用户名: 密码: 验证码:
ACE抑制肽的微波合成、活性及分子对接研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
血管紧张素Ⅰ转换酶(ACE)在血压调节中起着重要的作用,它可以促进血管紧张素Ⅱ的形成和舒缓激肽的降解,引起血压升高。目前ACE抑制剂已成为临床上治疗高血压的重要药物。
     Leu-Arg-Pro(LRP)和Leu-Lys-Pro(LKP)分别是玉米蛋白和鱼蛋白的水解产物,对ACE的抑制活性(IC50)达到了0.27μmol/L和0.32μmol/L。本文以探讨ACE抑制肽的构效关系,设计合成出高活性的ACE抑制肽为目的,针对多肽中氨基酸的组成及分子构象的改变对活性的影响开展工作。以LRP和LKP为骨架,以ACE抑制肽的结构特点为基础,设计合成了包括LRP和LKP在内的16个ACE抑制肽,研究了它们的ACE抑制活性与结构的关系,并通过分子对接分析抑制剂与酶的结合位点。
     本文采用微波辅助固相肽合成法,以2-氯三苯甲基氯树脂或Wang树脂为固相载体,运用正交保护策略,Fmoc为N-端α-氨基保护基,HBTU-HOBt为缩合试剂,20%哌啶/DMF为脱保护试剂,合成了LRP和LKP及其类似物共16个序列,粗产物经乙醚沉淀离心,通过RP-HPLC和ESI-MS进行表征。
     我们对合成的序列进行了体外ACE抑制活性的测定,结果表明在新设计的14个序列中,Leu-Arg-Pro-Phe-Phe表现出最强的ACE抑制活性,其IC50达到了0.26μmol/L,序列中间Pro的出现可以抵抗体内蛋白酶的水解作用。对于以LRP为骨架的系列,当C-端含有两个相同的氨基酸残基(-Phe-Phe)时,序列具有最高的抑制活性,改变其中的任意一个氨基酸都会导致活性降低;对于以LKP为骨架的系列,当C-端为L-Pro时序列具有最高的抑制活性,其次依次为D-Pro, Ac6c,由此推断ACE对其抑制剂C-端氨基酸残基有很强的立体特异性。
     本文采用分子对接对抑制剂与ACE的结合与作用方式进行了研究,结果表明除了序列12和14,其余合成的抑制肽主要占据ACE的S1点,并与Tyr523,Ala356和Glu403等形成氢键,与Phe391和Val518等形成疏水作用以稳定其构象。我们选取活性最好和最差的序列进行了详细的对接分析,其氢键的形成情况也与实验结果一致。
AngiotensinⅠ-converting enzyme(ACE) plays a pivotal role in the regulation of blood pressure. It increases blood pressure by promoting the generation of angiotensin II and the degradation of bradykinin. So angiotensinⅠ-converting enzyme inhibitors are very important drugs for clinical treatment of hypertension.
     The tripetpides Leu-Arg-Pro(LRP, isolated from a-zein) and Leu-Lys-Pro (LKP, isolated from fish protein) have IC50 values of 0.27μmol/Land 0.32μmol/L, respectively. In this paper, in order to investigate the structure-activity relationship of ACE inhibitory peptides and design high activity ACE inhibitory peptides, our work focused on the influence of amino acid composition and molecular conformation changes on ACE inhibitory activity. Based on the structures of LRP and LKP, we designed and synthesized 14 new ACE peptide inhibitors, and studied the relationship between ACE inhibitory activity and structure, the binding site between inhibitors and ACE have been analysed by molecular docking.
     In this paper, microwave-assisted solid phase peptide synthesis method and Fmoc orthogonal protected strategy were used with Trt(2-Cl) resin or Wang resin as solid carrier、HBTU-HOBt as coupling reagents and 20%piperidine in DMF as deprotecting reagents. LRP、LKP and their analogues have been synthesized. The peptides were then precipitated by ice ether. After centrifugation, the purity and mass of each end-product was analyzed by RP-HPLC and ESI-MS, respectively.
     ACE inhibitory activity in vitro was assayed. The result showed that among the 14 new ACE peptides, Leu-Arg-Pro-Phe-Phe showed the strongest inhibition against ACE with an IC50 value of 0.26μmol/L in vitro. The presence of Pro in the middle of the peptide made it very resistant to hydrolysis by digestive enzymes in vivo. For the first series based on LRP, we could see that two identical residues (-Phe-Phe) at the C-terminus yielded the most inhibition, and changing one of the two Phe residues to other amino acid caused a reduction in the inhibitory activity toward ACE; for the second series based on LKP, pepides having L-Pro at the C-termini displayed the highest inhibitory activities, secondly it was D-Pro, and the weakest was Ac6c. ACE therefore appeared to show high stereospecificity with respect to the amino acid residues at the C-termini of these peptide inhibitors.
     Molecular docking was performed with the designed peptides as well as the two model peptides (Leu-Arg-Pro and Leu-Arg-Pro), in order to study the binding interaction. The result showed that except peptides 12 and 14, the rest of the synthetic peptides mainly occupied the S1 subsite, forming H-bonds with residues such as Tyr523, Ala356 and Glu403, and also accommodated other interactions with residues such as His353, Phe391 and Val518. The sequences which had the highest and the lowest ACE-inhibitory activities were chose to analyze in details, and the formation of H-bonding was consistent with the result obtained for in vitro activity assay.
引文
[1]赵任岚,许传莲.血管紧张素转换酶的结构功能及相关抑制剂[J].生物工程学报,2008,24(2):171-176.
    [2]Erdos E G, Skidgel R A. The angiotesin Ⅰ-converting enzyme [J]. Laboratory Investigation, 1987,56:345-348.
    [3]Steve B R, Fernandez A, Kneer C, Cerda J J, Phillips M I, Woodward E R. Human intestinal brush border angiotensin-converting enzyme activity and its inhibition by antihypertensive ramipril[J]. Gastroenterology,1988,98:942-944.
    [4]Sibony M, Gasc J M, Soubrier F, Alhenc-Gelas F, Corvol P. Gene expression and tissue localization of the two isoforms of ACE [J]. Hypertension,1993,21:827-835.
    [5]Riordan J F.Angiotensin-Ⅰ-converting enzyme and its relatives [J]. Genome Biology,2003,4:225.
    [6]Natesh R, Schwager, S L U, Sturrock E D, Acharya K R. Crystal structure of the human angiotensin-converting enzyme-lisinopril complex [J].Nature,2003,421:551-554.
    [7]Wei L, Clauser E, Alhenc-Gelas F, Corvol P. The two homologous domains of human angiotensin I-converting enzyme interact differently with competitive inhibitors [J].Biol. Chem.,1992, 267:13398-13405.
    [8]Junot C et al. RXP 407, a selective inhibitor of the N-domain of angiotensin Ⅰ-converting enzyme,blocks in vivo the degradation of hemoregulatory peptide acetyl-Ser-Asp-Lys-Pro with no effect on angiotensin Ⅰ hydrolysis [J]. Pharmacol. Exp. Ther.,2001,297:606-611.
    [9]黎观红,晏向华.食物蛋白源生物活性肽—基础与应用[M].北京:化学工业出版社,2010.
    [10]Li G H, Le G W, Shi Y H,Shrestha S.Angiotensin Ⅰ-converting enzyme inhibitory peptides derived from food proteins and their physiological and pharmacological effects [J]. Nutrition Research,2004,24:469-486.
    [11]Ferreira S H. A bradykinin potentiating factor (BPF) present in the venomof Bothrops jararaca [J]. Brit J Pharmacol,1965,24:163~169.
    [12]赵新淮,徐红华,姜毓君.食品蛋白质—结构、性质与功能[M].北京:科学出版社,2009.
    [13]FitzGerald R J, Murray A M, Walsh D J. Hypotensive Peptides from Milk Proteins [J].J. Nutr.,2004,134:980S-988S.
    [14]VAN ZWIETEN P A, DE JONGE A, TIMMERMANS P B M W M. Inhibitors of the angiotensin Ⅰ converting enzyme as antihypertensive drugs [J].PHARM WEEKBL SCI.,1983,5:197-204.
    [15]Yu Y, Hu J, Miyaguchi Y, et al. Isolation and characterization of angiotensin Ⅰ-converting enzyme inhibitory peptides derived from porcine hemoglobin [J]. Peptides 2006,27:2950-2956.
    [16]Muguruma M, Ahhmed A.M, Katayama K, et al. Identification of pro-drug type ACE inhibitory peptide sourced from porcine myosin B:Evaluation of its antihypertensive effects in vivo [J]. Food Chemistry,2009,114:516-522.
    [17]Korhonen H, Pihlanto A. Bioactive peptides:production and functionality [J]. Int. Dairy J.,2006, 16:945-960.
    [18]Nakamura Y, Yamamoto M, Sakai K, et al. Purification and characterization of angiotensin I-converting enzyme inhibitors from sour milk [J]. J. Dairy Sci.,1995,78:777-783.
    [19]Maeno M, Yamamoto N, Takano T. Identification of antihypertensive peptides from casein hydrolysate produced by a proteinase from Lactobacillus helveticus CP790[J]. J. Dairy Sci., 1996,79:1316-1321.
    [20]Maruyama S, Mitachi H, Tanaka H. Studies on the active site and antihypertensive activity of angiotensin I-converting enzyme inhibitors derived from casein[J]. Agricultural Biological Chemistry,1987a,51:1581-1586.
    [21]Mullally M M, Meisel H, FitzGerald R J. Synthetic peptides corresponding to a-lactalbumin and b-lactoglobulin sequences with angiotensin-I-converting enzyme inhibitory activity[J]. Biological Chemistry Hoppe-Seyler,1996,377:259-260.
    [22]Abubakar A, Saito T, Kitazawa H, et al. Structural analysis of new antihypertensive peptides derived from cheese whey protein by proteinase K digestion[J]. J Dairy Sci,1998, 81(12):3131-3138.
    [23]Fujita H, Yoshikawa M. LKPNM:a prodrug type ACE-inhibitory peptide derived from fish protein [J]. Immunopharmacology,1999,44:123-127.
    [24]Matsumura N, Fujii M, Takeda Y, et al. Angiotensin I-converting enzyme inhibitory peptides derived from bonito bowels autolysate [J]. Biosci Biotech Biochem,1993,57(5):695-697.
    [25]Yokoyama H, Chiba H, Yoshikawa M. Peptide inhibitors for angiotensin I-converting enzyme from thermolysin digest of dried bonito [J]. Biosci Biotech Biochem,1992,56:1541-1545.
    [26]Miyoshi S, Ishikawa H, Kaneko T, et al. Structures and activity of angiotensin-converting enzyme inhibitors in an a-zein hydrolysate [J]. Agric Biol Chem,1991,55(3):1313-1318.
    [27]Wu J, Ding X. Characterization of inhibition and stability of soy-protein-derived angiotensin I-converting enzyme inhibitory peptides[J]. Food Res Int,2002,35:367-375.
    [28]Matsui T, Li C H, Osajima Y. Preparation and characterization of novel bioactive peptides responsible for angiotensin I-converting enzyme inhibition from wheat germ [J]. J Pept Sci,1999, 5:289-297.
    [29]Matsui T, Li C H, Tanaka T, et al. Depressor ffect of wheat germ hydrolysate and its novel angiotensin I-converting enzyme inhibitory peptide, Ile-Val-Tyr, and the metabolism in rat and human plasma [J]. Biol Pharm Bull,2000,23:427-431.
    [30]Suetsuna K, Nakano T. Identification of an antihypertensive peptide from peptic digest of wakame (Undaria pinnatifida)[J]. J Nutr Biochem,2000,11:450-454.
    [31]Suetsuna K. Isolation and characterization of angiotensin I-converting enzyme inhibitor dipeptides derived from Allium sativum L (garlic)[J]. J. Nutr. Biochem.,1998,9:415-419.
    [32]Fujita H, Yokoyama K, Yoshikawa M. Classification and antihypertensive activity of angiotensin Ⅰ—converting enzyme inhibitory peptides derived from food proteins[J]. J Food Sci,2000, 65(4):564-569.
    [33]Hyoung L D, Ho K J, Sik P J, et al. Isolation and characterization of a novel angiotensin I-converting enzyme inhibitory peptide derived from the edible mushroom Tricholoma giganteum [J]. Peptides,2004,25:621-627.
    [34]Lee J R, Kwon D Y, Shin H K, et al. Purification and identification of angiotensin-I converting enzyme inhibitory peptide from kidney bean protein hydrolysate [J]. Journal of Food Science and Biotechnology,1999,8:172-178.
    [35]Pihlanto-Leppala A, Koskinen P, Piilola K, et al. Angiotensin-Ⅰ converting enzyme inhibitory properties of whey protein digests:concentration and characterization of active peptides [J]. Journal of Dairy Research,2000,67:53-64.
    [36]Vermeirssen A. A quantitative in silico analysis calculates the angiotensin I converting enzyme (ACE) inhibitory activity in pea and whey protein digests [J]. Biochimie,2004,86:231-239.
    [37]Sato M, Hoskawa T, Yamaguchi T, et al. Angiotensin-I-converting enzyme inhibitory peptides derived from wakame (Undaria pinnatifida) and their antihypertensive effect in spontaneously hypertensive rats [J]. Journal of Agricultural and Food Chemistry,2002,50(21):6245-6252.
    [38]Jung W K, Mendis E, Je J Y, et al. Angiotensin I-converting enzyme inhibitory peptide from yellowfin sole (Limanda aspera) frame protein and its antihypertensive effect in spontaneously hypertensive rats [J]. Food Chemistry,2006,94(1):26-32.
    [39]Lee N Y, Cheng J T, Enomoto T, et al. Antihypertensive Effect of Angiotensin-converting Enzyme Inhibitory Peptide Obtained from Hen Ovotransferrin [J]. Journal of the Chinese Chemical Society,2006,53(2):495-501.
    [40]Ondetti M A, Rubin B, Cushman D W. Design of specific inhibitors of angiotensin-converting enzyme:new class of orally active antihypertensive agents [J]. Science,1977,196:441-444.
    [41]Ondetti M A, Cushman D W. Enzymes of the renin-angiotensin system and their inhibitors [J]. Annu Rev Biochem,1982,51:283-308.
    [42]Cushman D W, Cheung H S, Sabo E F, et al. Development and design of specific inhibitors of angiotensin-converting enzyme[J]. Am J Cardiol,1982,49:1390-1394.
    [43]Cushman D W, Ondetti M A. History of the design of captopril and related inhibitors of angiotensin converting enzyme. Hypertension,1991,17:589-592.
    [44]Oshima G, Nagasawa K. Stereospecificity of peptidyl dipeptide hydrolase (angiotensin I-converting enzyme)[J]. J Biochem,1979,86:1719-1724.
    [45]Muruyama S, Mitachi H, Tanaka H, et al. Studies on the active site and antihypertensive activity of angiotensin I-converting enzyme inhibitors derived from casein[J]. Agric Biol Chem,1987, 51:1581-1586.
    [46]Li G H, Liu H, Shi Y H, et al. Direct spectrophotometric measurement of angiotensin I-converting enzyme inhibitory activity for screening bioactive peptides[J].Journal of pharmaceutical and biomedical analysis,2005,37(2):219-224.
    [47]Cushman D W, Cheung H S. Spectrophotometric assay and properties of the angiotensin converting enzyme of rabbit lung [J]. Biochem Pharmacol,1971,20:1637-1648.
    [48]Lam L H, Shimamura T,Sakafuchi K, et al. Assay of angiotensin 1-converting enzyme-inhibitory activity based on the detection of 3-hudroxybutyric acid [J].Anal Biochem,2007,364:104-111.
    [49]Merrifield B, Solid phase synthesis [J].Science.1986,232:341-347.
    [50]Sarin V K, Kent S B H. Quantitative Monitoring of Solid-Peptide Synthesis by the Ninhydrin Reaction [J]. Analytical biochemistry,1981,117:147-157.
    [51]黄惟德,陈常庆.多肽合成[M].北京:科学出版社,1985,1-2.
    [52]Atherton E, Sheppard R C. Solid phase peptide synthesis [M]. Oxford Unibersity Press.1989,1-3.
    [53]程邵玲,黄文强,何炳林.组合化学中的聚合物研究进展[J].离子交换与吸附,1999,15(5):472-480.
    [54]王德心.固相有机合成-原理及应用指南[M].北京:化学工业出版社,2004,99-100.
    [55]王德心.活性多肽与药物开发[M].北京:中国医药科技出版社,2008,432-434.
    [56]Novabiochem company. Novabiochem synthesis notes [Z].1999.
    [57]Sarin V K, Kent S B H. Quantitative Monitoring of Solid-Peptide Synthesis by the Ninhydrin Reaction [J]. Analytical biochemistry,1981,117:147-157.
    [58]Krchnak.Non-invasive continuous monitoring of solid phase peptide synthesis by acid-base indicator [J]. Collection of Czechoslovak chemical communications,1988,53:2542-2548.
    [59]Eduardo M C, Guita N J, Suely C F, et al. Importance of the Solvation Degree of Peptide-Resin Beads for Amine Groups Determination by the Picric Acid Method [J]. Journal of the Brazilian Chemical Society,2000,11(5):474-478.
    [60]邹永水,钱肖贞.固相上氨基酸与多肽氨基的测定[J].生物化学与生物物理进展,1978,(4):12-15.
    [61]Esko K. A mehod for determining free amino groups in polymers with particular reference to the merrifield synthesis [J]. Acta chemica Scandinavica,1968,22:33-42.
    [62]Marcel P, Sylvia B. Monitoring the Solid Phase Synthesis Using Ion-Selective Electrode [J]. Tetrahedron Letter,1998,39:753-756.
    [63]Gedye R, Smith F, Westaway K, et al. The uses of microwave ovens for rapid organic synthesis [J]. Tetrahedron Lett.,1986,27(3):279-282.
    [64]Gedye R N,Wei J B.Rate enhancement of organic reactions by microwave at atmospheric pressure [J]. Can J Chem,1998,76(5):525-523.
    [65]Loupy,Andre.Solvent-free microwave organic synthesis as an efficient procedure for green chemistry [J]. Comptes Rendus Chimie,2004,7(2):103-112.
    [66]刘福萍,陆明。微波有机合成及反应器研究新进展[J].精细化工中间体,2004,,3(2):1-4.
    [67]甘肃省化学会.第二十五届年会论文集[C].甘肃:[出版社不详],2007.
    [68]刘晔,刘浦,高润雄.微波条件下V205/TiO2低温选择氧化甲苯制备甲酸[J].催化学报,1998,19(3):224-228.
    [69]Balalair S, Nemati N. Ammonium acetate-basic alumina catalyzed Knonevenagel codensation under microwave irradiation under solvent-free condition [J]. Synthetic Communications, 2000,30(5):869.
    [70]Chatti S, Bortolussi M, Loupy A. Synthesis of diethers derives from dianhydrohextiols by Phase trnasfer catalysis under microwave [J].Tetrahedron Letter,2000,41(18):3367-3370.
    [71]叶霞,张凤秀,张光先.微波辐射催化合成已酸乙酯[J].西南农业大学学报,2002,24(3):2798-2801.
    [72]Yadav J S, Meshran H M, Reddy G S, et al. Microwavethemorlysis:Selective ceprotection of MPM ehers using clay supported ammonium nitrate "clayan" in dry media [J]. Tetrahedron Letter,1998,39(19):3043-3046.
    [73]Olivos H J, Alluri P G, Reddy M M, et.al. Mierowvae-Assisted Solid-phase Synthesis of PePtoids [J]. OgrnaieLetters,2002,4(23):4057-4059.
    [74]张青山,陆宝萍,郭炳南.微波辐射促进睛类化合物水解[J].火炸药学报,2003,,26(3):73-75.
    [75]金钦汉.微波化学[M].北京:科学出版社,1999.
    [76]Raner K D, Strass C R, Trainor R W. A new microwave heactor for batchwise organic synthesis [J]Journal of Organic Chemistry,1995,2456-2460.
    [77]叶德泳.计算机辅助药物设计导论[M].北京:化学工业出版社,2004.
    [78]陈凯先,蒋华良,秘汝运.计算机辅助药物设计—原理、方法及应用[M].上海:上海科学技术出版社,2000.
    [79]Roe D C, Kuntz I D. Builder v.2:improving the chemistry of a de novo design strategy[J].J comput Aided Mol Des,1995,9(1):269-282.
    [80]Kramer B, Rarey M, Leangauer T. Evaluation of the FlexX Incremental Construction Algorithm for Protein-ligand docking[J].Proteins,1999,37(1):228-241.
    [81]Morris G M, Goodsell D S, Halliday R S, et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function[J]. J.Comput.Chem.,1998,19(14):1555-1674.
    [82]Jones G, Willet P, Glen R C, et al. Development and validation of a genetic Algorithm for flexible docking[J].J Mol Biol,1997,267(l):727-748.
    [83]段爱霞,陈晶,刘宏德,等.分子对接方法的应用于发展[J].分析科学学报,2009,25(4):473-477.
    [84]Taylor R D, Jewsbury P J, Essex W J. A review of protein-small molecule docking methods [J] J.Comput.Aided Mol.Des.,2002,16:151-166.
    [85]Congreve M, Murray C W, Blundell T L. Keynote review:structural biology and drug discovery [J].Drug Discovery Today,2005,10(13):895-907.
    [86]焦剑,雷渭媛.高聚物结构、性能与测试[M].北京:化学工业出版,2003.
    [87]Morris G M, Goodsell D S, Halliday R S, et al.Automated Docking Using aLamarckian Genetic Algorithm and Empirical Binding Free Energy Function[J].J Comput Chem,1998, 19:1639-1662.
    [88]Huey R, Morris M G, OISon A J, et al.. A semiempirical free energy force field with Charge-based desolvation[J]. J Comput Chem,2007,28(6):1145-1152.
    [89]Pina A S, Roque A C A. Studies on the molecular recognition between bioactive peptides and angiotensin-converting enzyme [J]. Mol. Recognit.,2009,(22):162-168.
    [90]Pripp A H. Docking and virtual screening of ACE inhibitory dipeptides[J].Eur Food Res Technol., 2007, (225):589-592.
    [91]Jimsheena V K, Gowda L R. Arachin derived peptides as selective angiotensin I-converting enzyme (ACE) inhibitors:Structure-activity relationship [J].Peptides,2010, (31):1165-1176.
    [92]Natesh R., Schwager S L U, Evans H R, et al.. Structural details on the binding of antihypertensive drugs captopril and enalaprilat to human testicular angiotensin Ⅰ-converting enzyme [J].Biochemistry,2004,43,8718-8724.
    [93]Corradi H. R., Chitapi I., Sewell B. T., et al..The Structure of Testis Angiotensin-Converting Enzyme in Complex with the C Domain-Specific Inhibitor RXPA380 [J]. Biochemistry,2007,46, 5473-5478.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700