用户名: 密码: 验证码:
几类炸药分子间相互作用的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子间的弱相互作用决定了含能材料中分子的堆积与排列,也与其安全和力学性能密切相关。在设计、合成和研制新型含能材料的过程中,首先必须对包括分子间相互作用研究在内的基础研究予以高度重视,从而能事先预测炸药的晶体结构、能量、力学等重要性质,以便更有效、更经济地寻找理想的含能材料。
     本文运用密度泛函理论(DFT)、二级Mφller-Plesset微扰理论(MP2)、对称性匹配微扰理论(SAPT)与渐近修正的密度泛函理论相结合的方法(SAPT(DFT)),研究了(Z)-2-硝基乙烯胺、FOX-7、α-NTO、N-甲硝胺、二甲硝胺(DMNA)、四硝基四氮杂双环辛烷(双环-HMX)和二硝基氧化偶氮呋咱(DNOAF)二聚或多聚含能体系分子间作用的本质,求得静电、交换排斥、色散和诱导力等分子间作用力。基于自然键轨道(NBO)及分子中原子(AIM)理论方法,分析了相关体系中分子间氢键作用的本质与强度、分子间电荷的转移,探讨了分子间作用对红外振动光谱的影响。在振动分析与统计热力学方法的基础上,给出了在标准状态(298.15K,latm)下,这些含能化合物单体及二聚体的热力学性质。
     基于对上述含能体系分子间作用本质的理解和认识,从理论上获取了与实验结果相一致的α-环三甲撑三硝胺(α-RDX)、双环-HMX的晶胞结构。预测了DNOAF分子的晶体堆积方式,并在此基础上计算了其晶体的主要性能和爆轰性能。
The intermolecular interaction is crucial to molecular packing and arrangement in energetic materials and is closely related to the safety and mechanical properties of energetic materials. In the process of designing, synthesizing and developing new energetic materials, firstly, researchers should attach importance to the basic investigations including intermolecular interaction. Accordingly, the important properties of explosives including crystal structure, energetic property, mechanical property and sensitivity can be predicted to seeking for ideal high energetic material in an economical and efficient way.
     This paper studied the nature of intermolecular interaction by employing density functional theory (DFT), the second order Moller-Plesset perturbation theory (MP2), Symmetry-Adapted Perturbation Theory combining asymptotically corrected DFT method (SAPT(DFT)). The nature of (Z)-2-nitroethenamine, 1 ,1-Diamino-2,2-Dinitroethylene (FOX-7), 3-nitro-1,2,4-triazole-5-one(α-NTO), N-methylnitroamine, dimethylnitroamine, 2,4,6,8-tetra-nitro-2,4,6,8-tetraazabicycl o-[3.3.0]octane (bicyclo-HMX) and dinitroazoxyfurazan (DNOAF) dimers and clusters were investigated. And the information of intermolecular forces, such as electrostatic, exchange-repulsion, dispersion and induction were gained. Based on the natural bond orbital (NBO) and atoms in molecules (AM) methods, the nature and strength of intermolecular hydrogen bonds interaction and the charge transfer in the correlative systems were analyzed. The thermodynamics properties under standard condition of these energetic monomers and dimers are provided base for the vibration analysis and statistic thermodynamic method.
     On the basis of the understanding to the nature of intermolecular interaction, the crystal structures of hexahydro-1, 3,5-trinitro-2, 4, 6-triazine (α-RDX) and bicyclo-HMX were obtained, which are consistent with the experimental results. The DNOAF crystal structure was predicted and the primary performances and detonation performances were calculated.
引文
1徐筱杰.超分子建筑——从分子到材料[M].北京:科学技术文献出版社,2000.
    2孙业斌,惠君明,曹欣茂.军用混合炸药[M].北京:兵器工业出版社,1995.
    3孙国祥.高分子混合炸药[M].北京:国防工业出版社,1984.
    4Cady H H,Larson A C.The crystal structure of 1,3,5-triamino-2,4,5-trinitrobenzene[J].Acta Cryst.,1965:28:485-496.
    5宋华杰.TATB/氟聚物复合材料的界面作用和力学性能研究[D].硕士学位论文.中国工程物理研究院,2000.
    6肖鹤鸣,居学海.高能体系中的分子间相互作用[M].北京:科学出版社,2003.
    7Jeziorski B,Szalewicz K.Intermolecular interactions by perturbation theory.in Paulvon Rague Schleyer(Eds.),Encyclopedia of Computational Chemistry[M].New York:John Wiley & Sons,1998.
    8Jeziorski B,Moszynski R,Szalewicz K.Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes[J].Chem.Rev.,1994,94:1887-1930.
    9Szalewicz K,Jeziorski B.Symmetry-Adapted Double-Perturbation Analysis of Intramolecular Correlation Effects in Weak Intermolecular Interactions:The He-He Interaction[J].Mo1.Phys.,1979:38:191-208.
    10Jeziorski B,Szalewicz K,Chalasinski G.Symmetry Forcing and Convergence Properties of Perturbation Expansions for Molecular Interaction Energies[J].Int.J.Quantum.Chem.,1978:14;271-287.
    11Moszynski R,Jeziorski B,Rybak S,et al.Many-Body Theory,of Exchange Effects in Intermolecular Interactions.Density Matrix Approach and Applications to He-F-,He-HF,H2-HF and Ar-H2 Dimers[J].J.Chem.Phys.1994:100;5080-5092.
    12Moszynski R,Jeziorski B,Szalewicz K.Many-Body Theory of Exchange Effects in Intermolecular Interactions:Second-Quantization Approach and Comparison with Full CI Results[J].J.Chem.Phys.,1994:100:1312-1325.
    13Rybak S,Jeziorski B,Szalewicz K.Many-body symmetry-adapted perturbation theory of intermolecular interactions:H_2O and HF dimers[J].J.Chem.Phys.,1991:95;6576-6601.
    14Moszynski R,Rybak S,Cybulski S M,et al.Correlation correction to the Hartree-Fock electrostatic energy including orbital relaxation[J].Chem.Phys.Lett.,1990:166;609-614.
    15Moszynski R,Jeziorski B,Ratkiewicz A,et al.Many-body perturbation theory of electrostatic interactions between molecules:Comparison with full configuration interaction for four-electron dimmers[J].J.Chem.Phys.,.1993:99;8856-8869.
    16Song H J,Xiao H M,Dong H S,et a1.Ab initio calculation of intermolecular dispersion energy and induction energy of nitramide dimer[J].Chin.J.of Chem.,2004∶22;1377-1381.
    17宋华杰,肖鹤鸣,董海山.硝酰胺二聚体静电能和交换能的理论计算[J].化学学报,2005∶63;169-174.
    18Williams H L,Chabalowski C F.Using Kohn-Sham orbitals in symmetry-adapted perturbation theory to investigate intermolecular interactions[J].J.Phys.Chem.A.,2001∶105;646-659.
    19Misquitta A.J.and Szalewicz K.,Intermolceular forces from asymptotically corrected density functional description of monomers[J].Chem.Phys.Lett.,2002∶357;301-306.
    20Hebelmann A.and Jansen G.First-order intermolecular interaction energies from Kohn-Sham orbitals[J].Chem.Phys.Lett.,2002∶357;464-470.
    21Chemical Revviews.1988∶88(6);815-988.
    22Chemical Revviews.1994∶94(7);1723-2160.
    23Chemical Revviews.2000∶100(11);3861-4264.
    24Kaplan I G Theory of molecular interactions[M].Amsterdam∶Elsevier,1980.
    25P Piecuch.Molecules in physics,chemistry and biology[J].Kluwer Academic Publishers,Dordrecht,1988∶2:417.
    26Engkvist O,Astrand P O,Karlstrom G.Accurate intermolecular potentials obtained from molecular wave functions:bridging the gap between quantum chemistry and molecular simulations[J].Chem.Rev.,2000∶100;4087-4108.
    27Pauling L.The Nature of me Chemical Bond and the Structure of Molecules and Crystals[M].Cornell University Press,1960.
    28Jeffrey G A.An introduction to hydrogen bonding[J].New York:Oxford University Ptess.1997.
    29Desiraju G R,Steiner T.The Weak Hydrogen Bond[J].Oxford:Oxford University Press,1999.
    30Hobza P,Spirko V,Seizle H L,et a1.J.Phys.Chem.A.1998∶102;2501.
    31Hobza P,Sypirko V,Havlas Z,Buchhold K et a1.Anti-hydrogen bond between chloroform and fluorobenzene[J].Chem.Phys.Lett.1999∶299;180.
    32Gu Y,Scheiner S.Fundamental properties of the CH…O interaction:is it a true hydrogen bond[J]?J.Am.Chem.Soc.1999:121:9411.
    33Reed A E,Curtiss L A,Weinhold F Intermolecular interactions from a natural bond orbital,Donor-acceptor viewpoint[J].Chem.Rev.1988:88;899.
    34Hobza P,Havlas z.Blue-shifting hydrogen bonds[J].Chem.Rev.2000:100;4253.
    35van der Veken B J,Herrebout W A,Szostak R,et al.The nature of improper,blue-shiting hydrogen bonding verified experimentally[J].J.Am.Chem.Soc.2001∶123;12290.
    36Scheiner S,Grabowski S J,Kar T.J.Phys.Chem.A,2001,105,10607.
    37J.Almlof,P R Taylor Adv.Quantum Chem.,1991,22,301.
    38Scheiner S,Kar T.Red versus Blue-Shifing Hydrogen Bonds:Are There Fundamental Distinctions[J]? J.Phys.Chem.A.2002:106;1784.
    39Grzegorz Chalasin'ski,Malgorzata M.State of the Art and Challenges of the ab Initio Theory of Intermolecular Interactions[J].Chem.Rev 2000:100;4227-4252.
    40Boys S F,Bernardi F.The calculation of small molecular interactions by the differences of separate total energies,some procedures with reduced errors[J].Mol Phys.,1970:19;553-559.
    41James B Foresman,Aeleen Frisch.Exploring Chemistry with Electronic Method(Second Edition)[M].Gaussian,Inc,USA.1996.
    42宋华杰,肖鹤鸣,董海山.渐近修正的SAPT(DFT)新方法——高能材料中分子间作用与协同效应的本质[D].博士学位论文.南京理工大学,2006.
    43李金山.高能材料中分子间相互作用的量子化学研究[D].博士学位论文.南京理工大学,2000.
    44Ahlrichs R,Penco R,Scoles G.Intermolecular forces in simple systems[J].Chem Phys.,1977:19;119-130.
    45Kristyan S,Pulay P.Can(semi)local density functional cheory account for the London dispersion forces[J].Chem.Phys.Lett.1994:229;175-180.
    46Jeffrey R,Reimer S,Cai Z L.The approprialeness of density-functional cheory for the calculation of molecular electronics properties[J].Ann.N.Y.Acad.Sci.,2003:100;235-251.
    47宋华杰,肖鹤鸣,董海山.从渐近修正Kohn-Sham轨道计算电子相关化的分子间作用项.中国科学B辑,2004:34(5);419-431.
    48Johnson E R,Wolkow R A,Dilabio G A.Application of 25 density functionals to dispersion-bound homomolecular dimers[J].Chem.Phys.Lett.,2004:394;334-338.
    49Sponer J,Leszezynski J,Hobza P.Hydrogen bonding and stacking of DNA bases:A review of quantum-chemical ab initio studies[J].Biomol Struct Dyn.,1996:14;117-135.
    50Vondrasek J,Bendova L,klusak V,et al.Unexpectedly strong energy stabilization inside che hydrophobic core of small protein rubredoxin mediated by aromatic residues:Correlated ab initio quantum chemical calculations[J].J Am Chem Soc.,2005:127;2615-2619.
    51Lee C,Yang w.Parr R G.Physical Review B.,1988:37;785.
    52Becke,A.D.J.Chem.Phys.,1992,97,9173.
    53Reed A E,Weinstock R B,Weinhold F Natural population analysis[J].J.Chem.Phy.,1985:83(2);735.
    54Reed A E,Weinhold F,Curtiss L A,et al.Natural bond orbital analysis of molecular interactions:Theoretical studies of binary complexes of HF,H_2O,NH_3,N_2,O_2,F_2,CO,and CO_2 with HF H_2O,and NH_3[J].J.Chem.Phys.,1986:84;5687.
    55Reed A E,Curtiss L A,Weinhold F.Intermolecular interactions from a natural bond orbital donor-acceptor view point[J].Chem.Rev.,1988:88;899.
    56M Kranz,S E Denmark.An Ab Initio Study of the P-C Bond Rotation in Phosphorus-Stabilized Carbanions:The Phosphoryl versus the Thiophosphoryl Group[J].J.Org.Chem.,1995:60;5867-5877.
    57Bader R F.Atoms in Molecules:A Quantum Theory[M].Oxford:Clarendon Press.1990.
    58Rozas I,Alkorta I,Elguero J.Bifurcated hydrogen bonds:Three-centered interactions[J].J.Phys.Chem.,1998:102;9925.
    59Cubero E,Orazco W,Luque F J.J.Phys.Chem.,1999:103;315.
    60Popelier P L A.Characterization of a dihydrogen bond on the basis of che electron density[J].J.Phys.Chem.,A,1998:102;1873-1878.
    61Mallinson P R,Wozniak K,Smith G T,et al.A charge density analysis of cationic and anionic hydrogen bonds in a“Proton Sponge”complex[J].J.Am.Chem.Soc.,1997:119;11502-11509.
    62Boyd,R.J.;Choi.S.Ch.Chem.Phys.Lett.,1986:129;62.
    63King,B.F;Weinhold,F Structure and spectroscopy of(HCN)n clusters:Cooperative and electronic delocalization efiects in C-H…N hydrogen bonding[J].J.Chem.Phys.,1995:103;333.
    64Grabowski S J.J.Phys.Chem.A.,2000:104;5551.
    65Grabowski,S.A new measure of hydrogen bonding strength——ab initio and atoms in molecules studies[J].J.Chem.Phys.Lett.,2001:338;361.
    66Weinhold F.NBO 5.0 program manual.Madison Wisconsin:Theoretical Chemistry Institute.University of Wisconsin,2001
    67Robin N E,Richard G.(Z)-2-Nitroethenamine[J].Acta Cryst.E.,2001:57;956.
    68Frisch M J,Trucks G W,Schlegel H B,et al.Gaussian 98,Revision A.Gaussian,Inc.,Pittsburgh PA.1998
    69Biegler-Konig F,Schonbohm J,Bayles D.AIM2000--A program to analyze and visualize atoms in molecules.J.Comp.Chem.,2001:22;545-559.
    70Ulf Bemm,Henric Ostmark.1,1-Diamino-2,2-Dinitroethylene:a Novel Energetic Material with Infinite Layers in Two Dimensions[J].Acta Cryst.C.,1998:54;1997-1999.
    71姬广富,肖鹤鸣,董海山等.二氨基二硝基乙烯结构和性质的理论研究[J].化学学报.2001:59;39-47.
    72X H Ju,H M Xiao,Q Y Xia.A density,functional theory investigation of 1,1-diamino-2,2-dinitroethyl-enedimers and crystal[J].J.Chem.Phys.,2003:119;10247.
    73Lee K Y,Chapman L B,Coburn M D.A 1ess sensitive explosive,3-nitro-1,2,4-triazol-5-one[J].Journal of Energetic materials.,1987:5;27.
    74Agawal J P,Walley S M,Field J E.A high-speed photographic study of the impact initiation of hexanitro-hexaazaisowurtzitane and nitrotrazolone[J].Combustion and Flame,1998:112;62.
    75H M Xiao,X H Ju,L N Xu,et al.A density-functional theory investigation of 3-nitro-1,2,4-triazole-5-one dimers and crystal[J].J.Chem.Phys.,2004:121;12523.
    76M D Coburn.Picrylamino-substited heterocycles Ⅱ:furazan[J].J.Heterocyclic chem.,1968:5;83.
    77B Sheremetev,J.Heterocyclic Chem.,1995:32;371.
    78Gunasekaran A,J H Boyer.Dense energetic compounds of C,H,N,O atoms Ⅲ.5-[4-Nitro-(1,2,5)oxadiazolyl]-5 H-[1,2,3]triazilo[4,5-C][1,2,5]oxadiazole[J].Heteroatom Chem.,1993:4;521.
    79T S Novikova,T M Melnikova,V O Kharitonova,et al.An effective method for the oxidation of aminofurazans to nitrofurazans[J].Mendeleev Commun.1994:4;138-140
    80董海山,黄奕刚,李金山等.高能钝感炸药的分子设计和合成研究总结报告(中国工程物理研究院重大基金 No.2002Z0501),2006
    81张朝阳,舒远杰等,二硝基多呋咱类气态标准生成热的计算[J].含能材料.2005:13(3);162-165.
    82Tamara I.Godovikova,Svetlana P.Golova,Yurii A.Strelenko,et al.Synthesis and Properties of Unsubstituted Furoxan[J].Mendeleev Commun.,1994:7
    83欧育湘.现代炸药合成化学[M].北京:兵器工业出版社,1998.
    84Zelenin A K,Trudell M L.Synthesis and structure of dinitroazofurazan[J].Heterocyclic Chem.,1998:35:151-155.
    85Coon,C.L.Proceedings of the International Symposium on Pyrotechnics and Explosives.Beijing,October.1987:10.
    86施明达.高能量密度材料合成的研究进展[J].火炸药学报,1992:1;19-25.
    87Afanas T,PiVina T S,Sukhachev D V.Com-parative characteristics of some experimental and computational methods of estimating impact sensitivity parameters of explosives[J].Propellants,Explos.,Pyrotech.,1993:18(6);309.
    88Pagoria P F,Mitchell A R,Schmidt R D,et al.New nitration and nitrolysis procedures in the synthesis of enerhetic materials[J].ACS Symp.Ser.623(Nitration).,1996:623;151-164.
    89Eck G,Piteau M.Preparation of 2,4,6,8-tetranitro-Z,4,6,8-tetraazabicyclo[3.3.0]octane[J].GB 2303849,1997[Chem.Abstr.1997,126,330615].
    90Skare,D.Kem.Ind.1999:48(3),97
    91Sinditskii V P,Egorshev V Y,Berezin M V.International Annual Conference of ICT,32nd(Energetic Materials).2001:59;1.
    92Gilardi R,Flippen-Anderson J L,Evans R.Acta Crystallogr E.,2002:5(9);972.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700