用户名: 密码: 验证码:
CH_3SH与活泼小分子反应机理的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含硫、含氮物种已成为大气环境污染的一个重要因素,会导致环境的恶化、酸雨的形成和光化学烟雾等,在大气化学和燃烧化学发挥着重要的作用。CH3SH是含硫有机物中的重要瞬态物种,约占大气中有机硫化物的10%。HNCS是同时含硫、含氮的气相小分子,能从燃烧的废气中除去有毒的化合物。因此,对这些含硫、含氮小分子的稳定性及其在大气中的反应活性进行研究有非常重要的意义。
     本论文以量子化学理论和过渡态理论为基础,利用密度泛函理论、微扰理论、组态相互作用理论、耦合簇理论和分子中原子理论,对CH3SH、HNCS与大气中活泼自由基和原子的几个反应体系进行详细地研究,通过计算反应中各物种的优化构型、振动频率,体系的势能面,各通道的速率常数,深入揭示了反应体系的微观反应机理和动力学特征。
     论文共分六章。
     第一章介绍了近年来国内外对CH3SH及其自由基、HNCS的实验和理论研究现状。
     第二章对现代量子化学基本原理、过渡态理论和量子拓扑学原理进行了简单介绍。
     第三章对CH3SH与CN自由基反应的微观机理进行了理论研究。
     第四章对CH3SH与基态NO2的反应机理和动力学进行了研究。
     第五、第六章分别对HNCS与H原子、Cl原子的反应机理和动力学进行了研究。
     主要结论和创新点:
     1.在CCSD//B3LYP/6-311++G(d,p)水平上研究了CH3SH与CN自由基的微观反应机理,找到了三个可能的反应通道,其中生成CH3S+HCN的通道为主通道,并成功地解释了Brian等的实验结论。通过对反应进程中一些重要点的电子密度拓扑分析,讨论了反应进程中化学键的变化规律,发现了六元环状过渡结构。
     2.在G3B3,CCSD(T)//B3LYP/6-311++G(d,p)水平上研究了CH3SH与基态NO2的微观反应机理,利用正变分过渡态理论(CVT) (SCT),并得到了200~3000 K温度范围内的经小曲率隧道效应模型速率常数校正的速率常数和三参数表达式,解释和补充了Balla等的实验结论。该体系共存在5个反应通道,其中N进攻巯基上H原子生成CH3S + HNO2的通道活化势垒较低,为主反应通道。动力学数据也表明,该通道在200~3000 K计算温度范围内占绝对优势。
     3.采用QCISD(T)//MP2/6-311++G(d,p)方法研究了HNCS与H原子反应的微观机理。得到了200~2500K温度范围内主反应通道的速率常数。共找到四个反应通道,生成产物H2NCS的通道为主反应通道。反应速率常数随温度升高而增大,在整个温度范围内变分效应对速率常数计算影响较大,而隧道效应在低温区对反应速率影响较显著。
     4.采用QCISD(T)//B3LYP/6-311++G(d,p)方法研究了HNCS与Cl原子反应的微观机理。计算了200~2500 K温度范围内各反应通道的速率常数。HNCS与Cl原子反应存在3个反应通道。当温度低于294 K时,生成HCl + NCS的夺氢反应是优势通道,温度高于294 K时,生成HNC(Cl)S的加成反应为主反应通道,Cl进攻N的反应通道因能垒较高而难以进行。
The species of containing sulfur or nitrogen play an important role in atmospheric chemistry and combustion chemistry , and contribute to environmental problems such as the deterioration of environment, acid rain and photochemical smog. As an important sulfurous organic compound, CH3SH accounts for around 10% of the global flux of sulfur compounds in the atmosphere. HNCS is a potential agent for effectually eliminating nitrogen oxides in exhaust gas streams. So the studies on physical and chemistry properties of containing sulfur or nitrogen are the focuses in atmospherical field.
     In the thesis, on the basis of quantum chemistry theory and the tradition state theory, the several reactions of CH3SH and HNCS with active radicals or atoms have been investigated by using Density Functional Theory , the Moller-Plesset correlation energy correction, Configuration Interaction, Couple Cluster, and Atoms in Molecules. By analyzing these convincing datum of the optimum geometries and frequencies of all stationary points along the reaction paths, PES, and rate constant, the mechanism and kinetics of these reactions have been investigated deeply.
     The thesis consists of six chapters.
     In chapter 1, the experimental and theoretical studies on the reactions of CH3SH and radical, and HNCS in resent years are investigated.
     In chapter 2, the Quantum Chemistry theory and the tradition state theory are summarized, the content of this part is the basis of our studies and offer us with useful and reliable quantum methods.
     In chapter 3, reaction mechanism of CH3SH with radical CN has been studied, and the cleavage and formation of the chemical bonds in the reaction process have been discussed by the topological analysis of electronic density.
     In chapter 4, reaction mechanism and chemical kinetics of CH3SH with NO2 have been investigated.
     In chapter 5 and 6, the mechanism and kinetics of the reaction HNCS with H and N have been studied.
     The main conclusions and innovations of this work are listed as following:
     1. For the first time, the reaction mechanism of CH3SH with radical CN was investigated at CCSD//B3LYP/6-311++G(d,p) level, three reaction channels were found, and the channel leading to CH3S + HCN is the major channel. The calculated results successfully explained the conclusions of Brian’s experimental study. The cleavage and formation of the chemical bonds in the reaction process were discussed by the topological analysis of electronic density, and the transition state with six-member-ring structure (STS) was found.
     2. The detailed theoretical survey of the potential energy surface (PES) for the reaction of CH3SH with NO2 has been carried out at the G3B3 and CCSD(T)//B3LYP/6-311++G(d,p) level. In the temperature range of 200~3000 K, the rate constants of the reactions were obtained by means of the small-curvature tunneling correction. Five possible reaction channels have been identified. The major reaction channel is the hydrogen abstraction of SH by N atom of NO2, leading to the formation of CH3S and HNO2. The results successfully explain and perfect the conclusions of Balla’s experimental study.
     3. The mechanism of the reaction of HNCS with H has been investigated at QCISD(T) //MP2/6-311++G(d,p) level. The rate constants were calculated over the temperature range of 200~2500K by using variational transition state theory. The results reveal that four reaction channels have been identified and H2NCS is the main product. It is found that the rate constants of the main reaction channel are positively dependent on the temperature. The variational effect on the calculation of rate constants is very obvious over the whole temperature range and the small-curvature tunnelling effect is very important in the lower temperature range.
     4. The reaction mechanism of HNCS with Cl has been studied at the level of QCISD(T) //B3LYP/6-311++G(d,p) level of theory. The rate constants of the reactions were calculated over the temperature range of 200-2500 K. According to analysis, there are three reaction channels for the reaction. When temperature is lower than 294 K, the channel (a) is the major channel and HCl + NCS are the main products, while the channel (c) is the major reaction process and HNC(Cl)S is the dominant product when temperature is higher than 294 K. The reaction channel (b) of Cl atom attacking N atom is a difficult process because of a higher energy barrier.
引文
[1] TYNDALL G S , RAVISHANKARA A R. Atmospheric Oxidation of Reduced Sulfur Species[J]. Int J Chem Kinet, 1991, 23(6): 483-527.
    [2] Baes T S, Charlson R J, Gammon R H. Evidence for the Climatic Role Marine Biogenic Sulfur[J]. Nature, 1987, 329: 319-321.
    [3] Bates T S, Cline R H, Kelly-Hansen S R. Regional and Seasonal Variations in the Flux of Oceanic Dimethylsulfide to the Atmosphere [ J ]. Geophys Res, 1987, 92: 2930-2938.
    [4] Andreae M O, Raemdonck H. Dimethylsulfide in the Surface Ocean and the Marine Atmophere: A Global View[J]. Science, 1983, 221:744-747.
    [5] PERRY R A, SIEBERS D L. Rapid Reduction of Nitrogen Oxides in Exhaust Gas Streams [J]. Nature, 1986, 324: 657-658.
    [6] Wine P H, Nicovich J M, Hynes A J, Wells, J R. Methanethiol Photolysis at 248 nm Hydrogen Atom Yield and Rate Constant for the H + CH3SH Reaction[J]. J Phys Chem, 1986, 90(17): 4033-4037.
    [7] Takane S Y, Takayuki F. Theoretical Studies of the Reactions of Hydrogen Sulfide and Methanethiol with the H, F, and O(3P) Atoms. Possibilities of the Bimolecular Homolytic Substitution (SH2) Reactions[J]. Bull Chem Soc Jpn, 1993, 66(12): 3633-3638.
    [8] Tevault D E, Mowery R L, Smardzewski R R. Ozone and Oxygen Atom Reactions with Dimethylsulfide and Methanethiol in Argon Matrices[J]. J Chem Phys, 1981, 74(8): 4480-4487.
    [9] Chang Y T, Loew G H. The Reaction of Atomic Oxygen with Methanethiol. A Theoretical Study of the Structures and the Potential Energy Surface[J]. Chem Phys Lett, 1993, 205:543-549.
    [10] Jacox M E. The Reaction of F Atoms with CH3SH. Vibrational Spectroscopy and Photochemistry of CH3S and CH2SH Hydrogen-bonded to HF[J]. Can J Chem, 1983, 61(5): 1036-1044.
    [11] Nicovich J M, Wang S, Wine P H. Kinetics of the Reactions of Atomic Chlorine with H2S, D2S, CH3SH, and CD3SD[J]. Int J Chem Kinet, 1995, 27(4): 359-368.
    [12] RAHMAN M M, BECKER E, WILL E U, et al. Determination of rate constants for the reactions of the CH2SH radical with O2, O3 and NO2 at 298K[J]. Ber Bunsen–ges Phys Chem, 1992, 96: 783-787.
    [13] Mellouki A, Jourdain J L, Bras G Le. Discharge Flow Study of the CH3S + NO2 Reaction Mechanism using Cl + CH3SH as the CH3S Source[J]. Chem Phys Lett, 1988, 148(2-3):231-236.
    [14] Nicovich J M, Kreutter K D, Van Dijk C A , Wine P H. Temperature-dependent Kinetics Studies of the Reactions Br(2P3/2) +H2S SH + HBr and Br(2P3/2) + CH3SH CH3S + HBr. Heats of Formation of SH and CH3S Radicals[J]. J Phys Chem, 1992, 96(6):2518-2528.
    [15] JASON M G, CHAEH O P, COX R S, et al. Definitive ab initio Studies of model SN2 Reactions CH3X+F- (X=F, Cl, OH, SH, NH2, PH2)[J]. Chem Eur J, 2003, 9: 2173-2192.
    [16] CRIG W, DAVID M H. Ab initio study of the reaction of chlorine atoms with H2S, CH3SH, CH3SCH3 and CS2[J]. J Chem Soc Faradday Trans, 1997, 93(16):2831-2837.
    [17] ATKINSON R, PERRY R A, PITTS J N. Rate constants for the reaction of the OH radical with CH3SH and CH3NH over the temperature range 299~426K[J]. J Chem Phys, 1977, 66: 1578-1581.
    [18] WINE P H, KREUTTER N M, DUMP C A, et al. Kinetics of OH reactions with the atmospheric sulfur compounds H2S, CH3SH, CH3SCH3 and CH3SSCH3 [J]. J Phys Chem, 1981, 85:2660-2665.
    [19] HATAKEYAMA S, AKIMOTO H. Reactions of OH radicals with methanethiol, dimethyl sulfide and dimethyl disulfide in Air[J]. J Phys Chem, 1983, 87:2387-2395.
    [20] LEE J H, TANG I N. Absolute rate constants for the hydroxyl radical reactions with CH3SH and C2H5SH at room temperature[J]. J Chem Phys, 1983, 78:6646-6649.
    [21] COX R A, SHEPPAR D D. Reaction of OH radicals with gaseous sulfur compounds[J]. Nature (London), 1980, 284:330-331.
    [22] HYNES A J, WINE P H. Kinetics of the OH + CH3SH reaction under at mospheric conditions[J]. J Phys Chem, 1987, 91: 3672-3676.
    [23] TYNDALL G S, RAVISHANKAYA A R. Kinetics of the reaction of CH3S with O3 at 298K[J]. J Chem Phys, 1989, 93:4707-4716.
    [24] WINE P H, THOMPSON R J, SEMMES D H. Kinetics of OH reaction with aliphatie T thiols[J]. Int J Chem Kinet, 1984, 16: 1623-1628.
    [25] BUTKOVSKAYA N I, SETSER D W. Chemical dynamics of the OH and OD radical reactions with H2S,CH3SCH3 and CH3SH[J]. J Phys Chem, 1998, 102:6395-6405.
    [26] BUTKOVSKAYA N I, SETSER D W. Product branching fractions and kinetic isotope effects for the reactions of OH and OD[J]. J Phys Chem, 1999, 103: 6921-6929.
    [27] WILSO N C, HIRST D M. Theoretical ab initio study of the reaction of CH3SH with OH radical[J]. J Chem Soc FaradayTrans, 1995, 91: 3783-3785.
    [28] LAUR A M, ANGELS G L, JOSE M L. Variational transition state theory rate constant calculations of the OH + CH3SH reaction and several isotopic variant[J]. J Phys Chem A, 2003, 107: 4490-4496.
    [29] ALFONSO N A, YOLANDA D M, DIAN A R, et al. Kinetic and products of the BrO + CH3SH reaction: Temperature and pressure dependence[J]. Chem Phys Lett, 2002, 17: 471-476.
    [30] Maguin F, Mellouk A, Laverdet G, Poulet G, Bras L. Kinetics of the reactions of the IO radical with dimethyl sulfide, methanethiol, ethylene, and propylene[J]. J Chem Kinet, 1991, 23(3): 237-245.
    [31] Balla R J, Heicklen J. Oxidation of sultur compounds. I. The photolysis of CH3SH and (CH3S)2 in the presence of NO[J]. Can J Chem, 1984, 62(1):162-170.
    [32] RUSCIC B, BERKOWITZ J. Photoionization mass spectrometry of CH2S and HCS[J]. J Chem Phys, 1993, 98(4): 2568-2579.
    [33] BRIAN K D, MACDONALD R G. Channeling of products in the hot atom reaction H + (CN)2→HCN/HNC + CN and in the reaction of CN with CH3SH[J]. J Phys Chem A, 2001, 105: 6817-6825.
    [34]樊红敏,李晓艳,孟令鹏,郑世钧,曾艳丽. BrO与CH3SH反应机理的量子化学及拓扑研究[J].化学学报,2007,65(5): 395-402.
    [35]樊红敏,李晓艳,曾艳丽,孟令鹏,郑世钧. CH3SH与ClO反应机理的量子化学及拓扑研究[J].河北师范大学学报(自然科学版), 2008, 32(2): 213-227.
    [36]李志锋,朱元成,李会学,刘新文,卢小泉.二氯卡宾与甲醇及甲硫醇插入与氢抽提反应的量子化学计算[J].中国科学B辑:化学, 2008,38(11):989-998.
    [37] Balla R J, Heicklen J. Oxidation of sulfur compounds. 2. Thermal reactions of NO2 with aliphatic sulfur compounds[J]. J Phys Chem, 1984, 88(25):6314-6317.
    [38] Balla R J, Heicklen J. Oxidation of sulfur compounds. 5. Rate coefficients for the CH3SH-NO2 reaction[J]. J Phys Chem, 1985, 89(21):4596-4600.
    [39] Uchimaru T, Tsuzuki S, Sugie M, Tokuhashi M, Sekiya A. A theoretical study on the strength of two-center three-electron bonds in the NO3 radical adducts of reduced sulfur molecules, H2S, CH3SH, CH3SCH3 and CH3SSCH3[J]. Chem Phys, 2006, 324(1-2): 465-473.
    [40] Uchimaru T, El-Nahas A M, Sugie M, Tokuhashi M, Sekiya A. DFT/Ab initio Study on the Pathways for the Reaction of CH3SH with NO3 Radical[J]. Chem. Lett, 2007,36(3): 400-401
    [41] Ruscic B, Berkowitz J. Photoionization mass spectrometric studies of the isomeric transient species CH2SH and CH3S[J]. J Chem Phys, 1992, 97: 1818-1823.
    [42] Ruscic B, Berkowitz J. Photoionization mass spectrometry of CH3S and HCS[J]. J Chem Phys, 1993, 98:2568-2579 .
    [43] Zhu X J, Ge M F, Wang J, Sun Z, Wang D X. Angew Chem, 2000, 112(11):2016-2019.
    [44]裴克梅,李益民,孔祥蕾,等. CH3S→CH2SH异化反应的理论研究[J].化学物理学报, 2003, 16: 251-256.
    [45]王文亮,刘艳,王渭娜,等. CH3S自由基H迁移异构化及脱H2反应的直接动力学研究[J].化学学报, 2005, 63(17): 1554-1560.
    [46] Niki H, Macker P D, Savage C M, Breitenbach L P. Spectroscopic and photochemical properties of CH3SNO[J]. J Phys Chem, 1983, 87(1): 7-9.
    [47] Balla R J, Nelson H H, Mcdonald J R. Kinetics of the reaction of CH3S with NO, NO2 and O2[J]. Chem Phys, 1986, 109(1):101-107.
    [48]王少坤,张庆竹,周建华,等. CH3S与NO基态反应的机理及动力学[J].化学学报,2004, 62(6): 550-555.
    [49] Tyndall G S, Ravishankara A R. Kinetics and mechanisms of the reactions of CH3S with O2 and NO2 at 298 K[J]. J Phys Chem, 1989, 93(6):2426-2435.
    [50] Chang P F, Wang T T, Wang N S. Temperature Dependence of Rate Coefficients of Reactions of NO2 with CH3S and C2H5S[J]. J Phys Chem A, 2000, 104(23):5525-5529.
    [51] Martínez E, Albaladejo J, Jiménez E, Notario A, Aranda A. Kinetics of the reaction of CH3S with NO2 as a function of temperature[J]. Chem Phys Lett, 1999, 308(1-2): 37-44.
    [52] Turnipseed A A, Barone S B, Ravishankara A R. Reactions of CH3S and CH3SOO with O3, NO2, and NO[J]. J Phys Chem, 1993, 97(22):5926-5934.
    [53] DominéF, Murrells T P, Howard C J. Kinetics of the reactions of NO2 with CH3S, CH3SO, CH3SS, and CH3SSO at 297K and 1 torr[J]. J Phys Chem, 1990, 94(15): 5839-5847.
    [54] WANG S K, ZHANG Q Z, ZHOU J H. Theoretical Studies of the Reaction Mechanisms of CH3S + NO2[J]. Chin Chem Lett, 2002, 13: 805-808.
    [55] Tang Yi-zhen, Sun Hao, Pan Ya-ru, et al. DFT studies on the multi-channel reaction of CH3S + NO2[J]. Inter J Quan Chem, 2006,107(6):1495-1501.
    [56] Anastasi C, Broomfield M. Kinetics and Mechanisms of the Reactions of CH2SH Radicals with O2, NO and NO2[J]. J Phys Chem, 1992, 96:696-701.
    [57] Trindle C, Romberg K. Reactions of HSCH2 Radical with O2, NO and NO2: Ab Initio Calculations of Enthalpies of Reaction[J]. J Phys Chem A, 1998, 102(1):270-273.
    [58] Zhan Pei-ying, Pan Ya-ru, Tang Yi-zhen. Theoretical study on the reaction mechanisms of CH2SH + NO reaction[J]. Chem Phys, 2009,xxx:xxx–xxx.
    [59]辛景凡,王渭娜,王文亮. CH2SH与NO2反应的直接动力学研究[C].中国化学会第十届全国量子化学会议论文集,南京:中国化学会,2008:H20.
    [60]王俊敏,曾艳丽,郑世钧,等. O原子与HNCO反应机理的量子化学及电子密度拓扑研究[J].化学学报, 2004, 62(20): 2015-2020.
    [61]张庄欣,甄珍,刘新厚. HNCO+CN反应途径的从头计算[J].中国科学(B辑), 2004, 34(4): 339-345.
    [62]冀永强,冯文林,徐振峰,等. NH2+HNCO反应机理的从头计算[J ].中国科学(B辑), 2004 ,32 (2): 172-178.
    [63] MERTENS J D, KOHSE-HOINGHAUS K, HANSON R K. A Shock Tube Study of H + HNCO→NH2 + CO[J]. Int J Chem Kinet, 1991, 23(8): 655-668.
    [64]马思渝,冀永强,刘若庄. H+HNCO→NH2+CO的反应机理及动态学计算[J].化学学报, 1997,55(2): 110-116.
    [65] NGUYEN M T, SENGUPTA D, VEREECKEN L, et al. Reaction of Isocyanic Acid and Hydrogen Aom (H+HNCO):Theoretical Characterization [J]. J Phys Chem, 1996, 100(5), 1615-1621.
    [66]王俊敏,葛旭升,刘卉敏,郑世钧. Cl原子与HNCO反应机理的量子化学分析[J].河北大学学报(自然科学版), 2006, 26(5): 501-505.
    [67] Woods III E, Cheatum C M, Crim F F. Using stretching and bending vibrations to direct the reaction of Cl atoms with HNCO[J] J Chem Phys, 1999, 111(13): 5829-5837.
    [68] Miller J A, Bowman C T. Kinetic modeling of the reduction of NO in combustion products by HNCO[J]. Int J Chem Kinet, 1991, 23(4): 289-313.
    [69] Wooldridge M S, Hanson R K, Bowman C T. A shock tube study of CO + OH CO2 + H and HNCO + OH products via simultaneous laser absorption measurements of OH and CO2[J]. Int J Chem Kinet, 1996, 28(5): 361-372.
    [70]石土金,李宗和,刘若庄. HNCO + OH→H2O + NCO的反应机理[J].物理化学学报, 1999, 15 (3): 247-252.
    [71]石土金,李宗和,刘若庄. HNCO+OH→NH2 +CO2的反应机理[J].化学学报, 1999, 57: 740-745.
    [72] Glarbory P, Kristensen P G, Jensen S H, Dam-Johansen K. A flow reactor study of HNCO oxidation chemistry[J]. Combust Flame, 1994, 98(3):241-258.
    [73]刘俊伶,尚静,王佩怡,李来才,田安民.物理化学学报, 2006, 22(8): 921
    [74] XU Zhen - feng, SUN Chia-chung. Theoretical Study on the Reaction Path and Variational Contant of the Reaction HNCO + NH→NCO + NH2[J]. J Phys Chem, 1998, 102: 1194-1199.
    [75]刘朋军,潘秀梅,赵岷,等. HNCO与CX(X=F, Cl, Br)自由基反应机理的密度泛函理论研究[J].化学学报, 2002, 60(11): 1941-1945.
    [76] TSANG W. Chemical Kinetic Data Base for Propellant Combustion[J]. J Phys Chem Ref Data, 1992, 21(4): 753-791.
    [77]张庄欣,徐振峰,冀永强,等. HNCO + HCO→NCO + CH2O氢转移反应的从头算及动力学研究[J].化学物理学报, 2003, 16(2): 94-98.
    [78]冀永强,冯文林,徐振峰,等.氢转移反应HNCO + CHx(x=1~3)的MP2和QCISD计算研究[J].化学学报, 2002, 60(7):1167-1172.
    [79]钱一鸣,朱元强,李来才. CH2与HNCO反应机理的量子化学研究[J].化学研究与应用, 2004, 16(4):517-521.
    [80]李来才,钱一鸣,朱元强,等. CH3 + HNCO反应机理的理论研究[J].物理化学学报, 2004, 20(3):228-232.
    [81]BAK B, CHRISTIANSEN J J, NIELSEN O J, et al. Comparable ab initio Calculated Energies of HCNS, CNSH, NCSH and HNCS. Optimized Geometries and Dipole Moments[J]. Acta Chemica Scandinavica A, 1977, 31:666-668.
    [82] Durig J R, Zheng C, Deeb H. On the structural parameters and vibrational spectra of some XNCS and XSCN (X=H, F, Cl, Br) molecules[J]. J Mole Stru, 2006, 784:78-92.
    [83] MARIA W, ROBERT W. Infrared Matrix Isolation and Ab Initio Studies on Isothiocyanic Acid HNCS and its Complexes with Nitrogen and Xenon [J]. Chemical Physics, 2003, 287(2):169-181.
    [84]潘秀梅,刘颖,贾秀娟,等. HNCS二聚体解离机理的理论研究[J].分子科学学报, 2006, 22(3): 148-154.
    [85]刘朋军,赵岷,潘秀梅,等. HNCS与CX(X=H, F, Cl)自由基反应的理论研究[J].化学学报, 2004,62(13): 1191-1196.
    [86]刘朋军若干气相含氮、硫、卤素的小分子自由基反应微观动力学的理论研究[D].东北师范大学图书馆:东北师范大学,2004:108-111.
    [87]刘朋军,杜奇石,常鹰飞,等. HNCS与C2H(X2П)反应微观动力学的理论研究[J].物理化学学报, 2005,21(12): 1347-1351.
    [88] LIU Peng-jun, ZHANG Lian-hua, SUN Hao, et al. Theoretical Studies on Reaction Mechanisms of HNCS with NH(X3∑) [J]. CHEM RES CHINESE U, 2006, 22(5): 635-638.
    [89]徐伯华. CH2CCl自由基与HNCS反应机理的理论研究[J].西南大学学报(自然科学版), 2007, 29(7): 72-78.
    [90]徐伯华,李来才. CH2CF自由基与HNCS反应机理的理论研究[J].四川大学学报(自然科学版), 2007, 44(3): 653-658.
    [91]唐敖庆,杨忠志,李前树.量子化学[M]. 1982,科学出版社
    [92]徐光宪,黎乐民.量子化学(上册) [M]. 1980,科学出版社
    [93]徐光宪,黎乐民,王德民.量子化学(中册)[M]. 1980,科学出版社
    [94]廖沐真,吴国是.量子化学从头计算方法[M]. 1984,清华大学出版社
    [95]刘若庄.量子化学基础[M]. 1986,科学出版社
    [96] Parr R G, Yang W. Density-functional theory of atoms and molecules[M], Oxford, Oxford Univ Press, 1989.
    [97] Troe J. Theory of thermal unimolecular reactions at low pressures. I. Solutions of the master equation[J]. J Chem Phys, 1977,66,4745.
    [98] Troe J. Theory of thermal unimolecular reactions at low pressures. II. Strong collision rate constants Applications[J]. J Chem Phys, 1977,66:4758.
    [99] Holbrook K A, Pilling M J, Rodbertson H. Unimolecular Reactions(Second Edition) and references therein[M], John Wily & Sons, New York, 1996.
    [100] Gilbert R G, Luther K, Troe J. Bunsebges B. Phys Chem, 1983,87:169.
    [101] Hohenberg P, Kohn W. Inhomogeneous Electron Gas. Phys Rev B, 1964, 136:864.
    [102] Moller C, Plesset M S. Phys Rev, 1934, 46: 618-635.
    [103] Head-Gordon M, Pople J A, Frisch M J. Chem Phys Lett, 1988, 153:503-510.
    [104] Foresman J B, Head-Gordon M, Pople J A, Frisch M J. J Phys Chem, 1992, 96: 135-149.
    [105] Pople J A, Krishnan R, Schlegel H B, Binkley J S. Int J Quant Chem XIV, 1978, 545.
    [106] Bartlett R J, Purvis G D. Int J Quant Chem, 1978,14:516-520.
    [107] Hegarty D, Robb M A. Mol Phys, 1979, 38:1795.
    [108] Schlegel H B, Robb M A. Chem Phys Lett, 1982,93: 43-48.
    [109] Yamamoto N, Vreven T, Robb M A, Frisch M J, Schlegel H B. Chem Phys Lett, 1996, 250: 373-377.
    [110] Winn J S. Physical chemistry[M]. Harper Collins College Publishers, 1995. [111 Atkins P W. Physical chemistry[M]. W H Freeman and Company, NewYork, 1990.
    [112] Billing G D, Mikkelsen K V. Introduction to molecular dynamics and chemical kinetics[M]. John Wiley&Sons, Inc., New York, 1996.
    [113] Johnston H S. Gas phase reaction rate theory[M]. Ronald Press Company, New York, 1966.
    [114] Glasstone S, Laidler K, Erying H. Theory of rate processes[M]. McGraw- Hill, New York, I 941.
    [115] Truhlar D G, Isaacson A D, Garrett B C. CRC, Boca Raton, FL, 1985.
    [116]赵学庄,罗渝然,减雅茹,万学适.化学反应动力学原理[M].高等教育出版社, 1990.
    [117]唐有棋.化学动力学和化学反应器原理[M].北京科学出版社,1974.
    [118] Baer T, Hase W L. Unimolecular reaction dynamics (international series of monographs on chemistry)[M]. Oxford University Press, New York, 1996.
    [119] Truong T N. A direct ab initio dynamics approach for calculating thermal rate constants using variational transition state theory and multidimensional semiclassical tunneling methods. An application to the CH4 + H2 CH3 + H2 reaction[J]. J Chem Phys, 1994, 100: 8014-8025.
    [120] Garrett B C, Truhlar D G. Generalized transition state theory. Quantum effects for collinear reactions of hydrogen molecules[J]. J Phys Chem, 1979, 83:1079-1112.
    [121] Fast P L, Truhlar D G. Variational reaction path algorithm[J]. J Chem Phys, 1998, 109: 3721-3729.
    [122] Chuang Y Y, Corchado J C, Fast P L, Vill J, Hu W P, Liu Y P, Lynch G C, Jackels C F, Nguyen K A, Gu M Z, Rossi L, Isaacson E L, Truhlar D G. Polyrate Program vision 8 2[CP] Minneapolis, 1999.
    [123] Truhlar D G, Isaacson A D, Skodje R T, Garrett B C. Incorporation of quantum effects in generalized transition state theory[J]. J Phys Chem, 1982,86: 2252-2261.
    [124] Bader R F W. Atoms in Moleculars: A Quantum Theory[M]. Oxford Unv.Press, Oxford, 1990.
    [125] Bader R F W, Macdaougall P J, Hlau C D. Bonded and nonbonded charge concentrations and their relation to molecular geometry and reactivity[J]. J Am Chem Soc, 1984, 106:1594.
    [126] Bader R F W, Gillespie R J, Macdougall P J. A physical basis for the VSEPR model of molecular geometry[J]. J Am Chem Soc, 1988, 110, 7329.
    [127] Bader R F W, Beddall P. Virial Filed Relationship for Molecular Charge Distributions and the Spatial Partitioning of Molecular Properties[J]. J Chem Phys, 1972, 56, 3320.
    [128] Bader R F W. A quantum theory of molecular structure and its applications[J]. Chem Rev, 1991, 91(5): 893-928.
    [129] Biegler-K?nìng F J, Derdau R, Bayles D, Bader R F W. AIM2000[CP], Version 1 Bielefeld, Germany: University of Applied Science, 2000.
    [130] Zheng S J, Cai X H, Meng L P. QCPE Bull[CP], 1995, 15(2): 25-28
    [131] Zheng S J, Meng L P, Xu Z F, Fu X Y. J Comput Chem, 1997,18:1167-1175.
    [132] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 03 Program [CP]. Pittsburgh: Gaussian Inc, 2004.
    [133] ZHANG S W, TRUONG T N. VKLab [CP]. University of Utah, Salt Lake City USA, 2001.
    [134] Cox R A. J Photochem, 1974, 3:175.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700