature.1980; 287(5785):795-801.
    [2]Ingham PW, Placzek M. Orchestrating ontogenesis:variations on a theme by sonic hedgehog. Nat Rev Genet.2006; 7(11):841-850.
    [3]Rubin LL, de Sauvage FJ. Targeting the Hedgehog pathway in cancer. Nat Rev Drug Discov.2006; 5(12):1026-1033.
    [4]Epstein, E.H. Basal cell carcinomas:attack of the hedgehog. Nat Rev Cancer.2008; 8(10):743-754.
    [5]Watkins DN, Berman DM, Burkholder SG, Wang B, Beachy PA, Baylin SB. Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature.2003; 422(6929):313-317.
    [6]Mizuarai S, Kawagishi A, Kotani H. Inhibition of p70S6K2 down-regulates Hedgehog/GLI pathway in non-small cell lung cancer cell lines. Mol Cancer.2009; 8: 44.
    [7]Karhadkar SS, Bova GS, Abdallah N, Dhara S, Gardner D, Maitra A, Isaacs JT, Berman DM, Beachy PA. Hedgehog signaling in prostate regeneration, neoplasia, and metastasis. Nature.2004; 431(7009):707-712.
    [8]Shaw A, Gipp J, Bushman W. The Sonic Hedgehog pathway stimulates prostate tumorgrowth by paracrine signaling and recapitulates embryonic gene expression in tumormyofibroblasts. Oncogene.2009; 28(50):4480-4490.
    [9]Kasper M, Jaks V, Fiaschi M, Toftgard R. Hedgehog signalling in breast cancer. Carcinogenesis.2009; 30(6):903-911.
    [10]Berman DM, Karhadkar SS, Maitra A, Montes De Oca R, Gerstenblith MR, Briggs K, Parker AR, Shimada Y, Eshleman JR, Watkins DN, Beachy PA. Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature.2003; 425(6960):846-851.
    [11]Kim BM, Choi MY. New insights into the role of Hedgehog signaling in gastrointestinal development and cancer. Gastroenterology.2009; 137(2):422-424.
    [12]Arimura S, Matsunaga A, Kitamura T, Aoki K, Aoki M, Taketo MM. Reduced level of smoothened suppresses intestinal tumorigenesis by down-regulation of Wnt signaling. Gastroenterology.2009; 137(2):629-638.
    [13]Tannapfel A, Benicke M, Katalinic A, Uhlmann D, Kockerling F, Hauss J, Wittekind C. Frequency of p16(INK4A) alterations and K-ras mutations in intrahepatic cholangiocarcinoma of the liver. Gut.2000; 47(5):721-727.
    [14]Ura K, Obama K, Satoh S, Sakai Y, Nakamura Y, Furukawa Y. Enhanced RASGEF1A expression is involved in the growth and migration of intrahepatic cholangiocarcinoma. Clin Cancer Res.2006; 12(22):6611-6616.
    [15]Ohashi K, Nakajima Y, Kanehiro H, Tsutsumi M, Taki J, Aomatsu Y, Yoshimura A, Ko S, Kin T, Yagura K, et al. Ki-ras mutations and p53 protein expressions in intrahepatic cholangiocarcinomas:relation to gross tumormorphology. Gastroenterology.1995; 109(5):1612-1617.
    [16]Ozaki S, Harada K, Sanzen T, Watanabe K, Tsui W, Nakanuma Y. In situ nucleic acid detection of human telomerase in intrahepatic cholangiocarcinoma and its preneoplastic lesion. Hepatology.1999; 30(4):914-919.
    [17]Ito Y, Takeda T, Sasaki Y, Sakon M, Yamada T, Ishiguro S, Imaoka S, Tsujimoto M, Matsuura N. Expression and clinical significance of the G1-S modulators in intrahepatic cholangiocellular carcinoma. Oncology.2001; 60(3):242-251.
    [18]Higashi M, Yonezawa S, Ho JJ, Tanaka S, Irimura T, Kim YS, Sato E. Expression of MUC1 and MUC2 mucin antigens in intrahepatic bile duct tumors:its relationship with a new morphological classification of cholangiocarcinoma. Hepatology.1999; 30(6):1347-1355.
    [19]Shibahara H, Tamada S, Higashi M, Goto M, Batra SK, Hollingsworth MA, Imai K, Yonezawa S. MUC4 is a novel prognostic factor of intrahepatic cholangiocarcinoma-mass forming type. Hepatology.2004; 39(1):220-229.
    [20]Boonla C, Wongkham S, Sheehan JK, Wongkham C, Bhudhisawasdi V, Tepsiri N, Pairojkul C. Prognostic value of serum MUC5AC mucin in patients with cholangiocarcinoma. Cancer.2003; 98(7):1438-1443.
    [21]Zhao R, Duncan SA. Embryonic development of the liver. Hepatology.2005; 41(5): 956-967.
    [22]Sicklick JK, Li YX, Melhem A, Schmelzer E, Zdanowicz M, Huang J, Caballero M, Fair JH, Ludlow JW, McClelland RE, Reid LM, Diehl AM. Hedgehog signaling maintains resident hepatic progenitors throughout life. Am J Physiol Gastrointest Liver Physiol.2006; 290(5):859-870.
    [23]Yang L, Wang Y, Mao H, Fleig S, Omenetti A, Brown KD, Sicklick JK, Li YX, Diehl AM. Sonic hedgehog is an autocrine viability factor for myofibroblastic hepatic stellate cells. J Hepatol.2008; 48(1):98-106.
    [24]Choi SS, Omenetti A, Witek RP, Moylan CA, Syn WK, Jung Y, Yang L, Sudan DL, Sicklick JK, Michelotti GA, Rojkind M, Diehl AM. Hedgehog pathway activation and epithelial-to-mesenchymal transitions during myofibroblastic transformation of rat hepatic cells in culture and cirrhosis. Am J Physiol Gastrointest Liver Physiol.2009; 297(6):1093-1106.
    [25]Jung Y, McCall SJ, Li YX, Diehl AM. Bile ductules and stromal cells express hedgehog ligands and/or hedgehog target genes in primary biliary cirrhosis. Hepatology.2007; 45(5):1091-1096.
    [26]Fleig SV, Choi SS, Yang L, Jung Y, Omenetti A, VanDongen HM, Huang J, Sicklick JK, Diehl AM. Hepatic accumulation of Hedgehog-reactive progenitors increases with severity of fatty liver damage in mice. Lab Inves.2007; 87(12):1227-1239.
    [27]Syn WK, Jung Y, Omenetti A, Abdelmalek M, Guy CD, Yang L, Wang J, Witek RP, Fearing CM, Pereira TA, Teaberry V, Choi SS, Conde-Vancells J, Karaca GF, Diehl AM. Hedgehog-mediated epithelial-to-mesenchymal transition and fibrogenic repair in nonalcoholic fatty liver disease. Gastroenterology.2009; 137(4):1478-1488.
    [28]Omenetti A, Yang L, Li YX, McCall SJ, Jung Y, Sicklick JK, Huang J, Choi S, Suzuki A, Diehl AM. Hedgehog-mediated mesenchymal-epithelial interactions modulate hepatic response to bile duct ligation. Lab Invest.2007; 87(5):499-514.
    [29]Omenetti A, Syn WK, Jung Y, Francis H, Porrello A, Witek RP, Choi SS, Yang L, Mayo MJ, Gershwin ME, Alpini G, Diehl AM. Repair-related activation of hedgehog signaling promotes cholangiocyte chemokine production. Hepatology.2009; 50(2): 518-527.
    [30]Huang S, He J, Zhang X, Bian Y, Yang L, Xie G, Zhang K, Tang W, Stelter AA, Wang Q, Zhang H, Xie J. Activation of the hedgehog pathway in human hepatocellular carcinomas. Carcinogenesis.2006; 27(7):1334-1340.
    [31]Tada M, Kanai F, Tanaka Y, Tateishi K, Ohta M, Asaoka Y, Seto M, Muroyama R, Fukai K, Imazeki F, Kawabe T, Yokosuka O, Omata M. Down-regulation of hedgehog-interacting protein through genetic and epigenetic alterations in human hepatocellular carcinoma. Clin Cancer Res.2008; 14(12):3768-3776.
    [32]Kim Y, Yoon JW, Xiao X, Dean NM, Monia BP, Marcusson EG. Selective down-regulation of glioma-associated oncogene 2 inhibits the proliferation of hepatocellular carcinoma cells. Cancer Res.2007; 67(8):3583-3593.
    [33]Eichenmuller M, Gruner I, Hagl B, Haberle B, Muller-Hocker J, von Schweinitz D, Kappler R. Blocking the hedgehog pathway inhibits hepatoblastoma growth. Hepatology.2009; 49(2):482-490.
    [34]Thiyagarajan S, Bhatia N, Reagan-Shaw S, Cozma D, Thomas-Tikhonenko A, Ahmad N, Spiegelman VS. Role of GLI2 transcription factor in growth and tumorigenicity of prostate cells. Cancer Res.2007; 67(22):10642-10646.
    [35]Yoshikawa R, Nakano Y, Tao L, Koishi K, Matsumoto T, Sasako M, Tsujimura T, Hashimoto-Tamaoki T, Fujiwara Y. Hedgehog signal activation in oesophageal cancer patients undergoing neoadjuvant chemoradiotherapy. Br J Cancer.2008; 98(10): 1670-1674.
    [36]ten Haaf A, Bektas N, von Serenyi S, Losen I, Arweiler EC, Hartmann A, Knuchel R, Dahl E. Expression of the glioma-associated oncogene homolog (GLI) 1 in human breast cancer is associated with unfavourable overall survival. BMC Cancer.2009; 9: 298.
    [37]Liao X, Siu MK, Au CW, Wong ES, Chan HY, Ip PP, Ngan HY, Cheung AN. Aberrant activation of hedgehog signaling pathway in ovarian cancers:effect on prognosis, cell invasion and differentiation. Carcinogenesis.2009; 30(1):131-140.
    [1]Fiehn O. Metabolomics-the link between genotypes and phenotypes. Plant Mol Biol.2002; 48(1-2):155-171.
    [2]Griffin JL, Shockcor JP. Metabolic profiles of cancer cells. Nat Rev Cancer.2004; 4(7):551-561.
    [3]Kell DB, Mendes P. Snapshots of systems:metabolic control analysis and biotechnology in the post-genomic era. In:Cornish-Bowden A, Cardenas ML, editors. Technological and medical implications of metabolic control analysis. Dordrecht (The Netherlands):KluwerAcademic Publishers; 2000. p.3-25.
    [4]Ryan D, Robards K. Metabolomics:The greatest omics of them all? Anal Chem.2006; 78(23): 7954-7958.
    [5]Dunn WB, Bailey NJ, Johnson HE. Measuring the metabolome:current analytical technologies. Analyst.2005; 130(5):606-625.
    [6]Roessner U, Luedemann A, Brust D, Fiehn O, Linke T, Willmitzer L, Fernie A. Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell.2001; 13(1):11-29.
    [7]Boros LG, Lerner MR, Morgan DL, Taylor SL, Smith BJ, Postier RG, Brackett DJ. [1,2-13C2]-D-glucose profiles of the serum, liver, pancreas, and DMBA-induced pancreatic tumors of rats. Pancreas.2005; 31(4):337-343.
    [8]Fossel ET, Carr JM, McDonagh J. Detection of malignant tumors. Water-suppressed proton nuclear magnetic resonance spectroscopy of plasma. N Engl J Med.1986; 315(22):1369-1376.
    [9]Serkova NJ, Spratlin JL, Eckhardt SG. NMR-based metabolomics:translational application and treatment of cancer. Curr Opin Mol Ther.2007; 9(6):572-585.
    [10]Glunde K, Serkova NJ. Therapeutic targets and biomarkers identified in cancer choline phospholipid metabolism. Pharmacogenomics.2006; 7(7):1109-1123.
    [11]Serkova NJ, Niemann CU. Pattern recognition and biomarker validation using quantitative 1H-NMR-based metabolomics. Expert Rev Mol Diagn.2006; 6(5):717-731.
    [12]Denkert C, Budczies J, Kind T, Weichert W, Tablack P, Sehouli J, Niesporek S, Konsgen D, Dietel M, Fiehn O. Mass spectrometry-based metabolic profiling reveals different metabolite patterns in invasive ovarian carcinomas and ovarian borderline tumors. Cancer Res.2006; 66(22): 10795-10804.
    [13]Odunsi K, Wollman RM, Ambrosone CB, Hutson A, McCann SE, Tammela J, Geisler JP, Miller G, Sellers T, Cliby W, Qian F, Keitz B, Intengan M, Lele S, Alderfer JL. Detection of epithelial ovarian cancer using 1H-NMR-based metabonomics. Int J Cancer.2005; 113(5):782-788.
    [14]Howe FA, Barton SJ, Cudlip SA, Stubbs M, Saunders DE, Murphy M, Wilkins P, Opstad KS, Doyle VL, McLean MA, Bell BA, Griffiths JR. Metabolic profiles of human brain tumors using quantitative in vivo 1H magnetic resonance spectroscopy. Magn Reson Med.2003; 49(2): 223-232.
    [15]Bathen TF, Jensen LR, Sitter B, Fjosne HE, Halgunset J, Axelson DE, Gribbestad IS, Lundgren S. MR-determined metabolic phenotype of breast cancer in prediction of lymphatic spread, grade, and hormone status. Breast Cancer Res Treat.2007; 104(2):181-189.
    [16]Kline EE, Treat EG, Averna TA, Davis MS, Smith AY, Sillerud LO. Citrate concentrations in human seminal fluid and expressed prostatic fluid determined via 1H nuclear magnetic resonance spectroscopy outperform prostate specific antigen in prostate cancer detection. J Urol.2006; 176(5): 2274-2279.
    [17]El-Deredy W, Ashmore SM, Branston NM, Darling JL, Williams SR, Thomas DG. Pretreatment prediction of the chemotherapeutic response of human glioma cell cultures using nuclear magnetic resonance spectroscopy and artificial neural networks. Cancer Res.1997; 57(19):4196-4199.
    [18]Morvan D, Demidem A. Metabolomics by proton nuclear magnetic resonance spectroscopy of the response to chloroethylnitrosourea reveals drug efficacy and tumoradaptive metabolic pathways. Cancer Res.2007; 67(5):2150-2159.
    [19]Want EJ, O'Maille G, Smith CA, Brandon TR, Uritboonthai W, Qin C, Trauger SA, Siuzdak G. Solvent-dependent metabolite distribution, clustering, and protein extraction for serum profiling with mass spectrometry. Anal Chem.2006; 78(3):743-752.
    [20]Lee JK, Williams PD, Cheon S. Data mining in genomics. Clin Lab Med.2008; 28(1):145-166.
    [21]Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, Young N, Cheng D, Jewell K, Arndt D, Sawhney S, Fung C, Nikolai L, Lewis M, Coutouly MA, Forsythe I, Tang P, Shrivastava S, Jeroncic K, Stothard P, Amegbey G, Block D, Hau DD, Wagner J, Miniaci J, Clements M, Gebremedhin M, Guo N, Zhang Y, Duggan GE, Macinnis GD, Weljie AM, Dowlatabadi R, Bamforth F, Clive D, Greiner R, Li L, Marrie T, Sykes BD, Vogel HJ, Querengesser L. HMDB:the Human Metabolome Database. Nucleic Acids Res.2007; 35(Database issue):D521-526.
    [22]Mazurek S, Eigenbrodt E. The tumormetabolome. Anticancer Res.2003; 23(2A):1149-1154.
    [23]Ackerstaff E, Glunde K, Bhujwalla ZM. Choline phospholipid metabolism:a target in cancer cells? J Cell Biochem.2003; 90(3):525-533.
    [24]Bathen TF, Engan T, Krane J, Axelson D. Analysis and classification of proton NMR spectra of lipoprotein fractions from healthy volunteers and patients with cancer or CHD. Anticancer Res. 2000; 20(4):2393-2408.
    [25]Stanwell P, Gluch L, Clark D, Tomanek B, Baker L, Giuffre B, Lean C, Malycha P, Mountford C. Specificity of choline metabolites for in vivo diagnosis of breast cancer using 1H MRS at 1.5 T. Eur Radiol.2005; 15(5):1037-1043.
    [26]Sitter B, Lundgren S, Bathen TF, Halgunset J, Fjosne HE, Gribbestad IS. Comparison of HR MAS MR spectroscopic profiles of breast cancer tissue with clinical parameters. NMR Biomed.2006; 19(1):30-40.
    [27]Glunde K, Jie C, Bhujwalla ZM. Molecular causes of the aberrant choline phospholipid metabolism in breast cancer. Cancer Res.2004; 64(12):4270-4276.
    [28]Bartella L, Thakur SB, Morris EA, Dershaw DD, Huang W, Chough E, Cruz MC, Liberman L. Enhancing nonmass lesions in the breast:evaluation with proton (1H) MR spectroscopy. Radiology.2007; 245(1):80-87.
    [29]Swanson MG, Zektzer AS, Tabatabai ZL, Simko J, Jarso S, Keshari KR, Schmitt L, Carroll PR, Shinohara K, Vigneron DB, Kurhanewicz J. Quantitative analysis of prostate metabolites using 1H HR-MAS spectroscopy. Magn Reson Med.2006; 55(6):1257-1264.
    [30]Dowling C, Bollen AW, Noworolski SM, McDermott MW, Barbaro NM, Day MR, Henry RG, Chang SM, Dillon WP, Nelson SJ, Vigneron DB. Preoperative proton MR spectroscopic imaging of brain tumors:correlation with histopathologic analysis of resection specimens. AJNR Am J Neuroradiol.2001; 22(4):604-612.
    [31]Griffin JL, Pole JC, Nicholson JK, Carmichael PL. Cellular environment of metabolites and a metabonomic study of tamoxifen in endometrial cells using gradient high resolution magic angle spinning 1H NMR spectroscopy. Biochim Biophys Acta.2003; 1619(2):151-158.
    [32]Pucar D, Koutcher JA, Shah A, Dyke JP, Schwartz L, Thaler H, Kurhanewicz J, Scardino PT, Kelly WK, Hricak H, Zakian KL. Preliminary assessment of magnetic resonance spectroscopic imaging in predicting treatment outcome in patients with prostate cancer at high risk for relapse. Clin Prostate Cancer.2004; 3(3):174-181.
    [33]Evelhoch J, Garwood M, Vigneron D, Knopp M, Sullivan D, Menkens A, Clarke L, Liu G. Expanding the use of magnetic resonance in the assessment of tumorresponse to therapy:workshop report. Cancer Res.2005; 65(16):7041-7044.
    [34]Park JW, Kerbel RS, Kelloff GJ, Barrett JC, Chabner BA, Parkinson DR, Peck J, Ruddon RW, Sigman CC, Slamon DJ. Rationale for biomarkers and surrogate end points in mechanism-driven oncology drug development. Clin Cancer Res.2004; 10(11):3885-3896.
    [35]Serkova N, Boros LG. Detection of resistance to imatinib by metabolic profiling:clinical and drug development implications. Am J Pharmacogenomics.2005; 5(5):293-302.
    [36]Gottschalk S, Anderson N, Hainz C, Eckhardt SG, Serkova NJ. Imatinib (STI571)-mediated changes in glucose metabolism in human leukemia BCR-ABL-positive cells. Clin Cancer Res. 2004; 10(19):6661-6668.
    [37]Hasmann M, Schemainda I. FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, represents a novel mechanism for induction of tumorcell apoptosis. Cancer Res.2003; 63(21):7436-7442.
    [38]Muruganandham M, Alfieri AA, Matei C, Chen Y, Sukenick G, Schemainda I, Hasmann M, Saltz LB, Koutcher JA. Metabolic signatures associated with a NAD synthesis inhibitor-induced tumorapoptosis identified by 1H-decoupled-31P magnetic resonance spectroscopy. Clin Cancer Res.2005; 11(9):3503-3513.
    [39]Lyng H, Sitter B, Bathen TF, Jensen LR, Sundf(?)r K, Kristensen GB, Gribbestad IS. Metabolic mapping by use of high-resolution magic angle spinning 1H MR spectroscopy for assessment of apoptosis in cervical carcinomas. BMC Cancer.2007; 7:11.
    [40]Blankenberg FG, Katsikis PD, Storrs RW, Beaulieu C, Spielman D, Chen JY, Naumovski L, Tait JF. Quantitative analysis of apoptotic cell death using proton nuclear magnetic resonance spectroscopy. Blood.1997; 89(10):3778-3786.
    [41]Chung YL, Troy H, Banerji U, Jackson LE, Walton MI, Stubbs M, Griffiths JR, Judson IR, Leach MO, Workman P, Ronen SM. Magnetic resonance spectroscopic pharmacodynamic markers of the heat shock protein 90 inhibitor 17-allylamino,17-demethoxygeldanamycin (17AAG) in human colon cancer models. J Natl Cancer Inst.2003; 95(21):1624-1633.
    [42]Gayed I, Vu T, Iyer R, Johnson M, Macapinlac H, Swanston N, Podoloff D. The role of 18F-FDG PET in staging and early prediction of response to therapy of recurrent gastrointestinal stromal tumors. J Nucl Med.2004; 45(1):17-21.
    [43]Holdsworth CH, Badawi RD, Manola JB, Kijewski MF, Israel DA, Demetri GD, Van den Abbeele AD. CT and PET:early prognostic indicators of response to imatinib mesylate in patients with gastrointestinal stromal tumor. AJR Am J Roentgenol.2007; 189(6):324-330.
    [44]Pio BS, Park CK, Pietras R, Hsueh WA, Satyamurthy N, Pegram MD, Czernin J, Phelps ME, Silverman DH. Usefulness of 3'-[F-18]fluoro-3'-deoxythymidine with positron emission tomography in predicting breast cancer response to therapy. Mol Imaging Biol.2006; 8(1):36-42.
    [45]de Geus-Oei LF, van der Heijden HF, Corstens FH, Oyen WJ. Predictive and prognostic value of FDG-PET in nonsmall-cell lung cancer:a systematic review. Cancer.2007; 110(8):1654-1664.
    [46]Avril N, Sassen S, Schmalfeldt B, Naehrig J, Rutke S, Weber WA, Werner M, Graeff H, Schwaiger M, Kuhn W. Prediction of response to neoadjuvant chemotherapy by sequential F-18-fluorodeoxyglucose positron emission tomography in patients with advanced-stage ovarian cancer. J Clin Oncol.2005; 23(30):7445-7453.
    [47]Bokemeyer C, Kollmannsberger C, Oechsle K, Dohmen BM, Pfannenberg A, Claussen CD, Bares R, Kanz L. Early prediction of treatment response to high-dose salvage chemotherapy in patients with relapsed germ cell cancer using [(18)F]FDG PET. Br J Cancer.2002; 86(4):506-511.
    [48]Kidd EA, Siegel BA, Dehdashti F, Grigsby PW. The standardized uptake value for F-18 fluorodeoxyglucose is a sensitive predictive biomarker for cervical cancer treatment response and survival. Cancer.2007; 110(8):1738-1744.
    [49]Robertson DG, Reily MD, Sigler RE, Wells DF, Paterson DA, Braden TK. Metabonomics: evaluation of nuclear magnetic resonance (NMR) and pattern recognition technology for rapid in vivo screening of liver and kidney toxicants. Toxicol Sci.2000; 57(2):326-337.
    [50]Nicholls AW, Holmes E, Lindon JC, Shockcor JP, Farrant RD, Haselden JN, Damment SJ, Waterfield CJ, Nicholson JK. Metabonomic investigations into hydrazine toxicity in the rat. Chem Res Toxicol.2001; 14(8):975-987.
    [51]Holmes E, Nicholson JK, Tranter G. Metabonomic characterization of genetic variations in toxicological and metabolic responses using probabilistic neural networks. Chem Res Toxicol. 2001; 14(2):182-191.
    [52]Lenz EM, Bright J, Knight R, Wilson ID, Major H. Cyclosporin A-induced changes in endogenous metabolites in rat urine:a metabonomic investigation using high field 1H NMR spectroscopy, HPLC-TOF/MS and chemometrics. J Pharm Biomed Anal.2004; 35(3):599-608.
    [53]Azmi J, Connelly J, Holmes E, Nicholson JK, Shore RF, Griffin JL. Characterization of the biochemical effects of 1-nitronaphthalene in rats using global metabolic profiling by NMR spectroscopy and pattern recognition. Biomarkers.2005; 10(6):401-416.
    [54]Coen M, Lenz EM, Nicholson JK, Wilson ID, Pognan F, Lindon JC. An integrated metabonomic investigation of acetaminophen toxicity in the mouse using NMR spectroscopy. Chem Res Toxicol. 2003; 16(3):295-303.
    [1]Bai CB, Stephen D, Joyner AL. All mouse ventral spinal cord patterning by hedgehog is Gli dependent and involves an activator function of Gli3. Dev Cell.2004; 6(1):103-115.
    [2]Lum L, Beachy PA.The Hedgehog Response Network:Sensors, Switches, and Routers. Science. 2004; 304(5678):1755-1759.
    [3]Rubin LL, de Sauvage FJ. Targeting the Hedgehog pathway in cancer. Nat Rev Drug Discov.2006; 5(12):1026-1033.
    [4]Hahn H, Christiansen J, Wicking C, Zaphiropoulos PG, Chidambaram A, Gerrard B, Vorechovsky I, Bale AE, Toftgard R, Dean M, Wainwright B. A mammalian patched homolog is expressed in target tissues of sonic hedgehog and maps to a region associated with developmental abnormalities. J Biol Chem.1996; 271(21):12125-12128.
    [5]Johnson RL, Rothman AL, Xie J, Goodrich LV, Bare JW, Bonifas JM, Quinn AG, Myers RM, Cox DR, Epstein EH Jr, Scott MP. Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science.1996; 272(5268):1668-16671.
    [6]Epstein EH. Basal cell carcinomas:attack of the hedgehog. Nat Rev Cancer.2008; 8(10):743-754.
    [7]Unden AB, Holmberg E, Lundh-Rozell B, Stahle-Backdahl M, Zaphiropoulos PG, Toftgard R, Vorechovsky I. Mutations in the human homologue of Drosophila patched (PTCH) in basal cell carcinomas and the Gorlin syndrome:different in vivo mechanisms of PTCH inactivation. Cancer Res.1996; 56(20):4562-4565.
    [8]Gailani MR, Stahle-Backdahl M, Leffell DJ, Glynn M, Zaphiropoulos PG, Pressman C, Unden AB, Dean M, Brash DE, Bale AE, Toftgard R. The role of the human homologue of Drosophila patched in sporadic basal cell carcinomas. Nat Genet.1996; 14(1):78-81.
    [9]Reifenberger J, Wolter M, Weber RG, Megahed M, Ruzicka T, Lichter P, Reifenberger G. Missense mutations in SMOH in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res.1998; 58(9):1798-1803.
    [10]Raffel C, Jenkins RB, Frederick L, Hebrink D, Alderete B, Fults DW, James CD. Sporadic medulloblastomas contain PTCH mutations. Cancer Res.1997; 57(5):842-845.
    [11]Pietsch T, Waha A, Koch A, Kraus J, Albrecht S, Tonn J, Sorensen N, Berthold F, Henk B, Schmandt N, Wolf HK, von Deimling A, Wainwright B, Chenevix-Trench G, Wiestler OD, Wicking C. Medulloblastomas of the desmoplastic variant carry mutations of the human homologue of Drosophila patched. Cancer Res.1997; 57(11):2085-2088.
    [12]Vorechovsky I, Tingby O, Hartman M, Stromberg B, Nister M, Collins VP, Toftgard R. Somatic mutations in the human homologue of Drosophila patched in primitive neuroectodermal tumours. Oncogene.1997; 15(3):361-366.
    [13]Taylor MD, Liu L, Raffel C, Hui CC, Mainprize TG, Zhang X, Agatep R, Chiappa S, Gao L, Lowrance A, Hao A, Goldstein AM, Stavrou T, Scherer SW, Dura WT, Wainwright B, Squire JA, Rutka JT, Hogg D. Mutations in SUFU predispose to medulloblastoma. Nat Genet.2002; 31(3): 306-310.
    [14]Tostar U, Malm CJ, Meis-Kindblom JM, Kindblom LG, Toftgard R, Unden AB. Deregulation of the hedgehog signalling pathway:a possible role for the PTCH and SUFU genes in human rhabdomyoma and rhabdomyosarcoma development. J Pathol.2006; 208(1):17-25.
    [15]Kimura H, Ng JM, Curran T. Transient inhibition of the Hedgehog pathway in young mice causes permanent defects in bone structure. Cancer Cell.2008; 13(3):249-60.
    [16]Watkins DN, Berman DM, Burkholder SG, Wang B, Beachy PA, Baylin SB. Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature.2003; 422(6929): 313-317.
    [17]Mizuarai S, Kawagishi A, Kotani H. Inhibition of p70S6K2 down-regulates Hedgehog/GLI pathway in non-small cell lung cancer cell lines. Mol Cancer.2009; 8:44.
    [18]Thayer SP, di Magliano MP, Heiser PW, Nielsen CM, Roberts DJ, Lauwers GY, Qi YP, Gysin S, Fernandez-del Castillo C, Yajnik V, Antoniu B, McMahon M, Warshaw AL, Hebrok M. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature.2003; 425(6960): 851-856.
    [19]Strobel O, Rosow DE, Rakhlin EY, Lauwers GY, Trainor AG, Alsina J, Fernandez-Del Castillo C, Warshaw AL, Thayer SP. Pancreatic duct glands are distinct ductal compartments that react to chronic injury and mediate Shh-induced metaplasia. Gastroenterology.2010; 138(3):1166-11677.
    [20]Berman DM, Karhadkar SS, Maitra A, Montes De Oca R, Gerstenblith MR, Briggs K, Parker AR, Shimada Y, Eshleman JR, Watkins DN, Beachy PA. Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature.2003; 425(6960):846-851.
    [21]Kim BM, Choi MY. New insights into the role of Hedgehog signaling in gastrointestinal development and cancer. Gastroenterology.2009; 137(2):422-424.
    [22]Arimura S, Matsunaga A, Kitamura T, Aoki K, Aoki M, Taketo MM. Reduced level of smoothened suppresses intestinal tumorigenesis by down-regulation of Wnt signaling. Gastroenterology.2009; 137(2):629-638.
    [23]Karhadkar SS, Bova GS, Abdallah N, Dhara S, Gardner D, Maitra A, Isaacs JT, Berman DM, Beachy PA. Hedgehog signaling in prostate regeneration, neoplasia, and metastasis. Nature.2004;
    431(7009):707-712.
    [24]Shaw A, Gipp J, Bushman W. The Sonic Hedgehog pathway stimulates prostate tumorgrowth by paracrine signaling and recapitulates embryonic gene expression in tumormyofibroblasts. Oncogene.2009; 28(50):4480-4490.
    [25]Kasper M, Jaks V, Fiaschi M, Toftgard R. Hedgehog signalling in breast cancer. Carcinogenesis. 2009; 30(6):903-911.
    [26]Stecca B, Mas C, Clement V, Zbinden M, Correa R, Piguet V, Beermann F, Ruiz I Altaba A. Melanomas require HEDGEHOG-GLI signaling regulated by interactions between GLI1 and the RAS-MEK/AKT pathways. Proc Natl Acad Sci U S A.2007; 104(14):5895-5900.
    [27]Romer JT, Kimura H, Magdaleno S, Sasai K, Fuller C, Baines H, Connelly M, Stewart CF, Gould S, Rubin LL, Curran T. Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptcl(+/-)p53(-/-) mice. Cancer Cell.2004; 6(3):229-240.
    [28]Zhang J, Lipinski R, Shaw A, Gipp J, Bushman W. Lack of demonstrable autocrine hedgehog signaling in human prostate cancer cell lines. J Urol.2007; 177(3):1179-1185.
    [29]Chatel G, Ganeff C, Boussif N, Delacroix L, Briquet A, Nolens G, Winkler R. Hedgehog signaling pathway is inactive in colorectal cancer cell lines. Int J Cancer.2007; 121(12):2622-2627.
    [30]Zhang X, Harrington N, Moraes RC, Wu MF, Hilsenbeck SG, Lewis MT. Cyclopamine inhibition of human breast cancer cell growth independent of Smoothened (Smo). Breast Cancer Res Treat. 2009; 115(3):505-521.
    [31]Yauch RL, Gould SE, Scales SJ, Tang T, Tian H, Ahn CP, Marshall D, Fu L, Januario T, Kallop D, Nannini-Pepe M, Kotkow K, Marsters JC, Rubin LL, de Sauvage FJ. A paracrine requirement for hedgehog signalling in cancer. Nature.2008; 455(7211):406-410.
    [32]Fan L, Pepicelli CV, Dibble CC, Catbagan W, Zarycki JL, Laciak R, Gipp J, Shaw A, Lamm ML, Munoz A, Lipinski R, Thrasher JB, Bushman W. Hedgehog signaling promotes prostate xenograft tumorgrowth. Endocrinology.2004; 145(8):3961-3970.
    [33]Bailey JM, Swanson BJ, Hamada T, Eggers JP, Singh PK, Caffery T, Ouellette MM, Hollingsworth MA. Sonic hedgehog promotes desmoplasia in pancreatic cancer. Clin Cancer Res. 2008; 14(19):5995-6004.
    [34]Tian H, Callahan CA, DuPree KJ, Darbonne WC, Ahn CP, Scales SJ, de Sauvage FJ. Hedgehog signaling is restricted to the stromal compartment during pancreatic carcinogenesis. Proc Natl Acad Sci U S A.2009; 106(11):4254-4259.
    [35]Nolan-Stevaux O, Lau J, Truitt ML, Chu GC, Hebrok M, Fernandez-Zapico ME, Hanahan D. GLI1 is regulated through Smoothened-independent mechanisms in neoplastic pancreatic ducts and mediates PDAC cell survival and transformation. Genes Dev.2009; 23(1):24-36.
    [36]Hahn H, Wojnowski L, Specht K, Kappler R, Calzada-Wack J, Potter D, Zimmer A, Miiller U, Samson E, Quintanilla-Martinez L, Zimmer A. Patched target Igf2 is indispensable for the formation of medulloblastoma and rhabdomyosarcoma. J Biol Chem.2000; 275(37):28341-28344.
    [37]Chao W, D'Amore PA. IGF2:epigenetic regulation and role in development and disease. Cytokine Growth Factor Rev.2008; 19(2):111-120.
    [38]Geng L, Cuneo KC, Cooper MK, Wang H, Sekhar K, Fu A, Hallahan DE. Hedgehog signaling in the murine melanoma microenvironment. Angiogenesis.2007; 10(4):259-267.
    [39]Yamazaki M, Nakamura K, Mizukami Y, Ii M, Sasajima J, Sugiyama Y, Nishikawa T, Nakano Y, Yanagawa N, Sato K, Maemoto A, Tanno S, Okumura T, Karasaki H, Kono T, Fujiya M, Ashida T, Chung DC, Kohgo Y. Sonic hedgehog derived from human pancreatic cancer cells augments angiogenic function of endothelial progenitor cells. Cancer Sci.2008; 99(6):1131-1138.
    [40]Hegde GV, Peterson KJ, Emanuel K, Mittal AK, Joshi AD, Dickinson JD, Kollessery GJ, Bociek RG, Bierman P, Vose JM, Weisenburger DD, Joshi SS. Hedgehog-induced survival of B-cell chronic lymphocytic leukemia cells in a stromal cell microenvironment:a potential new therapeutic target. Mol Cancer Res.2008; 6(12):1928-1936.
    [41]Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i Altaba A. HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol.2007; 17(2):165-172.
    [42]Bar EE, Chaudhry A, Lin A, Fan X, Schreck K, Matsui W, Piccirillo S, Vescovi AL, DiMeco F, Olivi A, Eberhart CG. Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells.2007; 25(10):2524-2533.
    [43]Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF, Simeone DM. Identification of pancreatic cancer stem cells. Cancer Res.2007; 67(3):1030-1037.
    [44]Feldmann G, Fendrich V, McGovern K, Bedja D, Bisht S, Alvarez H, Koorstra JB, Habbe N, Karikari C, Mullendore M, Gabrielson KL, Sharma R, Matsui W, Maitra A. An orally bioavailable small-molecule inhibitor of Hedgehog signaling inhibits tumorinitiation and metastasis in pancreatic cancer. Mol Cancer Ther.2008; 7(9):2725-2735.
    [45]Liu S, Dontu G, Mantle ID, Patel S, Ahn NS, Jackson KW, Suri P, Wicha MS. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res. 2006; 66(12):6063-6071.
    [46]Peacock CD, Wang Q, Gesell GS, Corcoran-Schwartz IM, Jones E, Kim J, Devereux WL, Rhodes JT, Huff CA, Beachy PA, Watkins DN, Matsui W. Hedgehog signaling maintains a tumorstem cell compartment in multiple myeloma. Proc Natl Acad Sci U S A.2007; 104(10):4048-4053.
    [47]Dierks C, Beigi R, Guo GR, Zirlik K, Stegert MR, Manley P, Trussell C, Schmitt-Graeff A, Landwerlin K, Veelken H, Warmuth M. Expansion of Bcr-Abl-positive leukemic stem cells is dependent on Hedgehog pathway activation. Cancer Cell.2008 Sep 9;14(3):238-249.
    [48]Zhao C, Chen A, Jamieson CH, Fereshteh M, Abrahamsson A, Blum J, Kwon HY, Kim J, Chute JP, Rizzieri D, Munchhof M, VanArsdale T, Beachy PA, Reya T. Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature.2009; 458(7239):776-779.
    [49]Chen JK, Taipale J, Young KE, Maiti T, Beachy PA. Small molecule modulation of Smoothened activity. Proc Natl Acad Sci U S A.2002; 99(22):14071-14076.
    [50]Tremblay MR, Nevalainen M, Nair SJ, Porter JR, Castro AC, Behnke ML, Yu LC, Hagel M, White K, Faia K, Grenier L, Campbell MJ, Cushing J, Woodward CN, Hoyt J, Foley MA, Read MA, Sydor JR, Tong JK, Palombella VJ, McGovern K, Adams J. Semisynthetic cyclopamine analogues as potent and orally bioavailable hedgehog pathway antagonists. J Med Chem.2008; 51(21):6646-6649.
    [51]Stanton BZ, Peng LF, Maloof N, Nakai K, Wang X, Duffner JL, Taveras KM, Hyman JM, Lee SW, Koehler AN, Chen JK, Fox JL, Mandinova A, Schreiber SL. A small molecule that binds Hedgehog and blocks its signaling in human cells. Nat Chem Biol.2009; 5(3):154-156.
    [52]Tabs S, Avci O. Induction of the differentiation and apoptosis of tumorcells in vivo with efficiency and selectivity. Eur J Dermatol.2004; 14(2):96-102.
    [53]Williams JA, Guicherit OM, Zaharian BI, Xu Y, Chai L, Wichterle H, Kon C, Gatchalian C, Porter JA, Rubin LL, Wang FY. Identification of a small molecule inhibitor of the hedgehog signaling pathway:effects on basal cell carcinoma-like lesions. Proc Natl Acad Sci U S A.2003; 100(8): 4616-4621.
    [54]LoRusso PM, Rudin CM, Borad MJ, Vernillet L, Darbonne WC, Mackey H, DiMartino JF, de Sauvage F, Low JA, Von Hoff DD. A first-in-human, first-in-class, phase 1 study of systemic Hedgehog pathway antagonist, GDC-0449, in patients with advanced solid tumors. J Clin Oncol. 2008; 26 (Suppl.):3516.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700