用户名: 密码: 验证码:
分子间弱相互作用体系的理论研究:氢键、范德华相互作用和卤键
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子间的弱相互作用在化学、物理和生物学等众多学科领域中扮演着十分重要的角色,是目前实验和理论研究人员所共同关注的一个十分活跃的研究领域。本论文选取了三种分子间的弱相互作用,即氢键、范德华相互作用和卤键作为研究对象。针对这三种弱相互作用中的相关热点问题,采用不同的理论研究方法对分子间弱相互作用的性质及其本质进行了详细地研究。主要的内容如下:
     1.采用MP2方法,在6-31G (d,p),6-31+G (d,p)和6-311+G(d,p)水平上,对cis-trans甲酸二聚体进行了研究。它同时包含一个O-H…O红移氢键和一个C-H…O蓝移氢键。为了探讨它们的性质和起源,在MP2/6-31+G (d,p)理论水平上,采用分子中原子理论(AIM)和自然键轨道理论(NBO)对cis-trans甲酸二聚体进行了分析。AIM分析证明形成cis-trans甲酸二聚体后O-H键变弱了,而C-H键增强了。分子内和分子间的超共轭相互作用都会对X-H(X=O,C)键的σ成键轨道和σ*水反键轨道的电子数产生重要影响。而这两个轨道上的电子数与X-H(X=O,C)键的键长密切相关,我们定量地考虑了它们对键长的影响。红移O-H…O氢键上的电荷转移非常强烈是因为它形成了有利的H-…O电子通道,而蓝移C-H…O氢键中形成的H…O电子通道则比较弱。结构重组会引起C-H键的收缩,它占的百分比约为30%。令人惊讶的是,它会导致O-H键的伸长和轻微红移。重杂化和重极化对于X-H(X=O,C)键来说,它们都作为键收缩效应,不过它们在O-H…O红移氢键的起源中不占据主导优势。氢键的形成过程经历了静电吸引、范德华相互作用、电荷转移相互作用、氢键相互作用和静电排斥。静电吸引在O-H…O红移氢键的起源中具有十分重要的作用,尤其是Hδ+…Oδ-之间的强烈吸引相互作用。对于蓝移C-H…O氢键来说,Cδ+…Oδ-之间的强静电吸引相互作用使得H原子受到O原子强烈的核排斥作用,从而造成了C-H键的收缩和蓝移。
     2.在B3LYP/6-31G(d,p)水平上,对Watson-Crick AT碱基对进行了研究,因为这一理论水平上的几何结构与实验结果最相符。Watson-Crick AT碱基对同时拥有N-H…O和N-H…N两个红移氢键和一个蓝移C-H…O相互作用。AIM分析表明蓝移C-H…O相互作用是以范德华相互作用的形式存在的,用于反映键强度的电子密度p可以解释Watson-Crick AT碱基对中的红移和蓝移。通过NBO分析,我们报道了一种定量评价超共轭相互作用的方法,综合考虑了X-H(X=N,C)键的。成键轨道和σ*反键轨道上电子密度的变化对键长的影响。通过局部优化方法考虑了结构重组效应在红移和蓝移起源中的作用,对于不同的X-H键,它会产生不同的效应。对于X-H (X=N, C)键来说,重杂化和重极化都作为键收缩效应。在红移N-H…O和N-H…N氢键和蓝移C-H…O范德华相互作用中都存在静电吸引和Pauli/核核排斥的竞争,电负性比较大的Y原子(Y=O,N)与带正电荷的H原子之间的强相互吸引作用是X-H键发生红移的一个很重要的原因,而在C-H…O范德华相互作用中,H和O原子之间的核核排斥可能是C-H键发生收缩和蓝移的一个因素。此外,我们还讨论了O原子所产生的电场对C-H键的影响。
     3.采用从头算MP2方法,在aug-cc-pVTZ水平上对由H3N,HF和XY (X=Cl,Br和Y=F, Cl, Br)形成的一系列环状复合物进行了研究。研究了它们的几何结构、伸缩振动频率和相互作用能。结果表明每一个复合物体系都有两个红移氢键和一个红移卤键。AIM分析用于考查键临界点(BCP)和环临界点(RCP)处的拓扑性质,它证实了每一个复合物体系都有两个氢键和一个卤键。详细讨论了超共轭、重杂化和重极化效应对参与形成氢键和卤键的键键长的影响。利用分子静电势(MEP)探讨了这些环状结构中氢键和卤键形成的机理。
Intermolecular interactions are very active research areas which play important roles in chemistry, physics and biology, and so on. And many experimentalists and theorists have paid their attention to these fields. In the thesis, three classes of intermolecular interactions, namely, hydrogen bond, van der Waals interaction and halogen bond have been selected for the investigations. With respect to the hot topics related to these three intermolecular interactions, different theoretical methods have been adopted to study the properties and natures of them The main results are as follows:
     1. The cis-trans noncyclic formic acid dimer was studied by means of MP2 method with 6-31G(d,p),6-31+G(d,p) and 6-311+G(d,p) basis sets. It exhibits simultaneously red-shifted O-H…O and blue-shifted C-H…O hydrogen bonds. AIM and NBO analyses were performed at the MP2/6-31+G(d,p) level to explore their properties and origins. AIM analysis provides the evidence that the O-H bond becomes weaker and the C-H bond becomes stronger upon the hydrogen bond formations. Intermolecular and intramolecular hyperconjugations have important influence on the electron densities in the X-H (X=O, C)σbonding orbital and itsσ* antibonding orbital. The electron densities in the two orbitals are closely connected with the X-H (X=O, C) bond length, and they have been used to quantitatively estimate the bond length variation. The larger amount of charge transfer in the red-shifted O-H…O hydrogen bond is due to its favorable H…O electron channel, whereas the H…O electron channel in the blue-shifted C-H…O hydrogen bond is weaker. Structural reorganization effect shortens the C-H bond by approximately 30% when compared to the C-H bond contraction upon the dimerization. Strikingly, it leads to a small elongation and a slight red shift of the O-H bond. Both rehybridization and repolarization result in the X-H (X=O, C) bond contraction, but their effects on the O-H bond do not hold a dominant position. The hydrogen-bonding processes go through the electrostatic attractions, van der Waals interactions, charge-transfer interactions, hydrogen-bonding interactions and electrostatic repulsions. Electrostatic attractions are of great importance on the origin of the red-shifted O-H…O hydrogen bond, especially the strong Hδ+…Oδ- attraction. For the blue-shifted C-H…O hydrogen bond, the considerable nucleus-nucleus repulsion between H and O atoms caused by the strong electrostatic attraction between C and O atoms is a possible reason for the C-H bond contraction and its blue shift.
     2. Standard Watson-Crick adenine-thymine (AT) base pair has been investigated by using the B3LYP functional with 6-31G(d, p) basis set, at which level of theory the geometrical characteristics of AT base pair are the best in agreement with the experiment. It exhibits simultaneously red-shifted N-H…O and N-H…N hydrogen bonds as well as a blue-shifted C-H…O contact. AIM analysis suggests that the blue-shifted C-H…O contact exists as van der Waals interaction, and the electron densityρthat reflects the strength of a bond has been used to explain the red- and blue-shifted. By means of NBO analysis, we report a method to estimate the effect of hyperconjugation quantitatively, which combines the electron density in the X-H (X=N, C)σbonding orbital with that in theσ* antibonding orbital. The effect of structural reorganization on the origins of the red- and blue-shifted has been considered by the partial optimization, its behavior on the X-H (X=N, C) bond is quite different. Rehybridization and repolarization models are employed and they act as bond-shortening effects. The competition between the electrostatic attractions and Pauli/nucleus repulsions is present in the two typical red-shifted N-H…O and N-H…N hydrogen bonds as well as in the blue-shifted C-H…O van der Waals contact. Electrostatic attraction between H and Y atoms (Y=O, N) is an important reason for the red shift, while the nucleus-nucleus repulsion between H and O atoms may be a factor leading to the C-H bond contraction and its blue shift. The electric field effect induced by the acceptor O atom on the C-H bond is also discussed.
     3. A series of ringy complexes formed by H3N, HF and XY (X=C1, Br and Y=F, Cl, Br) have been studied by means of ab initio MP2 method with aug-cc-pVTZ basis set. The geometries, stretching vibrational frequencies and the interaction energies of these complexes are investigated. It shows that each complex has two red-shifted hydrogen bonds and one red-shifted halogen bond. AIM analysis has been performed to examine the topological characteristics at the bond critical point (BCP) as well as those at the ring critical point (RCP). It confirms the coexisting two hydrogen bonds and one halogen bond in each complex. The effects of hyperconjugation, rehybridization and repolarization on the bonds involved in the hydrogen bond and halogen bond are discussed in detail. Molecular electrostatic potential (MEP) is used to explore the mechanisms of the formations of the hydrogen bonds and halogen bonds and the ringy structures.
引文
[1]a) M. P. Casassa, Chem. Rev.,1988,88,815;
    b) L. A. Curtiss, M. Blander, Chem. Rev,1988,88,827;
    c) David J. Nesbitt, Chem. Rev.,1988,88,843;
    d) P. Hobza, R. Zahradnik, Chem. Rev.,1988,88,871;
    e) A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev.,1988,88,899;
    f) C. J. Van Oss, M. K. Chaudhury, R. J. Good, Chem. Rev.,1988,88,927;
    g) G Chalasinski, M. Gutowski, Chem. Rev, 1988,88,943;
    h) A. D. Buckingham, P. W. Fowler, J. M. Hutson, Chem. Rev., 1988,88,963.
    [2]a) A. Castleman, Jr., P. Hobza, Chem. Rev.,1994,94,1721;
    b) G Chalasinski, M. M. Szczesniak, Chem. Rev.,1994,94,1723;
    c) P Hobza, H. L. Selzle, E. W. Schlag, Chem. Rev.,1994,94,1767;
    d) P. M. Felker, P. M. Maxton, M. W. Schaeffer, Chem. Rev.,1994,94,1787;
    e) K. R. Leopold, G T. Fraser, S. E. Novick, W. Klemperer, Chem. Rev.,1994,94,1807;
    f) H. J. Neusser, H. Krause, Chem. Rev.,1994,94,1829;
    g) K. Mueller-Dethlefs,O. Dopfer, T. G Wright, Chem. Rev.,1994,94,1845;
    h) F. B. van Duijneveldt, J. G C. M. van Duijneveldt-van de Rijdt, J. H. van Lenthe, Chem. Rev.,1994,94,1873;
    i)B. Jeziorski, R. Moszynski, K. Szalewicz, Chem. Rev.,1994,94,1887;
    j) A. van der Avoird, P. E. S. Wormer, R. Moszynski, Chem. Rev,1994,94,1931;
    k) M. J. Elrod, R. J. Saykally, Chem. Rev.,1994,94,1975;
    1) J. F. Garvey, W. J. Herron, G Vaidyanathan, Chem. Rev.,1994,94,1999;
    m) Q. Y. Shang, E. R. Bernstein, Chem. Rev.,1994,94,2015;
    n) J. Tomasi, M. Persico, Chem. Rev,1994,94, 2027;
    o) J. Sauer, P. Ugliengo, E. Garrone, V. R Saunders, Chem. Rev,1994,94, 2095.
    [3]a) B. Brutschy, P. Hobza, Chem. Rev.,2000,100,3861;
    b) U. Buck, F. Huisken, Chem. Rev.,2000,100,3863;
    c)B. Brutschy, Chem. Rev.,2000,100,3891;
    d)H. J. Neusser, K. Siglow, Chem. Rev,2000,100,3921;
    e) C. Desfrancois, S. Carles, J. P. Schermann, Chem. Rev.,2000,100,3943;
    f) E. J. B. Dopfer, Chem. Rev., 2000,100,3963;
    g) C. E. H. Dessent, K. Muller-Dethlefs, Chem. Rev.,2000, 100,3999;
    h) C. Dedonder-Lardeux, G. Gregoire, C. Jouvet, S. Martrenchard, D. Solgadi, Chem. Rev.,2000,100,4023;
    l) Q. Zhong, A. W. Castleman, Jr., Chem. Rev.,2000,100,4039;
    j) G Niedner-Schatteburg, V. E. Bondybey, Chem. Rev., 2000,100,4059;
    k) O. Engkvist, P. Astrand, G Karlstrom, Chem. Rev.,2000, 100,4087;
    1) P. E. S. Wormeir, A. van der Avoird, Chem. Rev.,2000,100,4109;
    m) K. S. Kim, P. Tarakeshwar, J. Y. Lee, Chem. Rev.,2000,100,4145;
    n) M. Orozco, F. J. Luque, Chem. Rev.,2000,100,4187;
    o) G. Chalasinski, M. M. Szczesniak, Chem. Rev.,2000,100,4227;
    p) P. Hobza, Z. Havlas, Chem. Rev., 2000,100,4253.
    [4]I. G. Kaplan, Intermolecular Interactions:Physical Picture, Computational Methods and Model Potentials, John Wiley & Sons, Ltd., England,2006.
    [5]P. Hobza, K. Muller-Dethlefs, Non-Covalent Interactions:Theory and Experiment, Royal Society of Chemistry, Cambridge, UK,2010.
    [6]J. D. Watson, F. H. C. Crick, Nature,1953,171,737.
    [7]L. Pauling, R. B. Corey, H. R. Branson, Proc. Natl. Acad. Sci. USA,1951,37, 205.
    [8]P. S. Murthy, J. Chem. Educ.,2006,83,1010.
    [9]a) G. A. Jeffrey, An Introduction to Hydrogen Bonding, Oxford University Press, New York,1997;
    b) G. R. Desiraju, T. Steiner, The Weak Hydrogen Bond, Oxford University Press, Oxford,1999;
    c) S. Scheiner, Hydrogen Bonding, Oxford University Press, New York,1997;
    d) E. S. Kryachko, Hydrogen Bonding-New Insights, Springer, Dordrecht,2006;
    e) G. Gilli, P. Gilli, The Nature of the Hydrogen Bond:Outline of a Comprehensive Hydrogen Bond Theory, Oxford University Press, USA,2009.
    [10]王海燕,曾艳丽,孟令鹏,郑世钧,河北师范大学学报(自然科学版),2005,29,177.
    [11]a) A. E. Lutskii, Y. A. Shuster, V. A. Granzhan, P. M. Zaitsev, J. Appl. Spectros., 1972,16,498;
    b) W. Mikenda, J. Mol. Struct.,1986,147,1;
    c) S. Peter, J. K. Cockcroft, T. Roisnel, H. D. Lutz, Acta Crystallogr., Sect. B,1996,52,423;
    d) G. Liu, T. He, Struct. Chem.,2007,18,387;
    e) H. S. Biswal, P. R. Shirhatti, S. Wategaonkar, J. Phys. Chem. A,2009,113,5633.
    [12]a) L. N. Kurkovskaya, N. N. Shapetko, V. A. Kogan, O. A. Osipov, T. A. Zhuchenko, Theor. Exp. Chem.,1975,9,203;
    b) R. Taylor, O. Kennard, W. Versichel, J. Am. Chem. Soc.,1984,106,244;
    c) Y. Mido,T. Okuno, J. Mol. Struct.,1982,82,29;
    d) K. R. Adam, I. M. Atkinson, R. L. Davis, L. F. Lindoy, M. S. Mahinay, B. J. McCool, B. W. Skelton, A. H. White, Chem. Commun., 1997,467;
    e) Y Yang, W. J. Zhang, S. X. Pei, J. Shao, W. Huang, X. M. Gao, Sci. China Ser. B,2007,50,32;
    f) F. Cordier, L. Nisius, A. J. Dingley, S. Grzesiek, Nature Protocols,2008,3,235;
    g) H. S. Biswal, S. Wategaonkar, J. Phys. Chem. A,2009,113,12763.
    [13]a) J. Li, D. Xie, G Yan, Sci. China Ser. B,2003,46,113; b)王素纹,黎安勇,谭宏伟,高等学校化学学报,2007,28,1962;
    c) A. Y. Li, S. W. Wang, J. Mol. Struct. (THEOCHEM),2007,807,191.
    [14]a) A. Allerhand, P. v. R Schleyer, J. Am. Chem. Soc.,1963,85,1715;
    b) Z. S. Derewenda, L. Lee, U. Derewenda, J. Mol. Biol.,1995,252,248;
    c) A. K. Chamberlain, J. U. Bowie, J. Mol. Biol.,2002,322,497;
    d) K. Manikandan, S. Ramakumar, Proteins,2004,56,768;
    e) S. Wojtulewskia, S. J. Grabowskib, Chem. Phys.,2005,309,183.
    [15]a) D. M. Roe, P. M. Bailey, K Moseley, P. M. Maitlis, J. Chem. Soc. Chem. Commun.,1972,1273;
    b) D. Zhao, F. T. Ladipo, J. Braddock-Wilking, L. Brammer, P. Sherwood, Organometallics,1996,15,1441;
    c) D. Braga, F. Grepioni, E. Tedesco, Organometallics,1997,16,1846;
    d) R. H. Crabtree, O. Eisenstein, G Sini, E. Peris, J. Organomet. Chem.,1998,567,7;
    e) T. S. Thakur, G R. Desiraju, Chem. Commun.,2006,552;
    f) C.-S. Liu, J.-J. Wang, Z. Chang, L.-F. Yan, T.-L. Hu, Z. Anorg. Allg. Chem.,2008,635,523.
    [16]a) Z. Dawoodi, M. J. Martin, J. Organomet. Chem.,1981,219,251;
    b)M. R Churchill, C. Bueno, Inorg. Chem.,1983,22,1510;
    c) H. Wadepohl, D. Braga, F. Grepioni, Organometallics,1995,14,24.
    [17]史福强,安静仪,李文,赵濉,俞稼镛,化学学报,2004,62,1171.
    [18]a) G Ferguson, J. F. Gallagher, C. Glidewell, C. M.Zakaria,. Acta Crystallogr, Sect. C,1994,50,70;
    b) M. Mons, E. G Robertson, J. P. Simons, J. Phys. Chem. A,2000,104,1430;
    c) L. Pejov, M. Solimannejad, V. Stefov, Chem. Phys.,2006, 323,259.
    [19]a) T. Steiner, G Koellner, J. Mol. Biol,2001,305,535;
    b)王素纹,黎安勇,西南大学学报(自然科学版),2007,29,26.
    [20]a) E. A. Gallo, S. H. Geliman, Tetrahedron Lett.,1992,33,7485;
    b) T. Nakanaga, K Buchhold, F. Ito, Chem. Phys.,2003,288,69.
    [21]王海燕,几种类型氢键结构的电子密度拓扑研究,河北师范大学硕士学位论文,2005.
    [22]M. P. Brown, R. W. Heseltine, Chem. Commun.,1968,1551.
    [23]罗洪娟,杂环芳香体系分子间氢键和双氢键的理论研究,西南大学硕士学位论文,2009.
    [24]R. Custelcean, J. E. Jackson, Chem. Rev.,2001,101,1963.
    [25]G. J. Kubas, Metal Dihydrogen and σ-Bond Complexes, Kluwer Academic, Plenum Publishers, New York,2001.
    [26]V. I. Bakhmutov, Dihydrogen Bond:Principles, Experiments, and Applications, John Wiley & Sons, Ltd., Hoboken, New Jersey,2008.
    [27]a) Y. H. Chen, E. Tschuikow-Roux, A. Rauk, J, Phys. Chem.,1991,95,9832;
    b) E. Y. Misochko, V. A. Benderskii, A. U. Goldschleger, A. V. Akimov, A. F. Shestakov, J. Am. Chem. Soc.,1995,117,11997;
    c) B. Q. Wang, Z. R. Zhi, D. Wu, X. Y. Hao, R. J. Li, C. C. Sun, Chem. Phys. Lett,2003,375,91.
    [28]a) M. Igarashia, T. Ishibashia, H. Tachikawa, J. Mol. Struct.,2002,594,61;
    b)Q. Li, H. Zhu, X. An, B. Gong, J. Cheng, Int. J. Quantum Chem.,2009,109,605.
    [29]B. S. Jursic, Chem. Phys. Lett,1995,244,263.
    [30]K. Tang, F. Q. Shi, Int. J. Quantum Chem.,2007,107,665.
    [31]I. Rozas, I. Alkorta, J. Elguero, J. Phys. Chem. A,1998,102,9925.
    [32]闫秀花,多接触弯曲氢键及分子间相互作用的理论研究,西南大学硕士学位论文,2008.
    [33]V. A. Parsegian, van der Waals Forces:A Handbook for Biologists, Chemists, Engineers, and Physicists, Cambridge University Press, Cambridge, New York, 2006.
    [34]张季爽,申成,基础物理化学(下册),北京,科学出版社,2001.
    [35]a) D. E. Ellis, Density Functional Theory of Molecules, Clusters, and Solids, Kluwer, Dordrecht,1995;
    b) J. M. Seminario, P. Politzer, Modern Density Functional Theory, Elsevier, Amsterdam,1995;
    c) E. K. U. Gross, R. M. Dreizler, Density Functional Theory, Plenum, New York,1995;
    d) D. P. Chong, Recent Advances in Density Functional Methods, Part Ⅰ, World Scientific, Singapore,1995;
    e) D. P. Chong, Recent Advances in Density Functional Methods, Part Ⅱ, World Scientific, Singapore,1997;
    f) B. B. Laird, R. B. Ross, T. Ziegler, Eds., Chemical Applications of Density-Functional Theory, American Chemical Society, Washington,1996;
    g) R. F. Nalewajski, Density Functional Theory, Volumes I to IV. Springer-Verlag, Berlin,1996;
    h) J. M. Seminario, Recent Developments and Applications of Modern Density Functional Theory, Elsevier, Amsterdam,1996.
    [36]a) Y. Andersson, E. Hult, P. Apell, B. I. Lundqvist, D. C. Langreth, Solid. State. Commun.,1998,106,235;
    b) B. I. Lundqvist, Y. Andersson, H. Shao, S. Chan, D. C. Langreth, Int. J. Quantum Chem.,2004,56,247;
    c) M. A. Basanta, Y.J. Dappe, J. Ortega, F. Flores, Europhys. Lett,2005,70,355;
    d) R. W. Williams, D. Malhotraa, Chem. Phys.,2006,327,54;
    e) K Johnston, J. Kleis, B. I. Lundqvist, R. M. Nieminen, Phys. Rev. B,2008,77,121404;
    f) P. L. Silvestrelli, J. Phys. Chem. A,2009,113,5224.
    [37]a) S. L. Price, A. J. Stone, J. Lucas, R. S. Rowland, A. E. Thomley, J. Am. Chem. Soc.,1994,116,4910;
    b) S. C. Nyburg, W. Wong-Ng, Proc. R. Soc. London A, 1979,367,29.
    [38]a) J. H.Williams, Acc.Chem. Res.,1993,26,593;
    b) J. P M. Lommerse, A. J. Stone, R. Taylor, F. H. Allen, J. Am. Chem. Soc.,1996,118,3108;
    c) G Valerio, G Raos, S. V. Meille, P. Metrangolo, G Resnati, J. Phys. Chem. A,2000,104, 1617;
    d) T. Steiner, Angew. Chem.,2002,114,50; Angew. Chem. Int. Ed.,2002, 41,48.
    [39]J. M. Dumas, L. Gomel, M. Guerin, Molecular interactions involving organic halides. In The Chemistry of Functional Groups, Suppl. D, Wiley, New York, 1983.
    [40]A. C. Legon, Angew. Chem.,1999,111,2850; Angew. Chem. Int. Ed.,1999,38, 2686.
    [41]a) P. Politzer, P. Lane, M. C. Concha, Y. Ma, J. S. Murray, J. Mol. Model.,2007, 13,305;
    b) T. Clark, M. Hennemann, J. S. Murray, P. Politzer, J. Mol. Model., 2007,13,291.
    [42]a)赵影,双卤分子与几种电子供体间卤键的电子密度拓扑研究,河北师范大学硕士学位论文,2006;
    b)卢运祥,与氢键平行的分子间相互作用—卤键的理论研究,浙江大学博士学位论文,2008.
    [43]H. A. Bent, Chem. Rev.,1968,68,587.
    [44]a) W Janger, Y. J. Xu, M. C. L. Gerry, J. Phys. Chem.,1993,97,3685;
    b) A. C. Legon, J. C. Thorn, S. Blanco, J. Chem. Soc. Faraday Trans.,1994,90,1365;
    c) A. C. Legon, J. C. Thorn, J. Chem. Soc. Faraday Trans.,1993,87,4157;
    d) A. C. Legon, K Hinds, Chem. Phys. Lett.,1995,240,467;
    e) A. C. Legon, D. G Listen, J. C. Thorn, J. Chem. Soc. Faraday Trans.,1994,90,3205;
    f) H. L. Bloemink, C. M. Evans, J.H. Holloway, Chem. Phys. Lett,1996,248,260;
    g)S. A. Cooke, G. Cotti, J. H. Holloway, A. C. Legon, Angew. Chem.,1997,109,81; Angew. Chem. Int. Ed.,1997,36,129;
    h) H. L. Bloemink, K. Hinds, J. H. Holloway, A. C. Legon, Chem. Phys. Lett.,1995,242,113;
    i) G. Cotti, C. M. Evans, J. H. Holloway, A. C. Legon, Chem. Phys. Lett.,1997,264,513;
    j) S. A. Cooke, G Cotti, C. M. Evans, Chem. Eur. J.,2001,7,2295.
    [45]a) A. Karpfen, Theor. Chem. Acc.,2003,110,1;
    b) J.-W. Zou, Y.-J. Jiang, M. Guo, G-X. Hu, B. Zhang, H.-C. Liu, Q.-S. Yu, Chem. Eur. J.,2005,11,740;
    c) Q. Li, Q. Lin, W. Li, J. Cheng, B. Gong, J. Sun, ChemPhysChem,2008,9,2265.
    [46]a) J. P. M. Lommerse, A. J. Stone, R. Taylor, F. H. Allen, J. Am. Chem. Soc., 1996,118,3108;
    b) G. Valerio, S. G Rao, S. V. Meille, J. Phys. Chem. A,2000, 104,1617;
    c) P. Romaniello, F. Lelj, J. Phys. Chem. A,2002,106,9114;
    d)R. Glaser, N. Chen, H. Wu, N. Knotts, M. Kaupp, J. Am. Chem.Soc.,2004,126, 4412.
    [47]a) J. A. Shea, W. H. Flygare, J. Chem. Phys.,1982,76,4857;
    b) H. L. Bloemink, J. H. Holloway, A. C. Legon, Chem. Phys. Lett.,1996,250,567;
    c) J. H. Holloway, A. C. Legon, K. Hinds, J. Chem. Soc. Faraday Trans.,1996,92,1291;
    d) P. W. Fowler, A. C. Legon, J. M. A. Thumwood, E. R. Waclawik, Coord. Chem. Rev.,2000,197,231.
    [48]a)赵影,曾艳丽,张雪英,郑世钧,孟令鹏,物理化学学报,2006,22,1526;
    b) R.-Y. Li, Z.-R. Li, D. Wu, Y. Li, W. Chen, C.-C. Sun, J. Phys. Chem. A,2005,102,608;
    c)李瑞延,若干二聚体的结构和氢键、卤键性质的理论研究,吉林大学博士学位论文,2005.
    [49]a) W. G. Read, E. J. Campbell, G. Henderson, J. Chem. Phys.,1983,78,3501;
    b) S. A. Cooke, C. M. Evans, J. H. Holloway, A. C. Legon, J. Chem. Soc. Faraday Trans.,1998,94,2295.
    [50]S. A. Cooke, G. K.Corlett, J. H. Holloway, A. C. Legon, J. Chem. Soc., Faraday Trans.,1998,94,2675.
    [51]S. A. Cooke, G. K.Corlett, J. H. Holloway, A. C. Legon, Chem. Phys. Lett., 1998,298,151.
    [52]赵影,曾艳丽,默丽欣,孟令鹏,郑世钧,化学学报,2007,65,1469.
    [53]W. Z. Wang, N.-B. Wong, W. X. Zheng, A. M. Tian, J. Phys. Chem. A,2004,108, 1799.
    [54]S. Scheiner, E. A. M. Sapse, P. R. Schleyer, Recent studies in lithium chemistry: A theoretical and experimental overview, John Wiley & Sons Inc, New York, 1995.
    [55]P. A. Kollman, J. F. Liebman, L. C. Allen, J. Am. Chem. Soc.,1970,92,1142.
    [56]B. S. Ault, G C. Pimentel, J. Phys. Chem.,1975,79,621.
    [57]a) Y. Feng, L. Liu, J.-T. Wang, X.-S. Li, Q.-X. Guo, Chem. Commun.,2004,88;
    b)袁焜,吕玲玲,刘艳芝,科学通报,2008,53,633;
    c)袁焜,朱元成,刘艳芝,李志锋,董晓宁,王晓峰,李会学,张继,科学通报,2008,53,1885;
    d) K Yuan, Y C. Zhu, Y Z Liu, Z. F. Li, X. N. Dong, X. F. Wang, H. X. Li, J. Zhang, Chinese Sci. Bull.,2008,53,3151;
    e) Q. Li, H. Wang, Z. Liu, W. Li, J. Cheng, B. Gong, J. Sun, J. Phys. Chem. A,2009,113,14156;
    f) Q. Z. Li, Y F. Wang, W Z. Li, J. B. Cheng, B. A. Gong, J. Z. Sun, Phys. Chem. Chem. Phys., 2009,11,2402;
    g) J. Yin, P. Wei, Q. Li, Z. Liu, W Li, J. Cheng, B. Gong, J. Mol. Struct. (THEOCHEM),2009,916,28;
    h) Z. Li, X. Shi, Y.Liu, H. Tang, J. Zhang, Chinese J. Chem. Phys.,2009,22,303;
    i) J. E. Del Bene, I. Alkorta, J. Elguero, J. Phys. Chem. A,2009,113,10327.
    [58]B. S. Ault, J. Am. Chem. Soc.,1978,100,2426.
    [59]a) Z.-F. Li, Y.-C. Zhu, H.-X. Li, Phys. Chem. Chem. Phys.,2009,11,11113;
    b) Z.-F. Li, Y.-C. Zhu, G.-F. Zuo, H.-A. Tang, H.-Y. Li, Int. J. Quantum Chem., 2010, In Press.
    [60]a) K Hermansson, J. Phys. Chem. A,2002,106,4695;
    b) L. Pejov, K Hermansson, J. Chem. Phys.,2003,119,313;
    c) X. Li, L. Liu, H. B. Schlegel, J. Am. Chem. Soc.,2002,124,9639;
    d) J.-T. Wang, Y. Feng, L. Liu, X.-S. Li, Q.-X. Guo, Chem. Lett.,2003,32,746;
    e) Y Fang, J.-M. Fan, L. Liu, X.-S. Li, Q.-X. Guo, Chem. Lett.,2002,31,116;
    f)W. Zierkiewicz, P. Jurecka, P. Hobza, ChemPhysChem,2005,6,609;
    g) Y. Gu, T. Kar, S. Scheiner, J. Am. Chem. Soc., 1999,121,9411;
    h) Y. Gu, T. Kar, S. Scheiner, J. Mol. Struct.,2000,552,17;
    i) S. Scheiner, Y Gu, T. Kar, J. Mol. Struct. (THEOCHEM),2000,500,441;
    j)S. Scheiner, T. Kar, Y Gu, J. Biol. Chem.,2001,276,9832;
    k) S. Scheiner, S. J. Grabowski, T. Kar, J. Phys. Chem. A,2001,105,10607;
    1) J. Joseph, E. D. Jemmis, J. Am. Chem. Soc.,2007,129,4620;
    m) S. A. C. McDowell, Phys. Chem. Chem. Phys.,2003,5,808;
    n) S. A. C. McDowell, J. Chem. Phys.,2003, 119,3711;
    o) W. Qian, S. Krimm, J. Phys. Chem. A,2002,106,6628;
    p)W. Qian, S. Krimm, J. Phys. Chem. A,2002,106,11663;
    q) W. Qian, S. Krimm, J. Phys. Chem. A,2005,109,5608;
    r) S. N. Delanoye, W. A. Herrebout, B. J. van der Veken, J. Am. Chem. Soc.,2002,124,7490;
    s) P. Hobza, Z. Havlas, Chem. Phys. Lett.,1999,303,447;
    t) A. Masunov, J. J. Dannenberg, R. H. Contreras, J. Phys. Chem. A,2001,105,4737.
    [61]a) E. Cubero, M. Orozco, P. Hobza, F. J. Luque, J. Phys. Chem. A,1999,103, 6394;
    b) P. Hobza, Z. Havlas, Chem. Rev.,2000,100,4253;
    c) P. Hobza, Phys. Chem. Chem. Phys.,2001,3,2555;
    d) W. Zierkiewicz, D. Michalska, Z. Havlas, P. Hobza, ChemPhysChem,2002,3,511;
    e) I. V. Alabugin, M. Manoharan, S. Peabody, F. Weinhold, J. Am. Chem. Soc.,2003,125,5973;
    f) S. Inagaki, T. Takeuchi, Chem. Lett.,2005,34,750.
    [62]G. R. Desiraju, T. Steiner, The Weak Hydrogen Bond, Oxford University Press, Oxford,1999.
    [63]S. Scheiner, Hydrogen Bonding, Oxford University Press, New York,1997.
    [64]A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev.,1988,88,899.
    [65]W. Wang, P. Hobza, Collect. Czech. Chem. Commun.,2008,73,862.
    [66]a) G. A. Leonard, K. McAuley-Hecht, T. Brown, W. N. Hunter, Acta Crystallogr., Sect. D,1995,51,136;
    b) A. Ghosh, M. Bansal, J. Mol. Biol.,1999,294,1149;
    c) A. Ghosh, M. Bansal, Acta Crystallogr., Sect. D,1999,55,2005.
    [67]a) J. Grunenberg, N. Goldberg, J. Am. Chem. Soc.,2000,122,6046;
    b) J. Grunenberg, R. Streubel, G. v. Frantzius, W. Marten, J. Chem. Phys.,2003,119, 165;
    c) Y. Xie, H. F. Schaefer, Ⅲ., Z. Phys. Chem.,2003,217,189.
    [68]a) J. Grunenberg, J. Am. Chem. Soc.,2004,126,16310;
    b) K. Brandhorst, J. Grunenberg, ChemPhysChem,2007,8,1151.
    [69]O. V. Shishkin, J. Sponer, P. Hobza, J. Mol. Struct. (THEOCHEM),1999,477, 15.
    [70]C. F. Guerra, F. M. Bickelhaupt, J. G. Snijders, E. J. Baerends, Chem.-Eur. J., 1999,5,3581.
    [71]a) A. Asensio, N. Kobko, J. J. Dannenberg, J. Phys. Chem. A,2003,107,6441;
    b) J. R. Quinn, S. C. Zimmerman, J. E. D. Bene, I. Shavitt, J. Am. Chem. Soc., 2007,129,934.
    [72]a) P. Metrangolo, H. Neukirch, T. Pilati, G. Resnati, Acc. Chem. Res.,2005,38, 386;
    b) C. B. Aakeroy, M. Fasulo, N. Schultheiss, J. Desper, C. Moore, J. Am. Chem. Soc.,2007,129,13772;
    c) E. Corradi, S. V. Meille, M. T. Messina, P. Metrangolo, G. Resnati, Angew. Chem.,2000,112,1852; Angew. Chem. Int. Ed., 2000,39,1782;
    d) P. Metrangolo, G. Resnati, Chem. Eur. J.,2001,7,2511;
    e)D. B. Fox, R. Liantonio, P. Metrangolo, T. Pilati, G. Resnati, J. Fluorine Chem., 2004,125,271.
    [73]a) P. Metrangolo, G. Resnati, T. Pilati, R. Liantonio, F. Meyer, J. Polym. Sci. Part A,2007,45,1;
    b) D. Cincic, T. Friscic, W. Jones, Chem. Eur. J.,2008,14, 747;
    c) D. Cincic, T. Friscic, W. Jones, J. Am. Chem. Soc.,2008,130,7524;
    d)P. Metrangolo, F. Meyer, T. Pilati, G. Resnati, G. Terraneo, Angew. Chem.,2008, 120,6206; Angew. Chem. Int. Ed.,2008,47,6114.
    [74]a) S. Derossi, L. Brammer, C. A. Hunter, M. D. Ward, Inorg. Chem.,2009,48, 1666;
    b) T. Shirman, T. Arad, M. E. van der Boom, Angew. Chem.,2010,122, 938; Angew. Chem. Int. Ed.,2010,49,926.
    [75]a) P. Auffinger, F. A. Hays, E. Westhof, P. S. Ho, Proc. Natl. Acad. Sci. USA, 2004,101,16789;
    b) A. R. Voth, F. A. Hays, P. S. Ho, Proc. Natl. Acad. Sci. USA,2007,104,6188.
    [76]a) A. Karpfen, J. Phys. Chem. A,2000,104,6871;
    b) K. E. Riley, K M. Merz, J. Phys. Chem. A,2007,111,1688;
    c) F. F. Awwadi, R D. Willett, K A. Peterson, B. Twamley, Chem. Eur. J.,2006,12,8152;
    d) S. P. Ananthavel, M. Manoharan, Chem.Phys.,2001,269,49;
    e) J. B. Davey, A. C. Legon, J. M. A. Thumwood, J. Chem. Phys.,2001,114,6190;
    f) Y. H. Wang, J. W Zou, Y. X. Lu, Q. S. Yu, J. Theor. Comput. Chem.,2006,4,719;
    g) Y. H. Wang, J. W Zou, Y X. Lu, Q. S. Yu, H. Y. Xu, Int. J. Quantum Chem.,2007,107,501;
    h) E. Bilewicz, S. J. Grabowski, Chem. Phys. Lett,2006,427,51;
    i) J. W. Zou, Y. X. Lu, Y H. Wang, Q. S. Yu, H X. Zhang, Y J. Jiang, Chinese J. Chem.,2006,24,1709;
    J)Y. Zhang, X. Z. You, J. Comput. Chem.,2001,22,327;
    k) R. Romano, A. L. Picone, A. J. Downs, J. Phys. Chem. A,2006,110,12129;
    1) R. Y Li, Z. R. Li, D. Wu, Y Li, W. Chen, J. C. Sun, J. Phys. Chem. A,2005,109,2608;
    m) Y Zhang, C. Y. Zhao, X. Z. You, J. Phys. Chem. A,1997,101,2879;
    n) S. B. Z. Ciunik, K. Drabent, Z. Latajka, J. Panek, J. Phys. Chem. B,2004,108,12327.
    [77]E. Corradi, S. V. Meille, M. T. Messina, P. Metrangolo, G. Resnati, Angew. Chem.,2000,112,1852; Angew. Chem. Int. Ed.,2000,39,1782.
    [78]I. Alkorta, F. Blanco, M. Solimannejad, J. Elguero, J. Phys. Chem. A,2008,112, 10856.
    [79]P. Metrangolo, G. Resnati, Science,2008,321,918.
    [80]C. B. Aakeroy, J. Desper, B.A. Helfrich, P. Metrangolo, T. Pilati, G. Resnati, A.Stevenazzi, Chem. Commun.,2007,4236.
    [1]W. Heitler, F. London, Z. Phys.,1927,44,455.
    [2]a) W. J. Hehre, L. Radom, P. v. R Schleyer, J. A. Pople, Ab Initio Molecular Orbital Theory, John Wiley & Sons, Inc.,1986;
    b) D. A. McQuarrie, Quantum Chemistry, University Science Books, Mill Vally. CA.,1983.
    [3]a)唐敖庆,杨忠志,李前树,量子化学,北京,科学出版社,1982;
    b)徐光宪,黎乐民,王德民,量子化学基本原理和从头计算法,北京,科学出版社,1985.
    [4]S. F. Boys, F. Bernardi,Mol. Phys.,1970,19,553.
    [5]J. B. Foresman, M. J. Frisch, Exploring Chemistry with Electrinic Structure Methods, Gaussian, Pittsburgh,1993.
    [6]廖沐真,吴国是,刘洪霖,量子化学从头计算方法,北京,清华大学出版社,1984.
    [7]a) H. Popkie, H. Kistenmacher, E. Clementi, J. Chem. Phys.,1973,59,1325;
    b) J. Tennyson, A. van der Avoird, J. Chem. Phys.,1982,77,5664.
    [8]a) C. Y. Zhang, L. F. David, J. E. Del, J. Chem. Phys.,1985,82,2489;
    b) J. F. Graw, Y. Yamaguchi, M. A. Vincent, J. Am. Chem. Soc.,1984,106,3133;
    c)A. S. Pine, W. J. Lafferty, J. Chem. Phys.,1983,79,1325;
    d) W. D. Michael, C. E. Dykstra, J. M. Lisy, J. Chem. Phys.,1984,81,5998;
    e) C. A. Deakyne, J. Am. Chem. Soc.,1985,107,474;
    f) D. W. Schwenke, D. G Truhlar, J. Chem. Phys., 1985,82,2418;
    g) M. J. Frisch, J. A. Pople, J. Phys. Chem.,1985,89,3664;
    h) M. J. Frisch, J. E. D. Bene, J. S. Binkley, H. F. Schaefer Ⅲ, J. Chem. Phys., 1986,84,2279;
    i) J. E. D. Bene, J. Chem. Phys.,1987,86,2110;
    j)J.E.D.Bene,J. Phys. Chem.,1988,92,2874;
    k) A. S. Pine, G. T. Fraser, J. Chem. Phys.,1988, 89,6636;
    1) C. Y. Zhang, L. F. David, J. E. Del, J. Chem. Phys.,1989,91,2489;
    m) J. E. D. Bene, J. Comput. Chem.,1989,10,603;
    n) Z. Latajka, K. H. Ratajcza, J. Mol. Struct.,1989,194,89.
    [9]a) C. M(?)ller, M. S. Plesset, Phys. Rev.,1934,46,618;
    b) J. A. Pople, J. S. Binkley, R. Seeger,Int J. Quantum Chem.,1976,10,1.
    [10]T. Helgaker, P. Jorgensen, J. Olsen, Molecular electronic-structure theory, Wiley, New York,2000.
    [11]a) D. E. Ellis, Density Functional Theory of Molecules, Clusters, and Solids, Kluwer, Dordrecht,1995;
    b) J.M. Seminario, P. Politzer, Modern Density Functional Theory, Elsevier, Amsterdam,1995;
    c) E. K. U. Gross, R. M. Dreizler, Density Functional Theory, Plenum, New York,1995;
    d) D. P. Chong, Recent Advances in Density Functional Methods, Part Ⅰ, World Scientific, Singapore,1995;
    e) D. P. Chong, Recent Advances in Density Functional Methods, Part Ⅱ, World Scientific, Singapore,1997;
    f) B. B. Laird, R. B. Ross, T. Ziegler, Eds., Chemical Applications of Density-Functional Theory, American Chemical Society, Washington,1996;
    g) R. F. Nalewajski, Density Functional Theory, Volumes Ⅰ to Ⅳ. Springer-Verlag, Berlin,1996;
    h) J. M. Seminario, Recent Developments and Applications of Modern Density Functional Theory, Elsevier, Amsterdam,1996.
    [12]a) H. Thomas, Proc. Camb. Phil. Soc.,1927,23,542;
    b) E. Fermi, Accad. Naz. Lincei.,1927,6,602.
    [13]R. G. Parr, W. Yang, Density-functional Theory of Atoms and Molecules, Oxford University Press, New York,1989.
    [14]a) W. Koch, M. C. A. Holthausen, Chemistry's Guide to Density Functional Theory.2nd Edition. Wiley, New York,2001;
    b) F. M. Bichelhaupt, E. J. Baerends, In Reviews in Computational Chemistry. Vol.15. Eds, K. B. Lipkowitz, D. B. Boyd, Wiley, New York,2000.
    [15]A. D. Becke, Phys. Rev. A,1988,38,3098.
    [16]W. Kohn, L. J. Sham, Phys. Rev.,1965,140,1133.
    [17]a) T. H. Dunning, Jr., J. Chem. Phys.,1989,90,1007;
    b) D. E. Woon, T. H. Dunning, Jr., J. Chem. Phys.,1993,98,1358;
    c) R. A. Kendall, T. H. Dunning, Jr., R. J. Harrison, J. Chem. Phys.,1992,96,6796.
    [18]A. K. Rappe, E. R. Bernstein, J. Phys. Chem. A,2000,104,6117.
    [19]a) R. F. W. Bader, Chem. Rev.,1991,91,893;
    b) R. F. W. Bader, Atoms in Molecules:A Quantum Theory, Clarendon, Oxford,1990.
    [20]a) K. Raghavachari, R. A. Whiteside, J. A. Pople, P. v. R. Schleyer, J. Am. Chem. Soc.,1981,103,5649;
    b) K. Hiraoka, T. Mori, S. Yamabe, Chem. Phys. Lett., 1993,207,178;
    c) S. Sieber, P. Buzek, P. v. R. Schleyer, W. Kock, J. W. M. Carneiro, J. Am. Chem. Soc.,1993,115,259.
    [21]S. J. Zheng, L. P. Meng, Z. F. Xu, X. Y. Fu, J. Comput. Chem.,1977,18,1167.
    [22]R. F. W. Bader, P. Beddall, J. Chem. Phys.,1972,56,3320.
    [23]a) U. Koch, P. L. A. Popelier, J. Phys. Chem.,1995,99,9747; b) P. L. A. Popelier, J. Phys. Chem.A,1998,102,1873.
    [24]P. Lipkowski, S. J. Grabowski, T. L. Robinson, J. Leszczynski, J. Phys. Chem. A, 2004,108,10865.
    [25]a)王伟周,几种典型体系分子间相互作用的理论研究,四川大学博士学位论文,2004;
    b)何文娣,五种生物碱基的氢键二聚体等体系的理论研究,四川大学博士学位论文,2006.
    [26]P. O. Lowdin, Phys. Rev.,1955,97,1474.
    [27]a) J. P. Foster, F. Weinhold, J. Am. Chem. Soc.,1980,102,7211;
    b) A. E. Reed, F. Weinhold, J. Chem. Phys.,1983,78,4066;
    c) A. E. Reed, R. B. Weinstock, F. Weinhold, J. Chem. Phys.,1985,83,735;
    d) A. E. Reed, F. Weinhold, J. Chem. Phys.,1985,83,1736;
    e) J. E. Carpenter, F. Weinhold, J. Mol. Struct. (THEOCHEM),1988,169,41.
    [28]A. E. Reed, F. Weinhold, J. Am. Chem. Soc.,1986,108,3586.
    [29]H. P. Luthi, J. H. Ammeter, J. Almof, K Faegri, J. Chem. Phys.,1982,77,2002.
    [30]J. B. Collins, A. Streitwieser, Jr., J. Comput. Chem.,1980,1,81.
    [31]A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev.,1988,88,899.
    [32]a) C. Edmiston, K. Ruedenberg, Rev. Mod. Phys.,1963,34,457;
    b) J. M. Foster, S. F. Boys, Rev. Mod. Phys.,1960,32,300;
    c) S. F. Boys, In P. O. Lowdin, Ed. Quantum Theory of Atoms, Molecules, and Solid State, Academic, New York, 1966;
    d) H. Weinstein, R. Pauncz, M. Cohen, Adv. At. Mol. Phys.,1971,7,97.
    [1]G R. Desiraju, Acc. Chem. Res.,2002,35,565.
    [2]G. A. Jeffrey, An Introduction to Hydrogen Bonding, Oxford University Press, New York,1997.
    [3]G. R. Desiraju, T. Steiner, The Weak Hydrogen Bond, Oxford University Press, Oxford,1999.
    [4]S. Scheiner, Hydrogen Bonding, Oxford University Press, New York,1997.
    [5]E. S. Kryachko, Hydrogen Bonding-New Insights, Springer, Dordrecht,2006.
    [6]A. Allerhand, P. v. R. Schleyer, J. Am. Chem. Soc.,1963,85,1715.
    [7]a) M. Budesinsky, P. Fiedler, Z. Arnold, Synthesis,1989,858;
    b) I. E. Boldeskul, I. F. Tsymbal, E. V. Ryltsev, Z. Latajka, A. J. Barnes, J. Mol. Struct.,1997,436, 167;
    c) P. Hobza, V. Spirko, Z. Havlas, K. Buchhold, B. Reimann, H.-D. Barth, B. Brutschy, Chem. Phys. Lett.,1999,299,180;
    d) W. Caminati, S. Melandri, P. Moreschini, P. G Favero, Angew. Chem.,1999,111,3105; Angew. Chem. Int. Ed.,1999,38,2924;
    e) B. J. van der Veken, W. A. Herrebout, R. Szostak, D. N. Shchepkin, Z. Havlas, P. Hobza, J. Am. Chem. Soc.,2001,123,12290;
    f)B. Reimann, K. Buchhold, S. Vaupel, B. Brutschy, Z. Havlas, V. Spirko, P. Hobza, J. Phys. Chem. A,2001,105,5560;
    g) S. N. Delanoye, W. A. Herrebout, B. J. van der Veken, J. Am. Chem. Soc.,2002,124,7490;
    h) S. N. Delanoye, W. A. Herrebout, B. J. van der Veken, J. Am. Chem. Soc.,2002,124,11854;
    i)H. Matsuura, H. Yoshida, M. Hieda, S. Yamanaka, T. Harada, K. Shinya, K. Ohno, J. Am. Chem. Soc.,2003,125,13910;
    j) E. Diana, P. L. Stanghellini, J. Am. Chem. Soc.,2004,126,7418;
    k) K. S. Rutkowski, P. Rodziewicz, S. M. Melikova, W. A. Herrebout, W. A. Van der Veken, A. Koll, Chem. Phys.,2005, 313,225;
    1) P. Rodziewicz, K S. Rutkowski, S. M. Melikova, A. Koll, ChemPhysChem,2005,6,1282;
    m) Y. Katsumoto, H. Komatsu, K. Ohno, J. Am. Chem. Soc.,2006,128,9278.
    [8]a) P. Hobza, V Spirko, H. L. Selzel, E. W. Schlag, J. Phys. Chem. A,1998,102, 2501;
    b) M. Jablonski, A. J. Sadlej, J. Phys. Chem. A,2007,111,3423;
    c)M. Jablonski, J. Mol. Struct. (THEOCHEM),2007,820,118;
    d) M. Solimannejad, S. Scheiner, J. Phys. Chem. A,2007,111,4431;
    e) S.-C. Wang, P. K. Sahn, S.-L. Lee, Chem. Phys. Lett.,2005,406,143;
    f) A. Karpfen, E. S. Kryachko, J. Phys. Chem. A,2005,109,8930;
    g) E. S.Kryachko, A. Karpfen, Chem. Phys.,2006, 329,313;
    h) S. A. C. McDowell, A. D. Buckingham, J. Am. Chem. Soc.,2005, 127,15515;
    i) K. S. Rutkowski, P. Rodziewicz, S. M. Melikova, A. Koll, Chem. Phys.,2006,327,193;
    j) S. A. C. McDowell, Chem. Phys. Lett.,2006,424,239;
    k) V. Spirko, P. Hobza, ChemPhysChem,2006,7,640.
    [9]P. Hobza, Z. Havlas, Chem. Rev.,2000,100,4253.
    [10]a) K. Hermansson, J. Phys. Chem. A,2002,106,4695;
    b) L. Pejov, K. Hermansson, J. Chem. Phys.,2003,119,313;
    c) X. Li, L. Liu, H. B. Schlegel, J. Am. Chem. Soc.,2002,124,9639;
    d) J.-T. Wang, Y. Feng, L. Liu, X.-S. Li, Q.-X. Guo, Chem. Lett.,2003,32,746;
    e) Y. Fang, J.-M. Fan, L. Liu, X.-S. Li, Q.-X. Guo, Chem. Lett.,2002,31,116;
    f)W. Zierkiewicz, P. Jurecka, P. Hobza, ChemPhysChem,2005,6,609;
    g) Y. Gu, T. Kar, S. Scheiner, J. Am. Chem. Soc., 1999,121,9411;
    h) Y. Gu, T. Kar, S. Scheiner, J. Mol. Struct.,2000,552,17;
    i) S. Scheiner, Y. Gu, T. Kar, J. Mol. Struct. (THEOCHEM),2000,500,441;
    J)S. Scheiner, T. Kar, Y. Gu, J. Biol. Chem.,2001,276,9832;
    k) S. Scheiner, S. J. Grabowski, T. Kar, J. Phys. Chem. A,2001,105,10607;
    1) J. Joseph, E. D. Jemmis, J. Am. Chem. Soc.,2007,129,4620;
    m) S. A. C. McDowell, Phys. Chem. Chem. Phys.,2003,5,808;
    n) S. A. C. McDowell, J. Chem. Phys.,2003, 119,3711;
    o) W. Qian, S. Krimm, J. Phys. Chem. A,2002,106,6628;
    p)W. Qian, S. Krimm, J. Phys. Chem. A,2002,106,11663;
    q) W. Qian, S. Krimm, J. Phys. Chem. A,2005,109,5608;
    r) S. N. Delanoye, W. A. Herrebout, B. J. van der Veken, J. Am. Chem. Soc.,2002,124,7490;
    s) P. Hobza, Z. Havlas, Chem. Phys. Lett.,1999,303,447;
    t) A. Masunov, J. J. Dannenberg, R. H. Contreras, J. Phys. Chem. A,2001,105,4737.
    [11]a) E. Cubero, M. Orozco, P. Hobza, F. J. Luque, J. Phys. Chem. A,1999,103, 6394;
    b) P. Hobza, Phys. Chem. Chem. Phys.,2001,3,2555;
    c) W. Zierkiewicz, D. Michalska, Z. Havlas, P. Hobza, ChemPhysChem,2002,3,511;
    d) I. V. Alabugin, M. Manoharan, S. Peabody, F. Weinhold, J. Am. Chem. Soc.,2003, 125,5973;
    e) S. Inagaki, T. Takeuchi, Chem. Lett.,2005,34,750.
    [12]A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev.,1988,88,899.
    [13]a) C. S. Tautermann, M. J. Loferer, A. F. Voegele, K. R. Liedl, J. Chem. Phys., 2004,120,11650;
    b) V. V. Matylitsky, C. Riehn, M. F. Gelin, B. Brutschy, J. Chem. Phys.,2003,119,10553;
    c) J. Chocholousova, J. Vacek, P. Hobza, Phys. Chem. Chem. Phys.,2002,4,2119;
    d) S. Roszak, R. H. Gee, K. Balasubramanian, L. E. Fried, J. Chem. Phys.,2004,120,7059;
    e) F. Ito, T. Nakanage, Chem. Phys. Lett.,2000,318,571;
    f) F. Madeja, M. Havenith, J. Chem. Phys.,2002,117,7162;
    g) W. Qian, S. Krimm, J. Phys. Chem. A,2001, 105,5046.
    [14]M. Gantenberg, M. Halupka, W. Sander, Chem. Eur. J.,2000,6,1865.
    [15]J. Chocholousova, V. Spirko, P. Hobza, Phys. Chem. Chem. Phys.,2004,6,37.
    [16]S. Roszak, R. H. Gee, K. Balasubramanian, L. E. Fried, J. Chem. Phys.,2005, 123,144702.
    [17]K Marushkevich, L. Khriachtchev, J. Lundell, M. Rasanen, J. Am. Chem. Soc., 2006,128,12060.
    [18]S. Simon, M. Duran, J. J. Dannenberg, J. Chem. Phys.,1996,105,11024.
    [19]S. F. Boys, F. Bernardi,Mol. Phys.,1970,19,553.
    [20]a) R. F. W. Bader, Chem. Rev.,1991,91,893;
    b) R. F. W. Bader, Atoms in Molecules:A Quantum Theory, Clarendon, Oxford,1990.
    [21]a) J. P. Foster, F Weinhold, J. Am. Chem. Soc.,1980,102,7211;
    b) A. E. Reed, F. Weinhold, J. Chem. Phys.,1983,78,4066;
    c) A. E. Reed, R. B. Weinstock, F. Weinhold, J. Chem. Phys.,1985,83,735;
    d) A. E. Reed, F. Weinhold, J. Chem. Phys.,1985,83,1736;
    e) J. E. Carpenter, F. Weinhold, J. Mol. Struct. (THEOCHEM),1988,169,41.
    [22]T. Engel, P. Reid, Physical Chemistry, Cummings, San Francisco,2005.
    [23]a) I. D. Brown, D. Altermatt, Acta Crystallogr, Sect. B,1985,41,244;
    b) I. D. Brown, Acta Crystallogr., Sect. B,1992,48,553.
    [24]Gaussian 98 (Revision A.09), M. J. Frisch, G W. Trucks, H. B. Schlegel, G E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G Baboul, B. B. Stefanov, G Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, J. A. Pople, Gaussian, Inc., Pittsburgh, PA,1998.
    [25]a) U. Koch, P. L. A. Popelier, J.Phys. Chem.,1995,99,9747;
    b) P. L. A. Popelier, J. Phys. Chem. A,1998,102,1873.
    [26]P. Lipkowski, S. J. Grabowski, T. L. Robinson, J. Leszczynski, J. Phys. Chem. A,2004,108,10865.
    [27]a) P. Kolandaivel, V. Nirmala, J. Mol. Struct.,2004,694,33;
    b) Y. Yang, W. J. Zhang, X. M. Gao, Int. J. Quantum Chem.,2006,106,1199;
    c) A. Y. Li, J. Chem. Phys.,2007,126,154102.
    [28]P. Flukiger, H. P. Liithi, S. Portmann, J. Weber, Molekel, Version 4.3, Swiss Center for Scientific Computing, http://www.cscs.ch/molekel/; Manno (Switzerland),2002. Q.
    [29]Y. Yang, W. J. Zhang, S. X. Pei, J. Shao, W. Huang, X. M. Gao, Sci. China Ser. B,2007,50,32.
    [30]Y. Yang, W. Zhang, J. Mol. Struct. (THEOCHEM),2007,814,113.
    [31]H. A. Bent, Chem. Rev.,1961,61,275.
    [1]G. A. Jeffrey, W. Saenger, Hydrogen Bonding in Biology and Chemistry, Springer-Verlag, Berlin,1991.
    [2]G. A. Jeffrey, An Introduction to Hydrogen Bonding, Oxford University Press, New York,1997.
    [3]G. R. Desiraju, T. Steiner, The Weak Hydrogen Bond, Oxford University Press, Oxford,1999.
    [4]S. Scheiner, Hydrogen Bonding, Oxford University Press, New York,1997.
    [5]E. S. Kryachko, Hydrogen Bonding-New Insights, Springer, Dordrecht,2006.
    [6]a) A. D. Buckingham, P. W. Fowler, J. M. Hutson, Chem. Rev.,1988,88,963;
    b) A. W. Castleman, Jr., P. Hobza, Chem. Rev.,1994,94,1721;
    c) K. Muller-Dethlefs, P. Hobza, Chem. Rev.,2000,100,143.
    [7]J. D. Watson, F. H. C. Crick, Nature,1953,171,737.
    [8]W. Saenger, Principles of Nucleic Acid Structure, Springer, New York,1984.
    [9]a) G A. Leonard, K. McAuley-Hecht, T. Brown, W. N. Hunter, Acta Crystallogr, Sect. D,1995,51,136;
    b) A. Ghosh, M. Bansal, J. Mol. Biol., 1999,294,1149;
    c) A. Ghosh, M. Bansal, Acta Crystallogr., Sect. D,1999,55, 2005.
    [10]a) J. Grunenberg, N. Goldberg, J. Am. Chem. Soc.,2000,122,6046;
    b)J. Grunenberg, R. Streubel, G v. Frantzius, W. Marten, J. Chem. Phys.,2003,119, 165;
    c) Y Xie, H. F. Schaefer, Ⅲ., Z. Phys. Chem.,2003,217,189.
    [11]a) J. Grunenberg, J. Am. Chem. Soc.,2004,126,16310;
    b) K Brandhorst, J. Grunenberg, ChemPhysChem,2007,8,1151.
    [12]O. V. Shishkin, J. Sponer, P. Hobza, J. Mol. Struct. (THEOCHEM),1999,477, 15.
    [13]C. F. Guerra, F. M. Bickelhaupt, J. G Snijders, E. J. Baerends, Chem.-Eur. J., 1999,5,3581.
    [14]a) A. Asensio, N. Kobko, J. J. Dannenberg, J. Phys. Chem. A,2003,107,6441;
    b) J. R. Quinn, S. C. Zimmerman, J. E. D. Bene, I. Shavitt, J. Am. Chem. Soc., 2007,129,934.
    [15]a) K Hermansson, J. Phys. Chem. A,2002,106,4695;
    b) L. Pejov, K Hermansson, J. Chem. Phys.,2003,119,313;
    c) X. Li, L. Liu, H. B. Schlegel, J.
    Am. Chem. Soc.,2002,124,9639;
    d) J.-T. Wang, Y. Feng, L. Liu, X.-S. Li, Q.-X. Guo, Chem. Lett.,2003,32,746;
    e) Y. Fang, J.-M. Fan, L. Liu, X.-S. Li, Q.-X. Guo, Chem. Lett.,2002,31,116;
    f)W. Zierkiewicz, P. Jurecka, P. Hobza, ChemPhysChem,2005,6,609;
    g) Y. Gu, T. Kar, S. Scheiner, J. Am. Chem. Soc., 1999,121,9411;
    h) Y. Gu, T. Kar, S. Scheiner, J. Mol. Struct.,2000,552,17;
    i) S. Scheiner, Y. Gu, T. Kar, J. Mol. Struct. (THEOCHEM),2000,500,441;
    J)S. Scheiner, T. Kar, Y. Gu, J. Biol. Chem.,2001,276,9832;
    k) S. Scheiner, S. J. Grabowski, T. Kar, J. Phys. Chem. A,2001,105,10607;
    1) J. Joseph, E. D. Jemmis, J. Am. Chem. Soc.,2007,129,4620;
    m) S. A. C. McDowell, Phys. Chem. Chem. Phys.,2003,5,808;
    n) S. A. C. McDowell, J. Chem. Phys.,2003, 119,3711;
    o) W. Qian, S. Krimm, J. Phys. Chem. A,2002,106,6628;
    p)W. Qian, S. Krimm, J. Phys. Chem. A,2002,106,11663;
    q) W. Qian, S. Krimm, J. Phys. Chem. A,2005,109,5608;
    r) S. N. Delanoye, W. A. Herrebout, B. J. van der Veken, J. Am. Chem. Soc.,2002,124,7490;
    s) P. Hobza, Z. Havlas, Chem. Phys. Lett.,1999,303,447;
    t) A. Masunov, J. J. Dannenberg, R. H. Contreras, J. Phys. Chem. A,2001,105,4737;
    u) J. M. Hermida-Ramon, A. M. Grana, J. Comput. Chem.,2007,28,540.
    [16]a) E. Cubero, M. Orozco, P. Hobza, F. J. Luque, J. Phys. Chem. A,1999,103, 6394;
    b) P. Hobza, Z. Havlas, Chem. Rev.,2000,100,4253;
    c) P. Hobza, Phys. Chem. Chem. Phys.,2001,3,2555;
    d) W. Zierkiewicz, D. Michalska, Z. Havlas, P. Hobza, ChemPhysChem,2002,3,511;
    e) I. V. Alabugin, M. Manoharan, S. Peabody, F. Weinhold, J. Am. Chem. Soc.,2003,125,5973;
    f) S. Inagaki, T. Takeuchi, Chem. Lett.,2005,34,750.
    [17]A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev.,1988,88,899.
    [18]S. A. C. McDowell, A. D. Buckingham, J. Am. Chem. Soc.,2005,127,15515.
    [19]a) I. V. Alabugin, M. Manoharan, F. A. Weinhold, J. Phys. Chem. A,2004,108, 4720;
    b) I. V. Alabugin, M. Manoharan, J. Comput. Chem.,2007,28,373.
    [20]a) S. A. C. McDowell, J. Chem. Phys.,2003,118,4066;
    b) S. A. C. McDowell, J. Chem. Phys.,2003,118,7283;
    c) S. A. C. McDowell, Chem. Phys. Lett., 2003,368,649;
    d) S. A. C. McDowell, Chem. Phys. Lett.,2003,377,143.
    [21]a) P. Hobza, V. Spirko, Phys. Chem. Chem. Phys.,2003,5,1290;
    b) R. L. T. Parreira, S. E. Galembeck, P. Hobza, ChemPhysChem,2007,8,87;
    c) A. K. Chandra, S. Parveen, Th. Zeegers-Huyskens, J. Phys. Chem. A,2007,111, 8884;
    d) M. Solimannejad, S. Scheiner, J. Phys. Chem. A,2008,112,4120;
    e)
    A. Karpfen, E. S. Kryachko, Chem. Phys. Lett.,2006,431,428;
    f) G Zhang, A. Ji, D. Chen, J. Mol. Struct. (THEOCHEM),2008,853,89;
    g) N. U. Zhanpeisov, K. Ohta, J. Bhobley, K Hatanaka, H. Fukumura, Int. J. Quantum Chem.,2005, 105,376;
    h) A. K. Chandra, S. Parveen, S. Das, Th. Zeegers-Huyskens, J. Comput. Chem.,2008,29,1490.
    [22]Gaussian 98 (Revision A.09), M. J. Frisch, G W. Trucks, H. B. Schlegel, G E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G Baboul, B. B. Stefanov, G Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, J. A. Pople, Gaussian, Inc., Pittsburgh, PA,1998.
    [23]P. Lu, G.-Q. Liu, J.-C. Li, J. Mol. Struct. (THEOCHEM),2005,723,95.
    [24]S. Simon, M. Duran, J. J. Dannenberg, J. Chem. Phys.,1996,105,11024.
    [25]S. F. Boys, F. Bernardi,Mol. Phys.,1970,19,553.
    [26]a) R. F. W. Bader, Chem. Rev.,1991,91,893;
    b) R F. W. Bader, Atoms in Molecules:A Quantum Theory, Clarendon, Oxford,1990.
    [27]T. A. Keith, AIMALL, Version 08.11.06; aim.tkgristmill.com,2008.
    [28]a) J. P. Foster, F. Weinhold, J. Am. Chem. Soc.,1980,102,7211;
    b) A. E. Reed, F. Weinhold, J. Chem. Phys.,1983,78,4066;
    c) A. E. Reed, R. B. Weinstock, F. Weinhold, J. Chem. Phys.,1985,83,735;
    d) A. E. Reed, F. Weinhold, J. Chem. Phys.,1985,83,1736;
    e) J. E. Carpenter, F. Weinhold, J. Mol. Struct. (THEOCHEM),1988,169,41.
    [29]T. Engel, P. Reid, Physical Chemistry, Cummings, San Francisco,2005.
    [30]a) I. D. Brown, D. Altermatt, Acta Crystallogr, Sect. B,1985,41,244;
    b) I. D. Brown, Acta Crystallogr, Sect. B,1992,48,553.
    [31]a) M. Monajjemi, B. Chahkandi, K Zare, A. Amiri, Biochemistry (Moscow), 2005,70,366;
    b) J. Sponer, J. Leszczynski, P. Hobza, J. Phys. Chem.,1996, 100,1965;
    c) K. Brameld, S. Dasgupta, W. A. Goddard, Ⅲ., J. Phys. Chem. B,
    1997,101,4851;
    d) C. F. Guerra, F. M. Bickelhaupt, Angew. Chem.,1999,111, 3120; Angew. Chem. Int. Ed.,1999,38,2942;
    e) C. F. Guerra, F. M. Bickelhaupt, J. G. Snijders, E. J. Baerends, J. Am. Chem. Soc.,2000,122,4117;
    f) J. Bertran, A. Oliva, L. Rodriguez-Santiago, M. Sodupe, J. Am. Chem. Soc., 1998,120,8159;
    g) Y. Mo, J. Mol. Model.,2006,12,665;
    h) J. Sponer, P. Jurecka, P. Hobza, J. Am. Chem. Soc.,2004,126,10142.
    [32]N. C. Seeman, J. M. Rosenberg, F. L. Suddath, J. P. Kim, A. Rich, J. Mol. Biol., 1976,104,109.
    [33]S. Neidle, Principles of Nucleic Acid Structure, Academic Press, London,2007.
    [34]a) J. J. Novoa, C. Sosa, J. Phys. Chem.,1995,99,15837;
    b) P. Sule, A. Nagy, J. Phys. Chem.,1996,104,8524;
    c) O. Mo, M. Yanez, J. Elguero, J. Chem. Phys., 1997,107,3592;
    d) P. R. Rablen, J. W. Lockman, W. L. Jorgensen, J. Phys. Chem. A,1998,102,3782;
    e) A. Dkhissi, L. Adamowicz, G. Maes, J. Phys. Chem. A,2000,104,2112;
    f) A. Dkhissi, L. Adamowicz, G. Maes, Chem. Phys. Lett.,2000,324,127;
    g) Y. H. Mariam, R. N. Musin, J. Mol. Struct. (THEOCHEM),2001,549,123.
    [35]a) J. C. Rienstra-Kiracofe, G. S. Tschumper, H. F. Schaefer, Ⅲ., S. Nandi, G. B. Ellison, Chem. Rev.,2002,102,231;
    b) A. Datta, S. K. Pati, J. Phys. Chem. A, 2004,108,9527.
    [36]T. H. Dunning, Jr., J. Chem. Phys.,1989,90,1007.
    [37]K. B. Wiberg, J. Comput. Chem.,2004,25,1342.
    [38]L. Pauling, The Nature of the Chemical Bond,3rd ed., Cornell University Press, Ithaca, NY,1960.
    [39]R. Taylor, O. Kennard, J. Am. Chem. Soc.,1982,104,5063.
    [40]T. Steiner, Angew. Chem.,2002,114,50; Angew. Chem., Int. Ed.,2002,41,48.
    [41]I. Dabkowska, H. V. Gonzalez, P. Jurecka, P. Hobza, J. Phys. Chem. A,2005, 109,1131.
    [42]I. K. Yanson, A. B. Teplitsky, L. F. Sukhodub, Biopolymers,1979,18,1149.
    [43]a) J. Pittner, P. Hobza, Chem. Phys. Lett.,2004,390,496;
    b) I. Dabkowska, P. Jurecka, P. Hobza, J. Chem. Phys.,2005,122,204322;
    c) P. Jurecka, J. Sponer, J. Cerny, P. Hobza, Phys. Chem. Chem. Phys.,2006,8,1985;
    d) P. Dedikova, M. Pitonak, P. Neogrady, I. Cernusak, M. Urban, J. Phys. Chem. A,2008,112, 7115;
    e) M. Pitonak, K. E. Riley, P. Neogrady, P. Hobza, ChemPhysChem, 2008,9,1636;
    f) M. Pitonak, P. Neogrady, J. Cerny, S. Grimme, P. Hobza,
    ChemPhysChem,2009,10,282.
    [44]a) U. Koch, P. L. A. Popelier, J. Phys. Chem.,1995,99,9747;
    b) P. L. A. Popelier, J. Phys. Chem. A,1998,102,1873.
    [45]P. Lipkowski, S. J. Grabowski, T. L. Robinson, J. Leszczynski, J. Phys. Chem. A,2004,108,10865.
    [46]a) R. G. A. Bone, R F. W. Bader, J. Phys. Chem.,1996,100,10892;
    b) M. T. Carroll, R. F. W. Bader, Mol. Phys.,1988,65,695;
    c) R J. Boyd, S. C. Choi, Chem. Phys. Lett.,1986,129,62;
    d) J. Cioslowski, S. T. Mixon, Can. J. Chem., 1992,70,443.
    [47]G. V. Gibbs, D. F. Cox, K M. Rosso, J. Phys. Chem. A,2004,108,7643.
    [48]D. C. McKean, Chem. Soc. Rev.,1978,7,399.
    [49]a) P. Hobza, Int. J. Quantum Chem.,2002,90,1071;
    b) P. Hobza, Z. Havlas, Theor. Chem. Acc.,2002,108,325;
    c) J. Chocholousova, V. Spirko, P. Hobza, Phys. Chem. Chem. Phys.,2004,6,37;
    d) Y. Yang, W. J. Zhang, S. X. Pei, J. Shao, W. Huang, X. M. Gao, Sci China., Ser. B,2007,50,32;
    e) A. Y. Li, J. Phys. Chem. A,2006,110,10805;
    f) K. Tang, F. Q. Shi, Int. J. Quantum Chem., 2007,107,665;
    g) Y. Liu, W. Liu, H. Li, J. Liu, Y. Yang, J. Phys. Chem. A, 2006,110,11760;
    h) Y. Liu, W. Q. Liu, Y. Yang, J. G. Liu, Int. J. Quantum Chem.,2006,106,2122;
    i) Y. Liu, W. Q. Liu, H. Y. Li, Y. Yang, S. Cheng, Int. J. Quantum Chem.,2007,107,396;
    j) H. M. T. Nguyen, J. Peeters, Th. Zeegers-Huyskens, J. Mol. Struct. (THEOCHEM),2006,792-793,16;
    k) Y. Liu, Int. J. Quantum Chem.,2008,108,1123;
    1) Th. Zeegers-Huyskens, J. Mol. Struct. (THEOCHEM),2008,887,2;
    m) P. Kolandaivel, V. Nirmala, J. Mol. Struct. (THEOCHEM),2004,694,33;
    n) Y. Yang, W. J. Zhang, X. M. Gao, Int. J. Quantum Chem.,2006,106,1199;
    o) A. Y. Li, J. Chem. Phys.,2007,126, 154102;
    p) K. Pluhackova, P. Hobza, ChemPhysChem,2007,8,1352;
    q)A.Y. Li, Chem. Lett.,2008,37,596.
    [50]W. Wang, P. Hobza, Collect. Czech. Chem. Commun.,2008,73,862.
    [51]P. Flukiger, H. P. Liithi, S. Portmann, J. Weber, Molekel, Version 4.3, Swiss Center for Scientific Computing, http://www.cscs.ch/molekel/; Manno (Switzerland),2002. Q.
    [52]P.-P. Zhou, W.-Y. Qiu, ChemPhysChem,2009,10,1847.
    [53]Y Yang, W. Zhang, J. Mol. Struct. (THEOCHEM),2007,814,113.
    [54]H. A. Bent, Chem. Rev.,1961,61,275.
    [1]E. S. Kryachko, Hydrogen Bonding-New Insights, Springer, Dordrecht, The Netherlands,2006.
    [2]M. Fourmigue, Curr. Opin. Solid St. M.,2009,13,36.
    [3]a) P. Metrangolo, H. Neukirch, T. Pilati, G. Resnati, Acc. Chem. Res.,2005,38, 386;
    b) C. B. Aakeroy, M. Fasulo, N. Schultheiss, J. Desper, C. Moore, J. Am. Chem. Soc.,2007,129,13772;
    c) E. Corradi, S. V. Meille, M. T. Messina, P. Metrangolo, G. Resnati, Angew. Chem.,2000,112,1852; Angew. Chem. Int. Ed,2000,39,1782;
    d) P. Metrangolo, G. Resnati, Chem. Eur. J.,2001,7, 2511;
    e) D. B. Fox, R. Liantonio, P. Metrangolo, T. Pilati, G. Resnati, J. Fluorine Chem.,2004,125,271.
    [4]a) P. Metrangolo, G. Resnati, T. Pilati, R. Liantonio, F. Meyer, J. Polym. Sci. A, 2007,45,1;
    b) D. Cincic, T. Friscic, W. Jones, Chem. Eur.J.,2008,14,747;
    c) D. Cincic, T. Friscic, W. Jones, J. Am. Chem. Soc.,2008,130,7524;
    d) P. Metrangolo, F. Meyer, T. Pilati, G. Resnati, G. Terraneo, Angew. Chem.,2008, 120,6206; Angew. Chem. Int. Ed.,2008,47,6114.
    [5]a) S. Derossi, L. Brammer, C. A. Hunter, M. D. Ward, Inorg. Chem.,2009,48, 1666;
    b) T. Shirman, T. Arad, M. E. van der Boom, Angew. Chem.,2010,122, 938; Angew. Chem. Int. Ed.,2010,49,926.
    [6]a) P. Auffinger, F. A. Hays, E. Westhof, P. S. Ho, Proc. Natl. Acad. Sci. USA, 2004,101,16789;
    b) A. R. Voth, F. A. Hays, P. S. Ho, Proc. Natl. Acad. Sci. USA,2007,104,6188.
    [7]A. C. Legon, Angew. Chem.,1999,111,2850; Angew. Chem. Int. Ed.,1999,38, 2686.
    [8]a) P. Politzer, P. Lane, M. C. Concha, Y. Ma, J. S. Murray, J. Mol. Model.,2007, 13,305;
    b) T. Clark, M. Hennemann, J. S. Murray, P. Politzer, J. Mol. Model., 2007,13,291.
    [9]P. Metrangolo, G. Resnati, Science,2008,321,918.
    [10]K. Bouchmella, B. Boury, S. G. Dutremez, A. van der Lee, Chem. Eur. J.,2007, 13,6130.
    [11]I. Alkorta, F. Blanco, M. Solimannejad, J. Elguero, J. Phys. Chem. A,2008, 112,10856.
    [12]a) C. B. Aakeroy, J. Desper, B. A. Helfrich, P. Metrangolo, T. Pilati, G. Resnati, A. Stevenazzi, Chem. Commun.,2007,4236;
    b) Q. Li, Q. Lin, W. Li, J. Cheng, B. Gong, J. Sun, ChemPhysChem,2008,9,2265.
    [13]A. R. Voth, P. Khuu, K. Oishi, P. S. Ho, Nat. Chem.,2009,1,74.
    [14]M. J. Frisch, G W Trucks, H. B. Schlegel, G E. Scuseria, M. A. Robb, J. R Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G Scalmani, N. Rega, G A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K Toyota, R Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K Morokuma, G A. Voth, P. Salvador, J. J. Dannenberg, V. G Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K Malick, A. D. Rabuck, K Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, Revision D.01, Gaussian, Inc., Wallingford CT,2004.
    [15]T. H. Dunning, J. Chem. Phys.,1989,90,1007.
    [16]S. F. Boys, F. Bernardi,Mol. Phys.,1970,19,553.
    [17]R. F. W. Bader, Atoms in Molecules:A Quantum Theory, Oxford University Press, Oxford,1990.
    [18]T. A. Keith, AIMALL Version 09.11.29, aim.tkgristmill.com,2009.
    [19]a) A. E. Reed, F. Weinhold, J. Chem. Phys.,1983,78,4066;
    b) A. E. Reed, F. Weinhold, J. Chem. Phys.,1985,83,1736;
    c) A. E. Reed, R. B. Weinstock, F. Weinhold, J. Chem. Phys.,1985,83,735.
    [20]a) U. Koch, P. L. A. Popelier, J. Phys. Chem.,1995,99,9747;
    b) P. L. A. Popelier, J. Phys. Chem. A,1998,102,1873;
    c) P. Lipkowski, S. J. Grabowski, T. L. Robinson, J. Leszczynski, J. Phys. Chem. A,2004,108,10865.
    [21]W. D. Arnold, E. Oldfied, J. Am. Chem. Soc.,2000,122,12835.
    [22]a) A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev.,1988,88,899;
    b)F. Weinhold, C. Landis, Valency and bonding, Cambridge University Press, Cambridge, UK,2005.
    [23]W. Z. Wang, N.-B. Wong, W. X. Zheng, A. M. Tian, J. Phys. Chem. A,2004, 108,1799;
    b) Y.-X. Lu, J.-W. Zou, Y.-H. Wang,Y-J. Jiang, Q.-S. Yu, J. Phys. Chem. A,2007,111,10781;
    c) M. I. Bernal-Uruchurtu, R. H. Lamoneda, K. C. Janda, J. Phys. Chem. A,2009,113,5496.
    [24]a) P.-P. Zhou, W.-Y. Qiu, ChemPhysChem,2009,10,1847;
    b) P.-P. Zhou, W.-Y. Qiu, J. Phys. Chem. A,2009,113,10306.
    [25]I. V. Alabugin, M. Manoharan, S. Peabody, F. Weinhold, J. Am. Chem. Soc., 2003,125,5973.
    [26]a) E. Espinosa, C. Lecomte, N. E. Ghermani, J. Devemy, M. M. Rohmer, M. Bernard, E. Molins, J. Am. Chem. Soc.,1996,118,2501;
    b) B. Galabov, P. Bobadova-Parvanova, J. Phys. Chem. A,1999,103,6793;
    c) V. Dimitrova, S. Ilieva, B. Galabov, J. Phys. Chem. A,2002,106,11801;
    d) I. Mata, E. Molins, I. Alkorta, E. Espinosa, J. Phys. Chem. A,2007,111,6425;
    e) P. Politzer, J. S. Murray, M. C. Concha,J. Mol. Model.,2007,13,643;
    f) P. W. Kenny, J. Chem. Inf. Model.,2009,49,1234;
    g) D. J. R. Duarte, M. M. de las Vallejos, N. M. Peruchena, J. Mol. Model,2010,16,737.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700