用户名: 密码: 验证码:
针对膜蛋白结构解析的核磁共振方法发展和应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞膜为细胞构筑一道物质自由出入的屏障,保证胞内各种生化反应能在一个相对稳定的环境中有序运行。膜蛋白在胞内生命活动与周围环境发生信息、物质与能量交换过程中起着重要作用,但因样品稳定性及研究方法的限制,其结构和功能的研究进展缓慢。本论文主要目的就是发展优化膜蛋白样品制备和基于核磁共振的膜蛋白结构研究的方法。
     本文用两章分别对膜蛋白及核磁共振做简要描述。第一章中简要介绍膜蛋白的种类、功能以及结构研究现状。第二章介绍了核磁基本理论以及液体和固体核磁中常用于蛋白质结构和功能研究的一些方法,包括一些特殊的同位素标记技术。
     第三章中我们应用传统液体核磁共振和电子顺磁共振相结合的方法解析了一个结核分枝杆菌的“外膜蛋白”Rv0899的结构。之前的相关功能研究表明,Rv0899是一个外膜通道蛋白,从外界摄取诸如丝氨酸和葡萄糖一类的小分子水溶性营养物质,同时还对菌体适应外界酸性环境具有重要作用。但我们通过对其去垢剂和水溶液中的三维结构研究显示Rv0899只是以一个跨膜螺旋锚定在外膜上的单体蛋白,不太可能是一个分子通道。通过核磁滴定和等温量热滴定方法发现Rv0899可与Zn2+有较强的结合,所以我们推测Rv0899可能对Zn2+摄入有一定辅助作用。
     第四章中发展基于交叉极化原理的高效CA-CO重耦方法并应用到全标记的蛋白样品中。膜蛋白质在样品中与去垢剂或磷脂结合后总体分子量增大,在溶液中的运动速度减慢,弛豫速率增大,液体核磁方法很难检测到信号。固体核磁一般直接研究固态样品,不存在此类问题。但固体核磁发展起步较晚,还需发展更好的硬件和更多适用于蛋白质研究的脉冲程序。基于交叉极化原理的高效CA-CO重耦方法传递效率在CO和CA原子感受到的有效磁场之和等于两倍样品转速时达到最大。经过优化,此方法使得CO和CA之间的传递效率超过30%,比之前常用的自旋扩散方法高出70%左右。我们将其应用到具体的实验中,发展出一套完整的用于蛋白质主链归属的二维和三维固体核磁谱。
     在第五章中我们发展了一种基于气相色谱的去垢剂定量分析方法。大多数蛋白质结构研究过程中都需要对其进行纯化,去垢剂可模拟磷脂双分子层的双亲性环境,对膜蛋白维持功能和稳定结构具有重要作用。此前一直没有快速有效的方法来对膜蛋白样品中的去垢剂进行定量分析。我们用气相色谱对去垢剂进行定量分析,并用此方法监测了膜蛋白浓缩过程中去垢剂的浓度,发现其损失的规律,找到一种简易的移除膜蛋白样品中多余去垢剂的方法。
     第六章中对膜蛋白结构研究的现状和核磁研究膜蛋白结构和功能的方向进行简单分析。截止到目前,被解析的膜蛋白结构仅占所有解析的蛋白质结构的1.5%左右,未来发展空间很大。因去垢剂导致的弛豫速率加快的问题,使得液体核磁共振不太适于膜蛋白结构的研究,而魔角旋转的固体核磁共振才是以后发展的方向。同时,很多膜蛋白正常功能的行使需要磷脂分子的协助,所以如何在磷脂双分子层或原位细胞膜环境中研究膜蛋白结构和功能也将是未来发展的一个很重要的方向。
All cells and organelles are contained within a hydrophobic lipid bilayer membrane to get a stable environment for vital function. A wide variety of biological processes for communications between cells and surrounding environment are controlled by the integral membrane proteins. However, due to partially hydrophobic surfaces and lack of stability, membrane proteins continue to be among the most challenging targets in structural biology. Here, we will apply some new methods for membrane protein purification and NMR based structure biology study.
     A brief review of function and current structure studies of membrane proteins is introduced in Chapter1. Then a brief review of the basic theory and protein study methods of Nuclear Magnetic Resonance (NMR) are introduced in Chapter2.
     In Chapter3, we apply the combined use of solution NMR and EPR (Electron Paramagnetic Resonance) methods for the structural analysis of a Mycobacterium tuberculosis "outer membrane protein". Rv0899functions as a pore-forming protein and the deletion of this gene impairs the uptake of some water-soluble substances, such as serine, glucose, and glycerol. It has also been shown to play a part in low-pH environment adaption, which may play a part in pathogenic mycobacteria overcoming the host's defense mechanisms. Here, biochemical and structural data indicated that Rv0899is a monomeric membrane-anchoring protein with two separate domains, rather than an oligomeric pore. Using NMR chemical shift perturbation and isothermal calorimetric titration assays, we show that Rv0899was able to interact with Zn2+ions, which may indicate a role in the process of Zn2+acquisition.
     In Chapter4, an efficient dipolar-based band-selective homonuclear CO-CA cross-polarization transfer method was applied in solid state NMR spectrum of protonated proteins. Due to increased relaxation rate, NMR signal is more broad and undetectable for detergent bound membrane protein in solution buffer. So we turned our attention to Solid state NMR which used for the immobilized sample study. The most efficient recoupling is achieved when the sum of effective radio-frequency fields on CO and CA resonances equals two times the spinning rate. More than30%of the CO magnetization can be transferred to CA using BSH-CP, and the transfer efficiency is increased by up to70%compared to the most frequently applied spin diffusion (PDSD) procedure. This BSH recoupling method has been adapted for a complete set of sensitivity-enhanced protein sequential resonance assignment experiment.
     In Chapter5, A novel and reliable gas chromatography method was developed to separate and quantify detergents frequently used in membrane protein samples. In membrane protein biochemical and structural studies, detergents are always used to mimic membrane environment and maintain functional, stable conformation of membrane proteins in the absence of lipid bilayers. However, detergent concentration, esp. molar ratio of membrane protein to detergent is usually unknown. To remove excessive detergents, a filtered centrifugation using Centricon tubes was applied. Detergent concentrations in the upper and lower fraction of the Centricon tube were measured after each round of centrifugation. Coupling of GC-MS-SIM and detergent removal by Centricon tubes, detergents concentration, esp. molar ratio of membrane protein to detergent could be controlled, which will expedite membrane protein structural and biochemical studies.
     In Chapter6, a brief review of the current and the future structure investigation of membrane protein is introduce. As of Sep.2013less than1.5%of protein structures determined were membrane proteins despite being20-30%of the total proteome and significant functional importance. Detergents used in protein purification procedures leads to slower molecular tumbling, impeding the application of solution-state NMR. Solid-state magic-angle spinning NMR spectroscopy could be an emerging method for membrane-protein structural biology that can overcome these technical problems. Meanwhile, the functional diversity of membrane proteins is determined not only by themselves, but also by their interactions with membranes. People should pay more attention on how to analysis membrane protein structure and function in lipids or its native membrane in the future.
引文
Carpenter, E. P., K. Beis, et al. (2008). "Overcoming the challenges of membrane protein crystallography." Current Opinion in Structural Biology 18(5):581-586.
    Erez, E., D. Fass, et al. (2009). "How intramembrane proteases bury hydrolytic reactions in the membrane." Nature 459(7245):371-378.
    Ghosh, M., D. E. Tucker, et al. (2006). "Properties of the Group IV phospholipase A2 family." Progress in Lipid Research 45(6):487-510.
    Hiller, S., R. G. Garces, et al. (2008). "Solution Structure of the Integral Human Membrane Protein VDAC-1 in Detergent Micelles." Science 321(5893):1206-1210.
    Krogh, A., B. Larsson, et al. (2001). "Predicting transmembrane protein topology with a hidden markov model:application to complete genomes." Journal of Molecular Biology 305(3):567-580.
    MacKinnon, R., S. L. Cohen, et al. (1998). "Structural conservation in prokaryotic and eukaryotic potassium channels." Science 280(5360):106-109.
    Overington, J. P., B. Al-Lazikani, et al. (2006). "How many drug targets are there?" Nature Reviews Drug Discovery 5(12):993-996.
    Pautsch, A. and G. E. Schulz (1998). "Structure of the outer membrane protein A transmembrane domain." Nature Structural & Molecular Biology 5(11):1013-1017.
    Rawson, R. B., N. G. Zelenski, et al. (1997). "Complementation Cloning of S2P, a Gene Encoding a Putative Metalloprotease Required for Intramembrane Cleavage of SREBPs." Molecular Cell 1(1):47-57.
    Thuduppathy, G. R., J. W. Craig, et al. (2006). "Evidence that Membrane Insertion of the Cytosolic Domain of Bcl-xL is Governed by an Electrostatic Mechanism." Journal of Molecular Biology 359(4):1045-1058.
    Urban, S., J. R. Lee, et al. (2001). "Drosophila Rhomboid-1 Defines a Family of Putative Intramembrane Serine Proteases." Cell 107(2):173-182.
    Wallin, E. and G. V. Heijne (1998). "Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms." Protein Science 7(4):1029-1038.
    Weihofen, A., K. Binns, et al. (2002). "Identification of Signal Peptide Peptidase, a Presenilin-Type Aspartic Protease." Science 296(5576):2215-2218.
    Aue, W. P., E. Bartholdi, et al. (1976). "Two-dimensional spectroscopy. Application to nuclear magnetic resonance." Journal of Chemical Physics 64(5):2229-2246.
    Ayala, I., R. Sounier, et al. (2009). "An efficient protocol for the complete incorporation of methyl-protonated alanine in perdeuterated protein." Journal of Biomolecular NMR 43(2):111-119.
    Baldus, M., A. T. Petkova, et al. (1998). "Cross polarization in the tilted frame:assignment and spectral simplification in heteronuclear spin systems." Molecular Physics 95(6):1197-1207.
    Bennett, A. E., C. M. Rienstra, et al. (1995). "Heteronuclear decoupling in rotating solids." The Journal of Chemical Physics 103(16):6951-6958.
    Bielecki, A., A. Kolbert, et al. (1989). "Frequency-switched pulse sequences:homonuclear decoupling and dilute spin NMR in solids." Chemical Physics Letters 155(4):341-346.
    Braunschweiler, L. and R. Ernst (1983). "Coherence transfer by isotropic mixing:application to proton correlation spectroscopy." Journal of Magnetic Resonance (1969) 53(3):521-528.
    Chevelkov, V., K. Rehbein, et al. (2006). "Ultrahigh Resolution in Proton Solid-State NMR Spectroscopy at High Levels of Deuteration." Angewandte Chemie International Edition 45(23):3878-3881.
    Comellas, G., J. J. Lopez, et al. (2011). "Straightforward, effective calibration of SPINAL-64 decoupling results in the enhancement of sensitivity and resolution of biomolecular solid-state NMR." Journal of Magnetic Resonance 209(2):131-135.
    Danielson, M. A. and J. J. Falke (1996). "Use of 19F NMR to probe protein structure and conformational changes." Annual Review of Biophysics and Biomolecular Structure 25:163.
    Dyson, H. J. and P. E. Wright (2004). "Unfolded proteins and protein folding studied by NMR." Chemical Reviews 104(8):3607-3622.
    Ernst, R. and W. Anderson (1966). "Application of Fourier transform spectroscopy to magnetic resonance." Review of Scientific Instruments 37(1):93-102.
    Fischer, M., K. Kloiber, et al. (2007). "Synthesis of a 13C-Methyl-Group-Labeled Methionine Precursor as a Useful Tool for Simplifying Protein Structural Analysis by NMR Spectroscopy." ChemBioChem 8(6):610-612.
    Griesinger, C., G. Otting, et al. (1988). "Clean TOCSY for proton spin system identification in macromolecules." Journal of the American Chemical Society 110(23):7870-7872.
    Grzesiek, S., J. Anglister, et al. (1993). "Carbon-13 line narrowing by deuterium decoupling in deuterium/carbon-13/nitrogen-15 enriched proteins. Application to triple resonance 4D J
    connectivity of sequential amides." Journal of the American Chemical Society 115(10):4369-4370.
    Hahn, E. and D. Maxwell (1952). "Spin echo measurements of nuclear spin coupling in molecules." Physical Review 88(5):1070.
    Hahn, E. L. (1950). "Spin Echoes." Physical Review 80(4):580-594.
    Higman, V., J. Flinders, et al. (2009). "Assigning large proteins in the solid state:a MAS NMR resonance assignment strategy using selectively and extensively 13C-labelled proteins." Journal of Biomolecular NMR 44(4):245-260.
    Hong, M., X. Yao, et al. (2002). "Investigation of molecular motions by Lee-Goldburg cross-polarization NMR spectroscopy." The Journal of Physical Chemistry B 106(29):7355-7364.
    Kainosho, M., T. Torizawa, et al. (2006). "Optimal isotope labelling for NMR protein structure determinations." Nature 440(7080):52-57.
    Kay, L. E. (2005). "NMR studies of protein structure and dynamics." Journal of Magnetic Resonance 173(2):193-207.
    Kumar, A., G. Wagner, et al. (1981). "Buildup rates of the nuclear Overhauser effect measured by two-dimensional proton magnetic resonance spectroscopy:implications for studies of protein conformation." Journal of the American Chemical Society 103(13):3654-3658.
    Lange, A., S. Luca, et al. (2002). "Structural constraints from proton-mediated rare-spin correlation spectroscopy in rotating solids." Journal of the American Chemical Society 124(33): 9704-9705.
    Lange, A., K. Seidel, et al. (2003). "Analysis of proton-proton transfer dynamics in rotating solids and their use for 3D structure determination." Journal of the American Chemical Society 125(41):12640-12648.
    Lee, M. and W. I. Goldburg (1965). "Nuclear-magnetic-resonance line narrowing by a rotating rf field." Physical Review 140(4A):A1261.
    LeMaster, D. M. and D. M. Kushlan (1996). "Dynamical mapping of E. coli thioredoxin via 13C NMR relaxation analysis." Journal of the American Chemical Society 118(39):9255-9264.
    Loewen, M. C., J. Klein-Seetharaman, et al. (2001). "Solution 19F nuclear Overhauser effects in structural studies of the cytoplasmic domain of mammalian rhodopsin." Proceedings of the National Academy of Sciences 98(9):4888-4892.
    Lundstrom, P., K. Teilum, et al. (2007). "Fractional 13C enrichment of isolated carbons using [1-13C]-or [2-13C]-glucose facilitates the accurate measurement of dynamics at backbone Cα and side-chain methyl positions in proteins." Journal of Biomolecular NMR 38(3):199-212.
    Marion, D. (1985). "Rotating frame nuclear overhauser effect:a practical tool for the 1H NMR study of peptides in solution." FEBS Letters 192(1):99-103.
    Meiboom, S. and D. Gill (1958). "Modified Spin-Echo Method for Measuring Nuclear Relaxation Times." Review of Scientific Instruments 29(8):688-691.
    Morris, G. A. and R. Freeman (1979). "Enhancement of nuclear magnetic resonance signals by polarization transfer." Journal of the American Chemical Society 101(3):760-762.
    Neri, D., T. Szyperski, et al. (1989). "Stereospecific nuclear magnetic resonance assignments of the methyl groups of valine and leucine in the DNA-binding domain of the 434 repressor by biosynthetically directed fractional carbon-13 labeling." Biochemistry 28(19):7510-7516.
    Perler, F. B. (1998). "Protein splicing of inteins and hedgehog autoproteolysis:structure, function, and evolution." Cell 92(1):1-4.
    Pervushin, K., R. Riek, et al. (1997). "Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution." Proceedings of the National Academy of Sciences 94(23):12366-12371.
    Rance, M., O. W. Sorensen, et al. (1983). "Improved spectral resolution in COSY 1H NMR spectra of proteins via double quantum filtering." Biochemical and Biophysical Research Communications 117(2):479-485.
    Sakellariou, D., A. Lesage, et al. (2000). "Homonuclear dipolar decoupling in solid-state NMR using continuous phase modulation." Chemical Physics Letters 319(3):253-260.
    Schaefer, J. and E. O. Stejskal (1976). "Carbon-13 nuclear magnetic resonance of polymers spinning at the magic angle." Journal of the American Chemical Society 98(4):1031-1032.
    Scholz, I., M. Huber, et al. (2008). "MIRROR recoupling and its application to spin diffusion under fast magic-angle spinning." Chemical Physics Letters 460(1-3):278-283.
    Shi, P., Z. Xi, et al. (2010). "Site-specific protein backbone and side-chain NMR chemical shift and relaxation analysis of human vinexin SH3 domain using a genetically encoded 15N/19F-labeled unnatural amino acid." Biochemical and Biophysical Research Communications 402(3): 461-466.
    Smith, R., I. M. Brereton, et al. (1996). "Ionization states of the catalytic residues in HIV-1 protease." Nature Structural & Molecular Biology 3(11):946-950.
    Szeverenyi, N. M., M. J. Sullivan, et al. (1982). "Observation of spin exchange by two-dimensional fourier transform 13C cross polarization-magic-angle spinning." Journal of Magnetic Resonance (1969) 47(3):462-475.
    Takegoshi, K., S. Nakamura, et al. (2001). "13C-1H dipolar-assisted rotational resonance in magic-angle spinning NMR." Chemical Physics Letters 344(5-6):631-637.
    Tang, C., J. Iwahara, et al. (2006). "Visualization of transient encounter complexes in protein-protein association." Nature 444(7117):383-386.
    Tugarinov, V. and L. E. Kay (2003). "Ile, Leu, and Val methyl assignments of the 723-residue malate synthase G using a new labeling strategy and novel NMR methods." Journal of the American Chemical Society 125(45):13868-13878.
    Umbarger, H. (1978). "Amino acid biosynthesis and its regulation." Annual Review of Biochemistry 47(1):533-606.
    van Gammeren, A. J., F. B. Hulsbergen, et al. (2004). "Biosynthetic site-specific 13 C labeling of the light-harvesting 2 protein complex:A model for solid state NMR structure determination of transmembrane proteins." Journal of Biomolecular NMR 30(3):267-274.
    Van Rossum, B. J., C. De Groot, et al. (2000). "A method for measuring heteronuclear (1H-13C) distances in high speed MAS NMR." Journal of the American Chemical Society 122(14):3465-3472.
    Velyvis, A., A. M. Ruschak, et al. (2012). "An Economical Method for Production of 2H,13CH3-Threonine for Solution NMR Studies of Large Protein Complexes:Application to the 670 kDa Proteasome." PLoS One 7(9):e43725.
    Vitali, F., A. Henning, et al. (2005). "Structure of the two most C-terminal RNA recognition motifs of PTB using segmental isotope labeling." The EMBO journal 25(1):150-162.
    Vuister, G. W., S.-J. Kim, et al. (1994). "2D and 3D NMR study of phenylalanine residues in proteins by reverse isotopic labeling." Journal of the American Chemical Society 116(20): 9206-9210.
    Wand, A. J., R. J. Bieber, et al. (1995). "Carbon relaxation in randomly fractionally 13C-enriched proteins." Journal of Magnetic Resonance, Series B 108(2):173-175.
    Wang, L., A. Brock, et al. (2001). "Expanding the genetic code of Escherichia coli." Science 292(5516):498-500.
    Wishart, D. S., C. G. Bigam, et al. (1995). "1H,13C and 15N chemical shift referencing in biomolecular NMR." Journal of Biomolecular NMR 6(2):135-140.
    Yang, J., M. L. Tasayco, et al. (2008). "Magic angle spinning NMR experiments for structural studies of differentially enriched protein interfaces and protein assemblies." Journal of the American Chemical Society 130(17):5798-5807.
    Yu, L., A. M. Petros, et al. (1997). "Solution structure of an rRNA methyltransferase (ErmAM) that confers macrolide-lincosamide-streptogramin antibiotic resistance." Nature Structural & Molecular Biology 4(6):483-489.
    Zuger, S. and H. Iwai (2005). "Intein-based biosynthetic incorporation of unlabeled protein tags into isotopically labeled proteins for NMR studies." Nature Biotechnology 23(6):736-740.
    Zuiderweg, E. R. (2002). "Mapping protein-protein interactions in solution by NMR spectroscopy." Biochemistry 41(1):1-7.
    Battiste, J. L. and G. Wagner (2000). "Utilization of site-directed spin labeling and high-resolution heteronuclear nuclear magnetic resonance for global fold determination of large proteins with limited nuclear overhauser effect data." Biochemistry 39(18):5355-5365.
    Bax, A. (2003). "Weak alignment offers new NMR opportunities to study protein structure and dynamics." Protein Science 12(1):1-16.
    Boehr, D. D., H. J. Dyson, et al. (2006). "An NMR perspective on enzyme dynamics." Chemical Reviews 106(8):3055-3079.
    Brennan, P. J. (2003). "Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis." Tuberculosis 83(1-3):91-97.
    Camus, J.-C., M. J. Pryor, et al. (2002). "Re-annotation of the genome sequence of Mycobacterium tuberculosis H37Rv." Microbiology 148(10):2967-2973.
    Clore, G. M. and J. Iwahara (2009). "Theory, practice, and applications of paramagnetic relaxation enhancement for the characterization of transient low-population states of biological macromolecules and their complexes." Chemical Reviews 109(9):4108-4139.
    Cole, S. T. and B. G. Barrell (1998). "Analysis of the genome of Mycobacterium tuberculosis H37Rv." Novartis Foundation Symposia 217:160-172; discussion 172-167.
    Cornilescu, G., F. Delaglio, et al. (1999). "Protein backbone angle restraints from searching a database for chemical shift and sequence homology." Journal of Biomolecular NMR 13(3):289-302.
    Cross, T. A., M. Sharma, et al. (2011). "Influence of solubilizing environments on membrane protein structures." Trends in Biochemical Sciences 36(2):117-125.
    Dempsey, C. E. (2001). "Hydrogen exchange in peptides and proteins using NMR spectroscopy." Progress in Nuclear Magnetic Resonance Spectroscopy 39(2):135-170.
    Faller, M., M. Niederweis, et al. (2004). "The structure of a mycobacterial outer-membrane channel." Science 303(5661):1189-1192.
    Fu, L. M. and C. S. Fu-Liu (2002). "Is Mycobacterium tuberculosis a closer relative to Gram-positive or Gram-negative bacterial pathogens?" Tuberculosis 82(2-3):85-90.
    Grizot, S. and S. K. Buchanan (2004). "Structure of the OmpA-like domain of RmpM from Neisseria meningitidis." Molecular Microbiology 51(4):1027-1037.
    Hibler, D. W., L. Harpold, et al. (1989). "Isotopic labeling with hydrogen-2 and carbon-13 to compare conformations of proteins and mutants generated by site-directed mutagenesis, I." Methods in Enzymology 177:74-86.
    Hoffmann, C., A. Leis, et al. (2008). "Disclosure of the mycobacterial outer membrane:Cryo-electron tomography and vitreous sections reveal the lipid bilayer structure." Proceedings of the National Academy of Sciences 105(10):3963-3967.
    Jap, B. K. and P. J. Walian (1996). "Structure and functional mechanism of porins." Physiological Reviews 76(4):1073-1088.
    Jeschke, G., V. Chechik, et al. (2006). "DeerAnalysis2006-A comprehensive software package for analyzing pulsed ELDOR data." Applied Magnetic Resonance 30(3-4):473-498.
    Kern, D., E. Z. Eisenmesser, et al. (2005). "Enzyme dynamics during catalysis measured by NMR spectroscopy." Methods in Enzymology 394:507-524.
    Kojima, S., K. Imada, et al. (2009). "Stator assembly and activation mechanism of the flagellar motor by the periplasmic region of MotB." Molecular Microbiology 73(4):710-718.
    Laskowski, R. A., J. A. C. Rullmann, et al. (1996). "AQUA and PROCHECK-NMR:Programs for checking the quality of protein structures solved by NMR." Journal of Biomolecular NMR 8(4):477-486.
    Lipari, G. and A. Szabo (1982). "Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules.1. Theory and range of validity." Journal of the American Chemical Society 104(17):4546-4559.
    Lipari, G. and A. Szabo (1982). "Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules.2. Analysis of experimental results." Journal of the American Chemical Society 104(17):4559-4570.
    Manabe, Y. C., J. A. M. Dannenberg, et al. (2000). "What we can learn from the Mycobacterium tuberculosis genome sequencing projects." The International Journal of Tuberculosis and Lung Disease 4(2s1):S18-S23.
    Muchmore, D. C., L. P. McIntosh, et al. (1989). "Expression and nitrogen-15 labeling of proteins for proton and nitrogen-15 nuclear magnetic resonance." Methods in Enzymology 177:44-73.
    Nikaido, H., S.-H. Kim, et al. (1993). "Physical organization of lipids in the cell wall of Mycobacterium chelonae." Molecular Microbiology 8(6):1025-1030.
    Palmer, A. G. and F. Massi (2006). "Characterization of the dynamics of biomacromolecules using rotating-frame spin relaxation NMR spectroscopy." Chemical Reviews 106(5):1700-1719.
    Parsons, L. M., F. Lin, et al. (2006). "Peptidoglycan recognition by Pal, an outer membrane lipoprotein." Biochemistry 45(7):2122-2128.
    Pautsch, A. and G. E. Schulz (2000). "High-resolution structure of the OmpA membrane domain." Journal of Molecular Biology 298(2):273-282.
    Pitulle, C., M. Dorsch, et al. (1992). "Phylogeny of rapidly growing members of the genus Mycobacterium." International Journal of Systematic Bacteriology 42(3):337-343.
    Raynaud, C., K. G. Papavinasasundaram, et al. (2002). "The functions of OmpATb, a pore-forming protein of Mycobacterium tuberculosis." Molecular Microbiology 46(1):191-201.
    Sattler, M., J. Schleucher, et al. (1999). "Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients." Progress in Nuclear Magnetic Resonance Spectroscopy 34(2):93-158.
    Schwieters, C. D., J. J. Kuszewski, et al. (2003). "The Xplor-NIH NMR molecular structure determination package." Journal of Magnetic Resonance 160(1):65-73.
    Senaratne, R. H., H. Mobasheri, et al. (1998). "Expression of a gene for a porin-like protein of the OmpA family from Mycobacterium tuberculosis H37Rv." Journal of Bacteriology 180(14):3541-3547.
    Song, H., R. Sandie, et al. (2008). "Identification of outer membrane proteins of Mycobacterium tuberculosis." Tuberculosis 88(6):526-544.
    Sze, K. H. and P. M. Lai (2011). "Probing protein dynamics by nuclear magnetic resonance." Protein & Peptide Letters 18(4):373-379.
    Teriete, P., Y. Yao, et al. (2010). "Mycobacterium tuberculosis Rv0899 adopts a mixed alpha/beta-structure and does not form a transmembrane beta-barrel." Biochemistry 49(13):2768-2777.
    Ward, R., M. Zoltner, et al. (2009). "The orientation of a tandem POTRA domain pair, of the beta-barrel assembly protein BamA, determined by PELDOR spectroscopy." Structure 17(9):1187-1194.
    Wuthrich, K. (1986). NMR of proteins and nucleic acids, Wiley.
    Xiang, S.-Q., R. L. Narayanan, et al. (2013). "N-H Spin-Spin Couplings:Probing Hydrogen Bonds in Proteins." Angewandte Chemie International Edition 52(12):3525-3528.
    Yang, Y., D. Auguin, et al. (2011). "Structure of the Mycobacterium tuberculosis OmpATb protein:A model of an oligomeric channel in the mycobacterial cell wall." Proteins 79(2):645-661.
    Abbott, G., B. Ramesh, et al. (2008). "Secondary structure of the MiRP1 (KCNE2) potassium channel ancillary subunit." Protein and Peptide Letters 15(1):63-75.
    Bockmann, A., C. Gardiennet, et al. (2009). "Characterization of different water pools in solid-state NMR protein samples." Journal of Biomolecular NMR 45(3):319-327.
    Baldus, M., A. T. Petkova, et al. (1998). "Cross polarization in the tilted frame:assignment and spectral simplification in heteronuclear spin systems." Molecular Physics 95(6):1197-1207.
    Bayro, M. J., M. Huber, et al. (2009). "Dipolar truncation in magic-angle spinning NMR recoupling experiments." Journal of Chemical Physics 130(11):114506.
    Bayro, M. J., R. Ramachandran, et al. (2008). "Radio frequency-driven recoupling at high magic-angle spinning frequencies:Homonuclear recoupling sans heteronuclear decoupling." The Journal of Chemical Physics 128(5):052321-052311.
    Bennett, A. E., C. M. Rienstra, et al. (1998). "Homonuclear radio frequency-driven recoupling in rotating solids." The Journal of Chemical Physics 108(22):9463-9479.
    Chevelkov, V., K. Giller, et al. (2013). "Efficient CO-CA transfer in highly deuterated proteins by band-selective homonuclear cross-polarization." Journal of Magnetic Resonance 230:205-211.
    Chevelkov, V., C. Shi, et al. (2013). "Efficient band-selective homonuclear CO-CA cross-polarization in protonated proteins." Journal of Biomolecular NMR 56(4):303-311.
    Demers, J. P., V. Chevelkov, et al. (2011). "Progress in correlation spectroscopy at ultra-fast magic-angle spinning:basic building blocks and complex experiments for the study of protein structure and dynamics." Solid State Nuclear Magnetic Resonance 40(3):101-113.
    Fung, B. M., A. K. Khitrin, et al. (2000). "An Improved Broadband Decoupling Sequence for Liquid Crystals and Solids." Journal of Magnetic Resonance 142(1):97-101.
    Hong, M., Y. Zhang, et al. (2012). "Membrane protein structure and dynamics from NMR spectroscopy." Annual Review of Physical Chemistry 63:1-24.
    Igumenova, T. I., A. J. Wand, et al. (2004). "Assignment of the backbone resonances for microcrystalline ubiquitin." Journal of the American Chemical Society 126(16):5323-5331.
    Keeler, J. (2011). Understanding NMR spectroscopy, Wiley, com.
    Lange, A., S. Luca, et al. (2002). "Structural constraints from proton-mediated rare-spin correlation spectroscopy in rotating solids." Journal of the American Chemical Society 124(33): 9704-9705.
    Lange, A., K. Seidel, et al. (2003). "Analysis of proton-proton transfer dynamics in rotating solids and their use for 3D structure determination." Journal of the American Chemical Society 125(41):12640-12648.
    Loquet, A., N. G. Sgourakis, et al. (2012). "Atomic model of the type Ⅲ secretion system needle." Nature 486(7402):276-279.
    Mainz, A., T. L. Religa, et al. (2013). "NMR Spectroscopy of Soluble Protein Complexes at One Mega-Dalton and Beyond." Angewandte Chemie International Edition 52(33):8746-8751.
    Martin, R. W. and K. W. Zilm (2003). "Preparation of protein nanocrystals and their characterization by solid state NMR." Journal of Magnetic Resonance 165(1):162-174.
    Morcombe, C. R., V. Gaponenko, et al. (2004). "Diluting abundant spins by isotope edited radio frequency field assisted diffusion." Journal of the American Chemical Society 126(23):7196-7197.
    Nielsen, N. C., H. Bildsoe, et al. (1994). "Double-quantum homonuclear rotary resonance: Efficient dipolar recovery in magic-angle spinning nuclear magnetic resonance." The Journal of Chemical Physics 101(3):1805-1812.
    Pauli, J., M. Baldus, et al. (2001). "Backbone and Side-Chain 13C and 15N Signal Assignments of the a-Spectrin SH3 Domain by Magic Angle Spinning Solid-State NMR at 17.6 Tesla." ChemBioChem 2(4):272-281.
    Scholz, I., M. Huber, et al. (2008). "MIRROR recoupling and its application to spin diffusion under fast magic-angle spinning." Chemical Physics Letters 460(1-3):278-283.
    Schuetz, A., C. Wasmer, et al. (2010). "Protocols for the Sequential Solid-State NMR Spectroscopic Assignment of a Uniformly Labeled 25 kDa Protein:HET-s (1-227)." ChemBioChem 11(11):1543-1551.
    Seidel, K., M. Etzkorn, et al. (2005). "High-resolution solid-state NMR studies on uniformly [13C,15N]-labeled ubiquitin." ChemBioChem 6(9):1638-1647.
    Shaka, A., J. Keeler, et al. (1983). "An improved sequence for broadband decoupling:WALTZ-16." Journal of Magnetic Resonance (1969) 52(2):335-338.
    Shi, L., M. A. M. Ahmed, et al. (2009). "Three-Dimensional Solid-State NMR Study of a Seven-Helical Integral Membrane Proton Pump—Structural Insights." Journal of Molecular Biology 386(4):1078-1093.
    Siemer, A., C. Ritter, et al. (2006). "13C,15N Resonance Assignment of Parts of the HET-s Prion Protein in its Amyloid Form." Journal of Biomolecular NMR 34(2):75-87.
    Szeverenyi, N. M., M. J. Sullivan, et al. (1982). "Observation of spin exchange by two-dimensional fourier transform 13C cross polarization-magic-angle spinning." Journal of Magnetic Resonance (1969) 47(3):462-475.
    Takegoshi, K., K. Nomura, et al. (1995). "Rotational resonance in the tilted rotating frame." Chemical Physics Letters 232(5-6):424-428.
    Tycko, R. (2011). "Solid-state NMR studies of amyloid fibril structure." Annual Review of Physical Chemistry 62:279-299.
    Verel, R., M. Ernst, et al. (2001). "Adiabatic dipolar recoupling in solid-state NMR:the DREAM scheme." Journal of Magnetic Resonance 150(1):81-99.
    Vijayan, V., J. P. Demers, et al. (2009). "Low-power solid-state NMR experiments for resonance assignment under fast magic-angle spinning." ChemPhysChem 10(13):2205-2208.
    Zhou, D. H., G. Shah, et al. (2007). "Proton-detected solid-state NMR spectroscopy of fully protonated proteins at 40 kHz magic-angle spinning." Journal of the American Chemical Society 129(38):11791-11801.
    DaCosta, C. J. B. and J. E. Baenziger (2003). "A rapid method for assessing lipid:protein and detergent:protein ratios in membrane-protein crystallization." Acta Crystallographica Section D: Biological Crystallography 59(1):77-83.
    Dodds, E. D., M. R. McCoy, et al. (2005). "Gas chromatographic quantification of fatty acid methyl esters: Flame ionization detection vs. electron impact mass spectrometry." Lipids 40(4):419-428.
    Eriks, L. R., J. A. Mayor, et al. (2003). "A strategy for identification and quantification of detergents frequently used in the purification of membrane proteins." Analytical Biochemistry 323(2):234-241.
    Katase, T., K. Okuda, et al. (2008). "Estrogen equivalent concentration of 13 branched para-nonylphenols in three technical mixtures by isomer-specific determination using their synthetic standards in SIM mode with GC-MS and two new diasteromeric isomers." Chemosphere 70(11):1961-1972.
    Kaufmann, T. C., A. Engel, et al. (2006). "A Novel Method for Detergent Concentration Determination." Biophysical Journal 90(1):310-317.
    Menendez-Carreno, M., C. Garcia-Herreros, et al. (2008). "Validation of a gas chromatography-mass spectrometry method for the analysis of sterol oxidation products in serum." Journal of Chromatography B:Analytical Technologies in the Biomedical and Life Sciences 864(1-2):61-68.
    Minami, Y., S. Yokoi, et al. (2007). "Combination of TLC blotting and gas chromatography-mass spectrometry for analysis of peroxidized cholesterol." Lipids 42(11):1055-1063.
    Remigy, H. W., D. Caujolle-Bert, et al. (2003). "Membrane protein reconstitution and crystallization by controlled dilution." FEBS Letters 555(1):160-169.
    Rigaud, J. L., G. Mosser, et al. (1997). "Bio-Beads:An efficient strategy for two-dimensional crystallization of membrane proteins." Journal of Structural Biology 118(3):226-235.
    Shi, P., D. Li, et al. (2012). "In situl9F NMR studies of an E. coli membrane protein." Protein Science 21(4):596-600.
    Strop, P. and A. T. Brunger (2005). "Refractive index-based determination of detergent concentration and its application to the study of membrane proteins." Protein Science 14(8):2207-2211.
    Van Horn, W. D., H.-J. Kim, et al. (2009). "Solution Nuclear Magnetic Resonance Structure of Membrane-Integral Diacylglycerol Kinase." Science 324(5935):1726-1729.
    Yeh, A. P., A. McMillan, et al. (2006). "Rapid and simple protein-stability screens:Application to membrane proteins." Acta Crystallographica Section D:Biological Crystallography 62(4):451-457.
    Abbott, G., B. Ramesh, et al. (2008). "Secondary structure of the MiRP1 (KCNE2) potassium channel ancillary subunit." Protein and Peptide Letters 15(1):63-75.
    Abeyrathne, P. D., M. Chami, et al. (2010). Chapter One-Preparation of 2D Crystals of Membrane Proteins for High-Resolution Electron Crystallography Data Collection. Methods in Enzymology. J. J. Grant, Academic Press. Volume 481:25-43.
    Bakheet, T. M. and A. J. Doig (2009). "Properties and identification of human protein drug targets." Bioinformatics 25(4):451-457.
    Chevelkov, V., K. Rehbein, et al. (2006). "Ultrahigh Resolution in Proton Solid-State NMR Spectroscopy at High Levels of Deuteration." Angewandte Chemie International Edition 45(23):3878-3881.
    Deisenhofer, J., O. Epp, et al. (1985). "Structure of the protein subunits in the photosynthetic reaction center of." Nature 318:19.
    Dutzler, R., E. B. Campbell, et al. (2002). "X-ray structure of a C1C chloride channel at 3.0 A reveals the molecular basis of anion selectivity." Nature 415(6869):287-294.
    Fraser, C. M., J. D. Gocayne, et al. (1995). "The minimal gene complement of Mycoplasma genitalium." Science 270(5235):397-403.
    Ho, J. D., R. Yeh, et al. (2009). "Crystal structure of human aquaporin 4 at 1.8 A and its mechanism of conductance." Proceedings of the National Academy of Sciences 106(18):7437-7442.
    Lai, C., X. Liu, et al. (2013). "Integrin alphal has a long helix, extending from the transmembrane region to the cytoplasmic tail in detergent micelles." PLoS One 8(4):e62954.
    Ostermeier, C., A. Harrenga, et al. (1997). "Structure at 2.7 A resolution of the Paracoccus denitrificans two-subunit cytochrome c oxidase complexed with an antibody FV fragment." Proceedings of the National Academy of Sciences 94(20):10547-10553.
    Renault, M., R. Tommassen-van Boxtel, et al. (2012). "Cellular solid-state nuclear magnetic resonance spectroscopy." Proceedings of the National Academy of Sciences 109(13):4863-4868.
    Tsukihara, T., H. Aoyama, et al. (1995). "Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 A." Science 269(5227):1069-1074.
    Van Horn, W. D., H.-J. Kim, et al. (2009). "Solution Nuclear Magnetic Resonance Structure of Membrane-Integral Diacylglycerol Kinase." Science 324(5935):1726-1729.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700