用户名: 密码: 验证码:
嗜铬细胞瘤全基因组拷贝数变化分析和相关基因的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:
     1.对散发型嗜铬细胞瘤细胞的全基因组DNA拷贝数异常(Copy number variations CNVs)和杂合性缺失(Loss of heterozygosity LOH)的系统分析,发现与肿瘤相关的拷贝数变化和杂合性缺失的所在染色体区位,筛选所涉及嗜铬细胞瘤肿瘤相关基因或者分子标志物,为嗜铬细胞瘤的诊断与治疗提供新的参考资料。
     2.分析所筛选基因m-RNA的表达水平在良性与恶性嗜铬细胞瘤中的分布差异,寻找鉴别良恶性嗜铬细胞瘤的分子遗传学标记物,并证明应用SNP芯片是筛选肿瘤相关基因有效性方法。
     材料与方法:
     1.应用Affymetrix公司GeneChip SNP 6.0芯片检测5例嗜铬细胞瘤(包括肿瘤组织和自身白细胞)全基因组的DNA拷贝数异常(包括扩增和缺失)和LoH。
     2.分析SNP 6.0芯片检测结果;筛选DNA发生缺失、扩增区域或LoH区域内含基因为嗜铬细胞瘤肿瘤相关基因。
     3.入选北京协和医院2000年至2008年明确诊断的嗜铬细胞瘤29例,其中良性组19例,恶性组10例。另取12例正常肾上腺髓质组织为正常对照组。提取各组细胞DNA。应用实时定量PCR (real-time PCR)方法检测各组候选基因的m-RNA表达情况。
     4.统计分析候选基因m-RNA的表达水平在不同病理类型(良/恶性)嗜铬瘤中的的分布差异,分析候选基因与嗜铬细胞瘤临床病理类型及预后之间的关系。
     结果:
     1.5例嗜铬细胞瘤组织与配对的正常细胞相比,5例均发生缺失的染色体是1p21.1—1p21.2;4例或4例以上嗜铬细胞瘤发生缺失的染色体主要是1p、3q和11p。
     2.5例嗜铬细胞瘤组织细胞与配对的正常细胞相比,4例或4例以上嗜铬细胞瘤发生扩增的染色体主要是5q。
     3.5例嗜铬细胞瘤组织与配对的正常细胞相比,5例嗜铬细胞瘤,都发生LOH。其中4例发生染色体1 p、11 p、11q的LOH;共同区域和基因为:11p15.13和SOX6;3例发生染色体5q的LOH,共同区域和基因为:5q31.3和NRG2;2例发生染色体3p、6q的LOH。
     4.在3例共同发生缺失的染色体5q31.3含基因NRG2以及其同源基因NRG1为候选基因。
     5. NRG2-mRNA在良性嗜铬细胞瘤、恶性嗜铬细胞瘤和正常肾上腺髓质组织内均有表达,在嗜铬细胞瘤中表达显著低于正常肾上腺髓质(P<0.01);而在良恶性嗜铬细胞瘤组之间无显著性差异(P>0.05)。NRG1-mRNA在恶性嗜铬细胞瘤中表达显著高于良性嗜铬细胞瘤(P<0.05)。
     结论:
     1. SNP6.0芯片能够有效发现和精确定位嗜铬细胞流全基因组DNA拷贝数的微小变化和LoH区域,可以发现新的染色体CNV区域。
     2.DNA发生扩增或缺失可能与肿瘤的发生发展有关,可能是肿瘤的发病基础。检测结果为进一步定位筛选和克隆与嗜铬细胞瘤相关基因提供了重要的线索和理论信息。
     3. NRG2 m-RNA的表达下调的基础可能与嗜铬细胞瘤染色体NRG2存在LoH有关,可能是参与嗜铬细胞瘤发生发展的分子机制;NRG1-mRNA在恶性嗜铬细胞流中的表达良明显高于良性嗜铬细胞瘤,可作为鉴别良恶性嗜铬细胞瘤的标记物,作为嗜铬细胞预后的判断因素。
     4.SNP芯片是筛选嗜铬细胞瘤肿瘤相关基因有效的方法。
Summary
     Purpose:
     1. Systemic analysis of copy number variations (CNVs) and loss of heterozygosity (LOH) in sporadic pheochromocytoma cells genome DNA,discovery tumor-related changes of copy number and and loss of heterozygosity where chromosomal location, screening pheochromocytoma tumor-associated genes or molecular markers to provide a new reference. for the diagnosis of pheochromocytoma and treatment. 2. Analysis the differences of selected gene's m-RNA expression level between benign and malignant pheochromocytomas,look for molecular genetics markers for the diagnosis of benign and malignant pheochromocytoma, and to prove SNP array is an effective method of screening the tumor-related genes.
     Materials and methods:
     1. Apply Affymetrix Inc. GeneChip SNP 6.0 chip to detect whole genome DNA copy number variations (including amplification and deletion) and LoH in 5 cases of pheochromocytoma (including tumor tissue and their own peripheral blood leucocyte).
     2. Analysis of SNP 6.0 chip test results; screening CNV or LoH region,and find the pheochromocytoma tumor-related genes.
     3.29 patients dignosised as pheochromocytoma from 2000 to 2008 in PUMCH were enrolled. including 19 cases of benign and 10 cases of malignant, Take another 12 cases of normal adrenal medulla tissue as normal control group. Extract cell DNA and apply Real time quantitative PCR (real-time PCR) to detect candidate genes m-RNA expression level in each group.
     4. Statistical analysis of candidate gene m-RNA expression levels in different histological types of(benign/malignant) adrenal tumor.discovery the relationship between candidate genes expression levels with Pathological classification and prognosis of pheochromocytoma
     Results:
     1.5 cases of pheochromocytoma tissue compared with matched normal cells,5 cases of chromosome deletion occurred in 1p21.1-1p21.2; 4 cases of pheochromocytoma occurring deletion of chromosome 1p is mainly,3q and 11p.
     2.5 cases of pheochromocytoma cells compared with matched normal cells,4 cases of pheochromocytoma occurring mainly amplification of chromosome 5q.
     3.5 cases of pheochromocytoma cell compared with matched normal cells, all cases of pheochromocytoma have undergone LOH.4 cases had chromosomes 1p, 11p, 11q of LOH, common regional and gene:11p15.13 and SOX6; 3 cases had chromosome 5q of LOH, common regional and gene:5q31.3 and NRG2; 2 cases had chromosome 3p,6q of LOH.
     4. Common occurrence in the three cases of chromosome 5q31.3 LoH containing the NRG1 gene,NRG1 gene and its homologous gene NRG2 was selected as candidate genes.
     5. NRG2-mRNA was expressed in benign pheochromocytoma, malignant pheochromocytoma and normal adrenal medulla tissue. was significantly lower in pheochromocytoma than in the adrenal medulla (P<0.01); but had no significant difference between benign and malignant pheochromocytoma group (P> 0.05). NRG1-mRNA expression in malignant pheochromocytomas was significantly higher than in benign pheochromocytomas (P<0.05)。
     Conclusion:
     1. SNP6.0 chip can effectively detect and precisely locate pheochromocytoma whole-genome small area DNA copy number changes and LoH, can discover new CNV regions of chromosomes.
     2. deletion or amplification of DNA may occur with tumor development, which may be the basis of tumor pathogenesis. Test results for further screening and localization of pheochromocytoma-related genes provide important clues and theoretical information.
     3. NRG2 m-RNA expression reduced in pheochromocytoma may be basis of the existence of chromosome NRG2 LoH, which may be involved in the development of pheochromocytoma molecular mechanisms; NRG1-mRNA expression level in malignant pheochromocytoma was significantly higher than the expression of benign pheochromocytoma, can be used as molecular markers for malignant pheochromocytoma, and as pheochromocytoma prognosis factor.
     4. SNP chips is an effective method of screening pheochromocytoma tumor-associated genes
引文
1. Januszewicz, A., et al. Incidence and clinical relevance of RET proto-oncogene germline mutations in pheochromocytoma patients. Journal of hypertension 18,1019 (2000).
    2. Lenders, J., Eisenhofer, G., Mannelli, M.& Pacak, K. Phaeochromocytoma. The Lancet 366, 665-675 (2005).
    3. McDougal, W. Malignancy in Pheochromocytomas. The Journal of Urology 174,2147 (2005).
    4. Opocher, G, Schiavi, F.,Conton, P., Scaroni, C.& Mantero, F. Clinical and genetic aspects of phaeochromocytoma. Hormone research 59,56-61 (2000).
    5. Erlic, Z.& Neumann, H. Familial pheochromocytoma. Hormones 8,29-38 (2009).
    6. Neumann, H., et al. Distinct clinical features of paraganglioma syndromes associated with SDHB and SDHD gene mutations. Jama 292,943 (2004).
    7. Pasini, B.& Stratakis, C. SDH mutations in tumorigenesis and inherited endocrine tumours: lesson from the phaeochromocytoma"Cparaganglioma syndromes. Journal of internal medicine 266,19-42 (2009).
    8. Sun, H., et al. LOH on chromosome 11q, but not SDHD and Men1 mutations was frequently detectable in Chinese patients with pheochromocytoma and paraganglioma. Endocrine 30, 307-312(2006).
    9. Van Nederveen, F., et al. PTEN gene loss, but not mutation, in benign and malignant phaeochromocytomas. The Journal of Pathology 209,274-280 (2006).
    10. Yuan, W., et al. Overexpression of ERBB-2 was more frequently detected in malignant than benign pheochromocytomas by multiplex ligation-dependent probe amplification and immunohistochemistry. Endocrine-Related Cancer 15,343 (2008).
    11. Wessendorf, S., et al. Automated screening for genomic imbalances using matrix-based comparative genomic hybridization. Laboratory Investigation 82,47-60 (2002).
    12. Brentani, R., et al. Gene expression arrays in cancer research:methods and applications. Critical reviews in oncology/hematology 54,95-105 (2005).
    13. Collins, F., Brooks, L.& Chakravarti, A. A DNA polymorphism discovery resource for research on human genetic variation. Genome Research 8,1229 (1998).
    14. Fodor, S., et al. Light-directed, spatially addressable parallel chemical synthesis. Science 251,767 (1991).
    15. Pease, A., et al. Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proceedings of the National Academy of Sciences of the United States of America 91,5022 (1994).
    16. Chee, M., et al. Accessing genetic information with high-density DNA arrays. Science 274,610 (1996).
    17. Lindblad-Toh, K., et al. Loss-of-heterozygosity analysis of small-cell lung carcinomas using single-nucleotide polymorphism arrays. Nature biotechnology 18,1001-1005 (2000).
    18. Mei, R., et al. Genome-wide detection of allelic imbalance using human SNPs and high-density DNA arrays. Genome Research 10,1126 (2000).
    19. Bignell, G., et al. High-resolution analysis of DNA copy number using oligonucleotide microarrays. Genome Research 14,287 (2004).
    20. Chrisoulidou, A., Kaltsas, G, Ilias, I.& Grossman, A.B. The diagnosis and management of malignant phaeochromocytoma and paraganglioma. Endocr Relat Cancer 14,569-585 (2007).
    21. Kopf, D., Goretzki, P.& Lehnert, H. Clinical management of malignant adrenal tumors. Journal of cancer research and clinical oncology 127,143-155 (2001).
    22. Sgroi, D., et al. In vivo gene expression profile analysis of human breast cancer progression. Cancer research 59,5656 (1999).
    23. Clark, I., Swingler, T., Sampieri, C.& Edwards, D. The regulation of matrix metalloproteinases and their inhibitors. The international journal of biochemistry & cell biology 40,1362-1378 (2008).
    1. Sebat, J., et al. Large-scale copy number polymorphism in the human genome. Science 305,525 (2004).
    2. Iafrate, A., et al. Detection of large-scale variation in the human genome. Nature genetics 36, 949-951(2004).
    3. Frazer, K., et al. A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851-861 (2007).
    4. Buchanan, J.& Scherer, S. Contemplating effects of genomic structural variation. Genetics in Medicine 10,639 (2008).
    5. Stefansson, H., et al. Large recurrent microdeletions associated with schizophrenia. Nature 455, 232-236 (2008).
    6. McCarroll, S., et al. Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn's disease. Nature genetics 40,1107-1112 (2008).
    7. Marshall, C., et al. Structural variation of chromosomes in autism spectrum disorder. The American Journal of Human Genetics 82,477-488 (2008).
    8. Kumar, R., et al. Recurrent 16 p 11.2 microdeletions in autism. Human molecular genetics 17, 628 (2008).
    9. Hollox, E., et al. Psoriasis is associated with increased A-defensin genomic copy number. Nature genetics 40,23-25 (2007).
    10. Gonzalez, E., et al. The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science 307,1434 (2005).
    11. Aitman, T., et al. Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans. Nature 439,851-855 (2006).
    12. Komura, D., et al. Genome-wide detection of human copy number variations using high-density DNA oligonucleotide arrays. Genome Research 16,1575 (2006).
    13. Chen, P.A., Liu, H.F.& Chao, K.M. CNVDetector:locating copy number variations using array CGH data. Bioinformatics 24,2773-2775 (2008).
    14. Burgmann, H., Widmer, F., Von Sigler, W.& Zeyer, J. New molecular screening tools for analysis of free-living diazotrophs in soil. Appl Environ Microbiol 70,240-247 (2004).
    15. Wang, K., et al. Modeling genetic inheritance of copy number variations. Nucleic Acids Res 36, e138 (2008).
    16. Colella, S., et al. QuantiSNP:an Objective Bayes Hidden-Markov Model to detect and accurately map copy number variation using SNP genotyping data. Nucleic Acids Research (2007).
    17. Dannenberg, H., et al. Losses of chromosomes 1p and 3q are early genetic events in the development of sporadic pheochromocytomas. Am J Pathol 157,353-359 (2000).
    18. Yuan, W., et al. Overexpression of ERBB-2 was more frequently detected in malignant than benign pheochromocytomas by multiplex ligation-dependent probe amplification and immunohistochemistry. Endocr Relat Cancer 15,343-350 (2008).
    19. 熊佶刘颖李超朱静静,et al.少突胶质细胞瘤染色体1p/19 q杂合性缺失与p53蛋白表达的相关性研究 中华病理学杂志7,123-125(2009).
    20. Grundy, P., et al. Loss of heterozygosity for chromosomes 1p and 16q is an adverse prognostic factor in favorable-histology Wilms tumor:a report from the National Wilms Tumor Study Group. Journal of Clinical Oncology 23,7312 (2005).
    21. Caron, H., et al. Allelic loss of chromosome 1p as a predictor of unfavorable outcome in patients with neuroblastoma. The New England journal of medicine 334,225 (1996).
    22. Tsukamoto, K., et al. Allelic loss on chromosome 1p is associated with progression and lymph node metastasis of primary breast carcinoma. Cancer 82,317-322 (2000).
    23. Geli, J., et al. Deletions and altered expression of the RIZ1 tumour suppressor gene in 1p36 in pheochromocytomas and abdominal paragangliomas. Int J Oncol 26,1385-1391 (2005).
    24. Pevny, L.& Lovell-Badge, R. Sox genes find their feet. Current Opinion in Genetics & Development 7,338-344 (1997).
    25. Akiyama, H., Chaboissier, M., Martin, J., Schedl, A.& De Crombrugghe, B. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes & development 16,2813 (2002).
    26. Hamada-Kanazawa, M., et al. Sox6 overexpression causes cellular aggregation and the neuronal differentiation of P19 embryonic carcinoma cells in the absence of retinoic acid. FEBS Lett 560, 192-198 (2004).
    27. Cohen-Barak, O., et al. Sox6 regulation of cardiac myocyte development. Nucleic Acids Res 31, 5941-5948 (2003).
    28. Wright, E., et al. The Sry-related gene Sox9 is expressed during chondrogenesis in mouse embryos. Nature genetics 9,15-20 (1995).
    29. Ueda, R., et al. Induction of protective and therapeutic antitumor immunity by a DNA vaccine with a glioma antigen, SOX6. Int J Cancer 122,2274-2279 (2008).
    30. Schlierf, B., et al. Expression of SoxE and SoxD genes in human gliomas. Neuropathol Appl Neurobiol 33,621-630 (2007).
    31. Ueda, R., Yoshida, K., Kawakami, Y., Kawase, T.& Toda, M. Immunohistochemical analysis of SOX6 expression in human brain tumors. Brain Tumor Pathol 21,117-120 (2004).
    32. Zijlmans, H.J., et al. The absence of CCL2 expression in cervical carcinoma is associated with increased survival and loss of heterozygosity at 17q11.2. JPathol 208,507-517 (2006).
    33. Pignatelli, M., Cortes-Canteli, M., Lai, C., Santos, A.& Perez-Castillo, A. The peroxisome proliferator-activated receptor gamma is an inhibitor of ErbBs activity in human breast cancer cells. J Cell Sci 114,4117-4126 (2001).
    34. McIntyre, E., Blackburn, E., Brown, P.J., Johnson, C.G.& Gullick, W.J. The complete family of epidermal growth factor receptors and their ligands are co-ordinately expressed in breast cancer. Breast Cancer Res Treat (2009).
    35. Carteron, C, Ferrer-Montiel, A.& Cabedo, H. Characterization of a neural-specific splicing form of the human neuregulin 3 gene involved in oligodendrocyte survival. J Cell Sci 119,898-909 (2006).
    36. Nakano, N., et al. The N-terminal region of NTAK/neuregulin-2 isoforms has an inhibitory activity on angiogenesis. JBiol Chem 279,11465-11470 (2004).
    1. Longart, M., Liu, Y., Karavanova, I.& Buonanno, A. Neuregulin-2 is developmentally regulated and targeted to dendrites of central neurons. J Comp Neurol 472,156-172(2004).
    2. Dunn, M., et al. Co-expression of neuregulins 1,2,3 and 4 in human breast cancer. JPathol 203,672-680 (2004).
    3. Thompson, R., Roberts, B., Alexander, C., Williams, S.& Barnett, S. Comparison of neuregulin-1 expression in olfactory ensheathing cells, Schwann cells and astrocytes. Journal of Neuroscience Research 61,172-185 (2000).
    4. Atkinson, P.& Tatnall, A. Introduction neural networks in remote sensing. International Journal of Remote Sensing 18,699-709 (1997).
    5. Carraway Ⅲ, K., et al. Neuregulin-2, a new ligand of ErbB3/ErbB4-receptor tyrosine kinases. (1997).
    6. Zhang, D., et al. Neuregulin-3 (NRG3):a novel neural tissue-enriched protein that binds and activates ErbB4. Proceedings of the National Academy of Sciences of the United States of America 94,9562 (1997).
    7. Kainulainen, V., et al. A natural ErbB4 isoform that does not activate phosphoinositide 3-kinase mediates proliferation but not survival or chemotaxis. Journal of Biological Chemistry 275,8641 (2000).
    8. Falls, D. Neuregulins:functions, forms, and signaling strategies. Experimental cell research 284,14-30 (2003).
    9. Buonanno, A.& Fischbach, G. Neuregulin and ErbB receptor signaling pathways in the nervous system. Current Opinion in Neurobiology 11,287-296 (2001).
    10. Sussman, C., Vartanian, T.& Miller, R. The ErbB4 neuregulin receptor mediates suppression of oligodendrocyte maturation. Journal of Neuroscience 25,5757 (2005).
    11. Gerecke, K., Wyss, J., Karavanova, I., Buonanno, A.& Carroll, S. ErbB transmembrane tyrosine kinase receptors are differentially expressed throughout the adult rat central nervous system. The Journal of Comparative Neurology 433, 86-100 (2001).
    12. Hardy, K.M., Booth, B.W., Hendrix, M.J., Salomon, D.S.& Strizzi, L. ErbB/EGF Signaling and EMT in Mammary Development and Breast Cancer. J Mammary Gland Biol Neoplasia (2010).
    13. Yuan, W., et al. Overexpression of ERBB-2 was more frequently detected in malignant than benign pheochromocytomas by multiplex ligation-dependent probe amplification and immunohistochemistry. Endocr Relat Cancer 15, 343-350 (2008).
    14. Schaefer, K., et al. Constitutive activation of neuregulin/ERBB3 signaling pathway in clear cell sarcoma of soft tissue. Neoplasia (New York, NY) 8,613 (2006).
    15. Dimayuga, F.O., et al. The neuregulin GGF2 attenuates free radical release from activated microglial cells. JNeuroimmunol 136,67-74 (2003).
    16. Carteron, C., Ferrer-Montiel, A.& Cabedo, H. Characterization of a neural-specific splicing form of the human neuregulin 3 gene involved in oligodendrocyte survival. J Cell Sci 119,898-909 (2006).
    17. Britsch, S. The neuregulin-I/ErbB signaling system in development and disease. Adv Anat Embryol Cell Biol 190,1-65 (2007).
    18. Leimeroth, R., et al. Membrane-bound neuregulin1 type Ⅲ actively promotes Schwann cell differentiation of multipotent Progenitor cells. Dev Biol 246, 245-258 (2002).
    19. Nakano, N., et al. The N-terminal region of NTAK/neuregulin-2 isoforms has an inhibitory activity on angiogenesis. JBiol Chem 279,11465-11470 (2004).
    20. Joshua, A., et al. Rationale and evidence for sunitinib in the treatment of malignant paraganglioma/pheochromocytoma. Journal of Clinical Endocrinology & Metabolism 94,5 (2009).
    [1]Salmenkivi K, Heikkila P, Haglund C, et al. Malignancy in pheochromocytomas. APMIS,2004,112:551-559.
    [2]闫朝丽,曾正陪,童安莉,等.嗜铬细胞瘤良、恶性鉴别的临床分析.中华医学杂志,2005,85:3086-3089.
    [3]Kopf D, Goretzki PE, Lehnert H, et al. Clinical management of malignant adrenal tumors. Cancer Res Clin Oncol,2001,127:143-155.
    [4]Schlumberger M, Gicquel C, Lumbroso J, et al. Malignant pheochromocytoma: clinical, biological, histologic and therapeutic data in a series of 20 patients with distant metastases. J Endocrinol Invest,1992,15:631-642.
    [5]Mornex R,Badet C,Peyrin L. Malignant pheochromocytoma:a series of 14 cases observed between 1966 and 1990. J Endocrinol Invest,1992,15:643-649.
    [6]Santarpia, L. Habra, M. A.Jimenez, C.. Malignant pheochromocytomas and paragangliomas:molecular signaling pathways and emerging therapies. Horm Metab Res,2009,41(9):680-686.
    [7]Martin, T. P.Irving, R. M.Maher, E. R. The genetics of paragangliomas:a review. Clin Otolaryngol,2007,32(1),7-11.
    [8]Jhala,N. C., et al., Endoscopic ultrasound-guided free-needle aspiration biopsy of the adrenal gland:analysis of 24 patients. Cancer,2004.102(5):308-314.
    [9]Paulsen,S. D., et al., Changing role of imaging—guided percutaneous biopsy of adrenal masses:evaluation of 50 adrenal biopsies. AIR Am J Roentgenol,2004.182(4): 1033-1037.
    [10]Thompson,L. D., Pheochromocytoma of the Adrenal gland Scaled Score (PASS)to separate benign from malignant neoplasms:a clinicopathologic and immunophenotypic study of 100 cases. Am J Surg Pathol,2002.26(5):551-566.
    [11]Quiros RM, Kim AW, Maxhimer J, et al.Differential heparanase-1 expression in malignant and benign pheochromocytomas.J Surg Res,2002,108(1):44-50.
    [12].Salmenkivi K, Haglund C, Arola J, et al.Increased expression of tenascin in pheochromocytomas correlates with malignancy.Am J Surg Pathol.2001,25(11):1419~ 1423.
    [13].Salmenkivi K, Arola J, Voutilainen R, et al.Inhibin/activin beta B subunit expression in pheochromocytomas favors benign diagnosis.J Clin Endocrinol Metab, 2001,86(5):2231-2235.
    [14]Liu J, Voutilainen R, Kahri AI,et al.Expression patterns of the c-myc gene in adrenocortical tumors and pheochromocytomas.J Endocrinol,1997,152(2):175-181.
    [15].Gimenez-Roqueplo AP, Favier J, Rustin P, et al.Mutation in the SDHB gene are associated with extra adrenal and/or malignant pheochromocytomas.Cancer Res,2003, 63(17):5615-5621.
    [16]Rao F, Keiser HR, O'Connor DT. Malignant and benign pheochromocytoma: Chromaffin granule transmitters and the response to medical and surgical treatment. Ann. N. Y. Acad. Sci.2002; 971:530-532.
    [17]Hsiao RJ, Neumann HP, Parmer RJ, Barbosa J A, O'Connor DT.Chromogranin A in familial pheochromocytoma:Diagnostic screening value, prediction of tumor mass, and post-resection kinetics indicating two-compartment distribution. Am. J. Med.1990; 88: 607-613.
    [18]Fu W, Begley J G, Killen MW, et al. Anti-apoptotic role of telomerase in pheochromocytoma cells. J Biol Chem,1999,274:7264-7271.
    [19]Kubota Y,Nakada T,Sasagawa I,et al. Elevated levels of telomerase activity in malignant pheochromocytoma. Cancer,1998,82,176-179.
    [20]范晋海,毛全宗,荣石,等.嗜铬细胞瘤组织端粒酶活性表达与患者预后的关系.中华泌尿外科杂志,2001,22,651-653.
    [21]Umbricht CB, Conrad GT, Clark DP, et al. Human telomerase reverse transcriptase gene expression and the surgical management of suspicious thyroid tumors. Clin Cancer Res,2004,10:5762-5768.
    [22]Yan P, Benhattar J, Seelentag W, et al. Immunohistochemical localization of hTERT protein in human tissues. Histochem Cell Biol,2004,121:391-397.
    [23]Elder EE,Xu D,Hoog A,et al.Ki-67 and hTERT expression can aid in the distinction between malignant and benign pheochromocytoma and paraganglioma.Mod Pathol, 2003,16,246-255.
    [24]Gupta D, Shidham V, Holden J, et al. Value of topoisomerase Ⅱ alpha,MIB-1, p53, E-cadherin, retinoblastoma gene protein product, and HER-2/neu immunohistochemical expression for the prediction of biologic behavior in adrenocortical neoplasms. Appl Immunohistochem Mol Morphol.2001,:215-221.
    [25]Clarke MR, Weyant RJ, Watson CG, et al. Prognostic markers in pheochromocytoma. Human Pathology,1998,29:522-526.
    [26]Brown HM,Komorowski RA,Wilson SD,et al. Predicting metastasis of pheochromocytomas using DNA flow cytometry and immunohistochemical markers of cell proliferation:A positive correlation between MIB-1 staining and malignant tumor behavior. Cancer,1999,86,1583-1589.
    [27]Moreno AM,Castilla-Guerra L,Martinez-Torres MC,et al. Expression of neuropeptides and other neuroendocrine markers in human pheochromocytomas. Neuropeptides,1999,33:159-163.
    [28]Maryniak RK, Szczaluba K, Ignatowska-Switalska M, et al. Immunomorphological studies and cytometric DNA ploidy in diagnostics of pheochromocytoma. Pol J Pathol,2000,51:83-86.
    [29]Grouzmann E,Gicquel C,Plouin PF,et al. Neuropeptide Y and neuron-specific enolase levels in benign and malignant pheochromocytomas. Cancer,1990, 66:1833-1835.
    [30]Klesse LJ,Meyers KA,Marshall CJ,et al. Nerve growth factor induces survival and differentiation through two distinct signaling cascades in PC 12 cells. Oncogene,1999, 18:2055-2068.
    [31]Nakatani A,Yamada M,Asada A,et al. Comparison of survival-promoting effects of brain-derived neurotrophic factor and neurotrophin-3 on PC 12 h cells stably expressing TrkB receptor. J Biochem,1998,123:707-714.
    [32]Salmenkivi K,Haglund C,Ristimaki A,et al. Increased expression of cyclooxygenase-2 in malignant pheochromocytomas. J Clin Endocrinol Metab, 2001,86,5615-5619.
    [33]Quiros RM,Kim AW,Maxhimer J,et al. Differential heparanase-1 expression in malignant and benign pheochromocytomas. J Surg Res,2002,108,44-50.
    [34]Salmenkivi K,Haglund C,Arola J,et al. Increased expression of tenascin in pheochromocytomas correlates with malignancy. Am J Surg Pathol,2001,25,1419-1423.
    [35]Salmenkivi K,Arola J,Voutilainen R,et al. Inhibin/activin betaB-subunit expression in pheochromocytomas favors benign diagnosis. J Clin Endocrinol Metab, 2001,86,2231-2235.
    [36]Favier J, Plouin PF, Corvol P, et al. Angiogenesis and vascular architecture in pheochromocytomas:distinctive traits in malignant tumors. Am J Pathol 2002,161:1235-1246.
    [37].Kolomecki K, Stepien H, Bartos M, el al.Usefulness of VEGF, MMP-2, MMP-3 and TIMP-2 serum level evaluation in patients with adrenal tumors.Endocr-Regul,2001, 35(1):9—16.
    [38]Zielke A,Middeke M,Hoffmann S,et al. VEGF-mediated angiogenesisof human pheochromocytomas is associated to malignancy and inhibited by anti-VEGF antibodies in experimental tumors. Surgery,2002,132,1056-1063.
    [39]Salmenkivi K, Heikkila P, Liu J, el al.VEGF in 105 pheochromocytomas:enhanced expression correlates with malignant outcome.APMIS,2003,111 (4):458—464.
    [40]Van-der-Harst E, Bruining HA, Jaap-Bonjer H, et al.Proliferative index in pheochromocytomas:does it predict the occurrence Of metastases? J Pothol,2000, 191(2):175-180.
    [41]Tatic S, Havelka M, Paunovic I, el al. Pheochromocytoma pathohistologic and immunohistochemical aspects.Srp-Arh-Celok-Lek,2002,12:7-13.
    [42]Yon L, Guillemot J, Montero-Hadjadje M, el al.Identification of the secretogranin Ⅱ-derived peptide EM66 in pheochromocytomas as a potential marker for discriminating benign versus malignant tumors.J Clin Endocrinal Metab,2003, 88(6):2579-2585.
    [43]Saito Y,Ogawa K.Wild type P53 and C-myc co-operation in generating apoptosis of a rat hepatocellular carcinoma cell line(FAA-HTC1). Oncogene,1995,11:1013-1018.
    [44]Levy N, Yonish-Rouach E,Oren M, et al. Complementation by Wild-type P53 of interleukin-6 effects on M1 cells:induction of cell cycle exit and cooperativity with C-myc suppression. Mol Cell Biol,1993,13:7942-7952.
    [45]Watson JV,Stewart J, Evan GI,et al. The clinical significance of flow cytometric C-myc oncoprotein quantitation in testicular cancer.Br J Cancer,1986,53:331-337.
    [46]Sikora K,Chan S,Evan G,et al. C-myc oncogene expression in colorectal cancer. Cancer,1987,59:1289-1295.
    [47]Tauchi K,Tsutsumi Y,Hori S,et al. Expression of heat shock protein 70 and C-myc protein in human breast cancer:an immunohistochemical study. Jpn J Clin Oncol,1991,21:256-263.
    [48]Liu J,Voutilainen R,Kahri AI,et al. Expression patterns of the c-myc gene in adrenocortical tumors and pheochromocytomas. J Endocrinol,1997,152,175-181.
    [49]Goto K, Ogo A, Yanase T, et al. Expression of c-fos and c-myc proto-oncogenes in human adrenal pheochromocytomas. J Clin Endocrinol Metab,1990,70:353-357.
    [50]Yoshimoto T, Naruse M, Zeng Z, et al. The relatively high frequency of p53 gene mutations in multiple and malignant pheochromocytomas. J Endocrinol 1998,159:247-255.
    [51]Kiefer MC, Brauer MJ, PowersVC, et al. Modulation of apoptosis by the widely distributed Bcl-2 homologue Bak. Nature,1995,374:736-739.
    [52]Krajewski S, Krajewska M, Reed JC. Immunohistochemical analysis of in vivo patterns of Bak expression, aproapoptotic member of the Bcl-2 protein family. Cancer Res,1996,56:2849-2855.
    [53]Chittenden T, Harrington EA, O'Connor R, et al. Induction of apoptosis by the Bcl-2 homologue Bak. Nature,1995,374:733-736.
    [54]Wang DG, Johnston CF, Marley JJ, et al. Expression of the apoptosis-suppressing gene bcl-2 in pheochromocytoma is associated with the expression of C-MYC. J Clin Endocrinol Metab,1997,82:1949-1952.
    [55]WenQi Yuan1,2, WeiQinq Wangl,3 et al. Overexpression of ERBB-2 was more frequently detected in malignant than benign pheochromocytomas by multiplex ligation-dependent probe amplification and immunohistochemistry. Endocrine-Related Cancer (2008) 15343-350
    [56]FH van Nederveen,1 A Perren,2 H Dannenberg,1B-J Petri, et al. PTEN gene loss, but not mutation, in benign and malignant phaeochromocytomas. J Pathol 2006; 209: 274-280
    [57]Ohta S,Lai EW, Pang AL, et al. Downregulation of metastasis suppressor genes in malignant pheochromocytoma. Int J Cancer,2005,114:139-143.
    [58]Bryant J, Farmer J, Kessler LJ, et al. Pheochromocytoma:the expanding genetic differential diagnosis. J Natl Cancer Inst,2003,95:1196-1204.
    [59]Gimenez-Roqueplo AP,Favier J,Rustin P,et al.Mutations in the SDHB gene are associated with extra-adrenal and/or malignant pheochromocytomas. Cancer Res,2003,63,5615-5621.
    [60]Amar L,Bertherat J,Baudin E, et al. Genetic testing in pheochromocytoma or functional paraganglioma. J Clin Oncol,2005,23:8812-8818.
    [61]Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, Scherer SW,Lee C. Detection of large·scale variation in the human genome. Nat Genet,2004,36(9): 949-951.
    [62]Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P'Maner S。 Massa H, Walker M, Chi M, Navin N, Lucito R。 Healy J, Hicks J, Ye K, Reiner A, Gilliam TC, Trask B。Patterson N, Zetterberg A, Wigler M. Large—scale copy number polymorphism in the human genome. Science 2004。305(5683):525-528.
    [63]Anouar, Y., et al., Development ofnovel tools for the diagnosis and prognosis of pheochromooytoma using peptide marker immunoassay and gene expression profiling approaches. AnnN YAcad Sci,2006.1073:P.533—40.
    [64]Brouwers, F. M.,吐al., Gene expression profiling of benign and malignant pheochromocytoma. Ann NYAead Sei,2006.1073:P.541-56.
    [65]Hilde Dannenberg,Ernst J.M. Speel,Jianming Zhao, Parvin Saremaslani Losses of Chromosomes 1p and 3q Are Early Genetic Events in the Development of Sporadic Pheochromocytomas American Journal of Pathology.2000; 157:353-359

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700