用户名: 密码: 验证码:
中国煤炭铁路运输网络可达性演变特征与优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国煤炭资源较为丰富,能源消费长期以煤炭为主。但我国煤炭生产格局和消费格局偏离程度越来越严重,产生了高强度、大范围的煤炭资源流。铁路是我国煤炭运输的最主要方式,日益增长的煤炭资源流动导致我国铁路运煤运输距离越来越长,运输量越来越大。我国煤炭铁路运输网络经过130年的发展,无论是路网密度还是运输设备,以及运营管理水平都有巨大的突破,形成了东北、华北和西北东部、华东、中南和华南、西南、新疆六个区域性的煤炭铁路运输网。但是我国铁路线路里程短、路网分布不均,区域间煤炭铁路运输网络通道偏少,部分铁路技术等级低、影响行车效率,客货列车混行,货运品种多,运输压力大。在此情形下,本文选取2004年全国第五次铁路提速,2007年全国铁路第六次提速和2011年我国高速铁路网络初步形成三个时间节点,分别研究我国大型国有重点煤矿可达性和我国煤炭铁路运输网络可达性演变,探讨演变机制,提出优化建议。
     本文首先使用栅格法研究我国78个大型国有重点煤矿可达性演变,结果表明:我国大型国有重点煤矿可达性分布与煤矿位置和铁路路网有关,交通指向性较强,并且差异较为明显。可达性较好的地区多为大型国有重点煤矿附近。2004年到2011年,浙江、湖北、福建、广东、广西、东北西部的白城、大安一带时间距离缩短,可达性变好。而新疆西部和西藏的可达性没有得到优化。但是栅格法只是研究任意点通过交通网络到最近目标点的时间距离,而在现实中普遍存在“舍近求远”运输煤炭的情况;其他基于“人”的位移的可达性研究很少考虑中转,但是煤炭运输需要考虑中转,这是栅格法研究煤炭运输可达性的不足。因此,本文又采取距离法,使用最短空间距离、加权平均运输时间和连接性研究我国大型国有重点煤矿可达性演变。三个特征年份中,最短空间距离都是以河南省煤矿为最佳,总体呈环状外推,可达性水平逐渐降低。西南煤矿空间可达性差异先缩小然后无明显变化,东北煤矿空间可达性无明显变化。这表明煤炭运输路网格局和煤矿区位是最短空间距离指标的主导影响因素。加权平均运输时间距离等值线2004年为闭合圈层,2007年变为“C”型,向华东地区开口,2011年又变为闭合圈层。西南地区、鄂尔多斯地区、甘肃东部以及内蒙古东北的煤矿加权平均运输时间相对较长,可达性较差,但内蒙古东部和鄂尔多斯煤矿加权平均运输时间差异逐步变小,时间可达性均衡化。上述时间可达性的变化,最根本原因是中国铁路建设与运营的方针由既有线提速向客货分线转变。由于机车交路的优化,连接性总体上等值线梯度变小,说明我国大型国有煤矿连接性差异在缩小。
     以我国铁路网络中涉及煤炭运输的编组站及煤炭下水港口为节点,运用最短空间距离、最短时间距离、连接性和可达性系数,对我国煤炭铁路运输网络的可达性演变特征进行分析。结果表明:(1)2004-2007年通过单纯改造既有铁路,提高列车最高运行速度,不仅没有减少煤炭运输的路程,反而因为东部地区大量加开高等级客车等原因,降低了华北、华东北部、华南地区的时间可达性。(2)空间距离可达性呈现以郑州北为核心的中心—外围格局;时间距离可达性的圈层核心发生位移和形变,2004为以阜阳北为核心圆形,2007年拉伸为狭长形,2011年扩张成椭圆状;连接性的核心圈层由2004年的南北向伸展,演变为2007年呈“L”型延伸,2011年呈“十字”状。(3)我国煤炭铁路运输网络日趋均衡化。其中连接性最为均衡,其次是时间距离和空间距离。(4)煤炭下水港中,区位是决定可达性优劣的关键因素。
     影响煤炭铁路运输网络可达性的因素,既有来自铁路内部的因素,也有来自铁路外部的因素。内因包括煤运铁路的等级与技术标准,铁路客运需求与煤炭运输的矛盾,铁路自身管理体制等,外因包括煤矿生产量消费量及其空间格局的变化,国家对铁路建设运营政策的调整等。根据上述影响因素,探讨煤炭铁路运输网络可达性演变的机制,包括原动力——煤炭生产格局的变化;推力——即铁路投资加大使路网结构不断完善;支撑力——科技使铁路运输设备的性能不断提升,以及铁路运输管理体制不断创新;压力——客运需求,以及其他一些人为因素等四种。对于客货分线运输,提出郑西、京沪、石太、胶济等四种模式,其中胶济和石太模式对提高煤矿可达性最有利,京沪模式兼顾长途客运与煤炭运输,郑西模式对提高煤矿可达性有限。
     根据《中国铁路中长期规划》对2020年我国大型国有重点煤矿和煤炭铁路运输网络可达性分别进行预测。与2011年相比,2020年我国大多数大型国有重点煤矿可达性得到优化,西北东部的煤矿可达性提升最为明显,是因为新建跨区域煤炭运输专线,完善区域内部煤炭运输铁路网,其次是新疆地区。总体看,2020年我国煤炭铁路运输网络可达性得到优化,西北地区和福建地区可达性提升较为明显,西南和东北地区的煤运铁路网络可达性提升有限。而随着机车长交路的推广,各区域的连接性差异缩小最为明显。根据前述研究的结论和预测结果,对我国煤炭铁路运输网络可达性提出以下建议:首先,继续完善优化煤炭铁路运输网络,近期应重点建设西北东部和新疆地区的煤炭铁路运输网络以适应这两个地区日益增长的煤炭运输需要。其次,坚持“客货分线”,完善我国客运专线网络,优化客运组织,为煤炭列车腾出更多运行空间。再次,继续推广煤炭列车直通运输和机车长交路,开展国铁和企业煤炭铁路联运。最后充分利用煤炭列车的回空车,开展“钟摆式”运输。
China is abundant in coal resources, and coal has been the main energy consumption for a long time. However, the coal production pattern deviates from the consumption pattern severely, which gives rise to high-intensity and large-scale flow of coal resources. Railway is the primary means of coal transportation, but the increasingly growing coal resources flow results in longer and longer coal transportation distance, as well as larger and larger traffic volume. China's coal railway transportation network has been through thirteen decades of development, and as a result, tremendous breakthrough has taken place in the density of road network, transportation equipment, as well as the operations management, forming six regional coal railway transportation network, including northeast, north China and east part of northwest, east China, middle of south and southern part of China, southwest, and Sinkiang. However, China's rail tracks is short in mileage and uneven in road network distribution, with few railroad transportation networks between the regions, low railway technology, mixed transportation of passenger and freight train, variety of freight categories, and huge transportation pressure.Under such a circumstance, three time nodes are selected in this paper, namely the fifth national railway speed increase in2004, the sixth railway speed increase in2007and the preliminarily formation of China's high speed railway in2011, for studying on the reachability of large-scale key mines in China and the reachability evolution of coal railway transportation network in China respectively, discussing the development mechanism and proposing optimization suggestions.
     In this paper, the reachability development of78national key coal mines in China is studied with grid method, and according to the results, the reachability distribution of key large-scale mines in China is related to the position of coal mines and railway network, with strong traffic directivity and obvious differences. Regions with good reachability are near the key large-scale national coal mines. From2004to2011, the time distance of Zhejiang, Hubei, Fujian, Guangdong, Guangxi, Baicheng in the west of northeast China, Da'an was shortened, with good reachability. However, reachability of the west part in Sinkiang and Tibet is not optimized. Grid method only studies the time distance of any point to the nearest target point through the transportation network, but in practice, coal transportation conditions of'seeking far and neglecting what lies close at hand' spreads widely. Studies on the reachability based on 'human' displacement give few considerations to the transfer, but it shall be considered in the coal transportation, and this is the deficiency of grid method in studying the reachability of coal transportation. Consequently, in this paper, distance method is adopted, and the reachability development of large-scale key coal mines is studied with the shortest spatial distance, weighted transit time and connectivity. Among the three characteristic years, coal mines in Henan always have a best shortest spatial distance, which is in circular distribution, with gradually decreasing reachability level. The reachability differences of southwest coal mine is shortened at first, and there are no obvious changes, while there are no obvious changes in the spatial reachability of northeast coal mine, suggesting that the coal transportation network pattern and coal mine location is the leading influencing factors of shortest spatial distance. The weighted average transportation time distance contour line of year2004is closed circle, while2007became'C type, opening to the East China, and2011became closed circle again. The weighted average transport time in southwest region, east Gansu and northeast Inner Mongolia is relatively long, with poor availability, but the difference of weighted transport time between north Inner Mongolia and Erdos mines gradually decrease, and the time reachability is balanced. The most primary cause for the changes in time reachability lies in the transition of China's railway construction and operation policies from existing line to passenger and freight separated lines. Owing to the optimization of locomotive routing, the connectivity contour line gradient decreases, suggesting that the connectivity difference of large-scale state-owned coal mine is declining.
     The reachability evolution characteristics of coal railway transportation network is analyzed with the shortest spatial distance, minimum time distance, connectivity and reachability coefficient by taking the marshalling station and coal water port involving the coal transportation in railway network as the nodes. According to the results:(1). From2004to2007, by transforming the existing railways simply and improving the highest running speed of the train, it not only failed to reduce the journey of coal transportation, but also lowered the time reachability in north China, north part of east China and south China due to the addition of high-class passenger trains.(2). The spatial distance reachability occurs in a center-periphery pattern with north of Zhengzhou as the center; the core of the layer of time-distance reachability experiences displacement and deformation, for instance, it was circular with north of Fuyang as the core in2004, while it was stretched in long and narrow shape in2007, and it was expanded in oval shape in2011:the core layer of the connectivity expands in north and south direction in2004, while it became the'L-shape'extension in2007, and 'cross-shape' in2011;(3). China's coal railway transportation network grows balanced day by day, and its connectivity is the most balanced, and then it is the time distance and spatial distance.(4). In the coal water port, location is a crucial factor determining the reachability.
     Factors influencing the coal railway network reachability consist of the internal factors of railway and external factors of railway. The internal causes contain the level and technical standards of coal railway, contradictions between the passenger rail transport and the coal transportation, management system of railway, etc. while the external causes contain the changes in production capacity and coal consumption, adjustments in the policies of railway construction and operation policies, etc. According to the above influencing factors, the mechanism of reachability evolution of coal railway transportation network is discussed, including motive power-changes in the coal production pattern; pushing force-namely constant perfection of railway network by increasing the investment; support force-constant improvement of the performance of railway transportation device with science and technology, as well as the constant innovation of railway transportation management system; pressure passenger transport demands, as well as some human factors, etc. as for the transportation of passenger and freight separated line, four modes are proposed, namely Zhengzhou-Xi'an, Beijing-Shanghai, Shijiazhuang-Taiyuan, as well as Jinan-Qingdao railway. In which, Shijiazhuang-Taiyuan and Jinan-Qingdao railway are the most favorable for improving the reachability of coal mine, Beijing-Shanghai railway considers both the long-distance passenger and coal transportation, while Zhengzhou-Xi'an railway is limited in improving the reachability of coal.
     According to the Medium and Long-term Planning for Railways in China, China's large-scale national coal mines and reachability of coal railway transport network in2020are predicted respectively. Compared to2011, the reachability of most large-scale coal mines will be optimized in2020, and the improvement of coal mine reachability in the east of the northwest is the most evident, owing to the newly-built cross-regional coal transport special railway line, as well as the perfection of internal coal transportation railway network, and then it shall be Xinjiang region. Generally, the reachability of coal railway transportation network in2020will be optimized, and the improvement of reachability in northwest region and Fujian area is evident, while that in southwest and northeast region is relatively limited. With the promotion of long locomotive routing, the connectivity difference of each region is narrowed evidently. According to the conclusion of the previous studies and the prediction results, the following suggestions are proposed for the reachability of China's coal railway transport network:firstly, the coal railway transportation network shall be perfected and optimized constantly, and recently, attention shall be paid to the construction of coal transportation network in the east part of northwest region and Xinjiang region for adapting to the increasingly growing demands for coal transportation. Secondly, it shall stick to the 'passenger-freight separated line', perfect the passenger special line network, optimize the passenger transport organization, and make room for more operation space for the coal trains. Furthermore, it shall continue to promote the coal train transportation and locomotive routing, and launch the joint operation of national railway and enterprise coal railway. Finally, it shall make full use of the returning empty coal train, and launch 'pendulum model'transportation.
引文
[1]蔡运龙.自然资源学原理(第二版)[M].北京:科学出版社,2007.
    [2]谷树忠.资源势-资源空间利用的测度[J].国土与自然资源研究,1993(1):1-4,9.
    [3]董瑜,谢高地.资源场理论及其在资源流动中的应用[J].地理科学,2001,21(5):407-411.
    [4]李群,赵嵩正.资源流动机制与区域经济发展探析[J].财贸经济,2005(6):61-65.
    [5]董锁成.经济地域运动论[M].北京:科学出版社,1994.
    [6]张耀辉.区域经济理论与地区经济发展[M].北京:中国计划出版社,1999
    [7]郝丽莎.能源流的空间结构与形成机制研究[D].南京:南京师范大学,2006.
    [8]Neil Leiper. The Frame work of Tourism:Towards a Definition of Tourism, Tourist, and the Tourist Industry[J]. Annals of Tourism Research,1979,6(1):390-407.
    [9]吴晋峰,段骥,旅游系统与旅游规划[J].人文地理,2001,16(5):6265.
    [10]沈镭,刘晓洁.资源流研究的理论与方法探析[J].资源科学,2006,28(3):9-16.
    [11]Dianne Dredge. Destination Place Planning and Design[J]. Annals of Tourism Research,1999,26 (4):772-791.
    [12]Gunn Clare A. Tourism Planning[M]. NewYork:CraneRusak,1979.58-73.
    [13]Pearce Douglas. Tourism Today:A Geographical Analysis (Second Edition) [M]. Longman Scientific & Technical Press,1995.835.
    [14]Lundgren JOJ. Geographical concepts and the development of tourism research in Canada[J]. Geo-Journal,1984,9 (1):17-25
    [15]杨新军,牛栋,吴必虎.旅游行为空间模式及其评价[J].经济地理,2000,20(4):105-108.
    [16]杨新军,马晓龙.区域旅游:空间结构及其研究进展[J].人文地理,2004,19(1):77-83.
    [17]杨新军,马晓龙,霍云霈.旅游目的地区域(TDD)及其空间结构研究——以西安为例[J].地理科学,2004,24(5): 620-626.
    [18]吴晋峰,包浩生.旅游系统的空间结构模式研究[J].地理科学,2002,22(1): 96-101.
    [19]成升魁,甄霖.资源流动研究的理论框架与决策应用[J].资源科学,2007,29(3):37-44.
    [20]Chambers N, Child R, Jenkin N, Lewis K, Vergoulas G, Whiteley M. Stepping Forward:A resource flow and ecological footprint analysis of the South West of England Resource flow report [R]. Best Foot Forward Ltd, Unit ed Kingdom.2005.
    [21]Stefan B.2002. Towards Sustainable Resource Management in the European Union[C]. WI papers No.121.
    [22]朱启贵.建立能源流核算完善能源核算体系[N],中国社会科学报/2011年/11月/24日/第010版
    [23]朱启贵.能源流核算与节能减排统计指标体系[J].上海交通大学学报(哲学社会科学版),2010(6):28-34.
    [24]王宜强,赵媛.资源流动研究现状及其主要研究领域[J].资源科学,2013,35(1):89-101.
    [25]成升魁,闵庆文,闫丽珍.从静态的断面分析到动态的过程评价——兼论资源流动的研究内容与方法[J].自然资源学报,2005,20(3):407-414.
    [26]Hansen W G. How accessibility shape land-use[J]. Journal of the American Institute of Planners,1959.25 (2):73-76.
    [27]Koenig J G. Indicators of urban accessibility:theory and application [J]. Transportation,1980, (9):145-172
    [28]Moseley M J. Accessibility:the rural challenge[M]. London:Methuen, 1979.
    [29]Transportation Statistics Annual Report (TSAR). Bureau of Transportation Statistics[R], US Department of Transportation,1999.
    [30]钮心毅.GIS支持下的城市中可达性的评价方法[D].上海:同济大学,1999.
    [31]Geertman S C M, Ritsema Van Eck J R. GIS and models of accessibility potential:an application in planning International Journal of Geographical Information System[A],1995,9 (1):67-80.
    [32]Vickerman R W. Accessibility attraction and potential:a review of concepts and their use in determining mobility [J]. Environment and Planning, 1974, (6):675-691.
    [33]杨育军.可达性评价的比较研究与应用[D].上海:同济大学,2004.
    [34]Transportation Statistics Annual Report (TSAR). Bureau of Transportation Statistics[R], US Department of Transportation,1999.
    [35]Tony Grubesic, Matthew Zook. A ticket to ride:Evolving landscapes of air travel accessibility in the United States[J]. Journal of Transport Geography,2007, (15):417-4301
    [36]吴威,曹有挥,梁双波,等.中国铁路客运网络可达性空间格局[J].地理研究,2009,28(5):1389-1400.
    [37]Janic'Milan. The Trans European Railway Network, three levels of services for the passengers. Transport Policy [J],1996,3 (3):99-1041
    [38]靳诚,陆玉麒,范黎丽.基于公路网络的长江三角洲旅游景点可达性格局研究.自然资源学报[J],2010,25(2):258-269.
    [39]Sakkas N. Perez J. Elaborating metrics for the accessibility of buildings. Computers, Environment and Urban Systems[J],2006, (30):661-685.
    [40]Geertman SCM, Ritsema Van Eck JR. GIS and models of accessibility potential:an application in planning International Journal of Geographical Information System[A],1995,9(1):67-80.
    [41]宋小冬,钮心毅.再论居民出行可达性的计算机辅助评价[J].城市规划汇刊,2000,(3):18-22.
    [42]Wilson A G. A statistical theory of spatial distribution models[J]. Transport-ation Research,1967 (1):253-269.
    [43]Wilson A G. A family of spatial interaction models and associated developments[J]. Environment and Planning,1971,3 (1):1-32.
    [44]Fotheringham A S. A new set of spatial-interaction models:the theory of competing destinations[J]. Environment and Planning A,1983,15:15-36
    [45]姚士谋,王书国,陈爽等.区域发展中“城市群现象”的空间系统探索[J].经济地理,2006,26(5):726-730.
    [46]ClarkC, WilsonF, BradleyF. Industrial location and economic potential in Western Europe[J]. Regional Studies,1969,3 (2):197-212
    [47]Gauthier H L. Transportation and the growth of the Sao Paulo economy [J]. Journal of Regional Science,1968,8 (1):77-94.
    [48]O'Kelly M E. Grubesic T H. Backbone topology, access and the ommercial Internet,1997-2000[J]. Environment and Planning B,2002,29 (4): 533-552.
    [49]江斌,黄波,陆锋.GIS环境下的空间分析和地学视觉化[M].北京:高等教育出版社,2002,44-45.
    [50]Hillier B. Space is the machine:a configurational theory of architecture[M]. Cam-bridge:Cambridge University Press,1996,82,88-143.
    [51]Jiang B, Claramunt C, Batty M. Geometric Accessibility and Geographic Infor-mation:Extending Desktop GIS To Space Syntax[J]. Computers, Environment and Urban Systems,1999,23:127-146.
    [52]李龙熙.对可持续发展理论的诠释与解析[J].行政与法,2005(1):3-7
    [53]中国国家发展和改革委员会.“能源安全”的真正含义[Z]. www. sdpc. gov. cn/nyjt/dcyyj/t20060915_84550. htm
    [54]中国社会科学院.能源安全问题研究[Z]. www. bjpopss.gov.cn /bjpssweb/n27912c48. aspx
    [55]王高飞.循环运转制的运用研究[J].铁路技术创新,2013(2):103-105
    [56]R. B. Gordon, T. E. Graedel, M. Bertram, et al. The characterization of technological zinc cycles[J]. Resources, Conservation and Recycling, 2003,39 (2):107-135.
    [57]S. Spatari, M. Bertram, K. Fuse, et al. The contemporary European copper cycle:1 year stocks and flows[J]. Ecological Economics,2002,42 (1-2):27-42.
    [58]T. E. Graedel, M. Bertram, K. Fuse, et al. The contemporary European copper cycle:The characterization of technological copper cycles[J]. Ecological Economics,2002, (1-2):42:9-26.
    [59]S. Spatari, M. Bertram, K. Fuse, et al. The contemporary European zinc cycle:1-year stocks and flows[J]. Resources, Conservation and Recycling,2003,39 (2):137-160.
    [60]Jeremiah Johnson, Julie Jirikowic, Marlen Bertram, et al. Contemporary anthropogenic silver cycle:A multilevel analysis[J]. Environmental Science & Technology,2005,39 (12):4655-4665.
    [61]Wang T, Mao J, Johnson J, et al. Anthropogenic metal cycles in China[J]. Journal of Material Cycles and Waste Management,2008,10 (2):188- 197.
    [62]J. Davis, R. Geyer, J. Ley, et al. Time-dependent material flow analysis of iron and steel in the UK:Part 2. Scrap generation and recycling[J]. Resources, Conservation and Recycling,2007,51 (1):118-140.
    [63]Gravgaard P O. Material flow accounts and analysis for Denmark[R]. Luxembourg Meeting of the Eurostat Task Force on Material Flow Acoounting,2000.
    [64]Allen Hammond, Albert Adriaanse, Stefan Bringezu, et al. Resource Flows:The material basis of industrial economies[R]. Washington D C, USA:World Resource Institute,1997.
    [65]Matthews W, Bringezu S, Marina, et al. The Weight of Nations Material Outflows from Industrial Economies[R]. Washington D C, USA:World Resource Institute,2000.
    [66]Mathijs Bouman, Reinout Heijungs, Ester van der Voet, et al. Material flows and economic models:an analytical comparison of SFA, LCA and partial equilibrium models[J]. Ecological Economics,2000,32 (2):195-216.
    [67]Eurostat. Economy-wide material flow accounts and derived indicators:A methodological guide[R]. Luxembourg:European Communities,2001.
    [68]Scasny M, Kovanda J, HakT. Material flow accounts, balances and de-rived indicators for the Czech Republic during the 1990s:results and re-commen-ddations for methodological improvements [J]. Ecological Economics,2003,45 (1):41-57.
    [69]H. Haberl, M. F. Kowalski, F. Krausmann, et al. Progress towards sustainability? What the conceptual framework of material and energy flow accounting (MEFA) can offer[J]. Land Use Policy,2004,21 (3): 199-213.
    [70]Krausmanna F, Haberla H, Erba K. H, et al. Resource flows and land use in Austria 1950-2000:using the MEFA framework to monitor society-nature interaction for sustainability[J]. Land Use Policy,2004,21 (3): 215-230.
    [71]Cristina Sendra, Xavier Gabarrell, Teresa Vicent. Material flow analysis adapted to an industrial area[J]. Journal of Cleaner Production,2007,15: 1706-1715.
    [72]Daniel Todd, Jin Feng-jun. Interregional Coal Flow in China and the Problem of Transport Bottlenecks[J]. Applied Geography,1997,17(3): 215-230.
    [73]徐明,张天柱.中国经济系统中化石燃料的物质流分析[J].清华大学学报(自然科学版),2004,44(9):1166-1170.
    [74]李群,赵嵩正.资源流动机制与区域经济发展探析[J].财贸经济,2005(6):61-65.
    [75]程晓雯. 长三角港口煤炭转运系统研究[D].上海:上海海事大学,2007
    [76]曹珂,聂真.基于能源流组织的工业用地空间布局[J].山西建筑,2008(4):252-253.
    [77]徐增让,成升魁,谷树忠,等.资源区域流动的驱动因子分析与流动潜力测度—以晋煤输出为例[J].自然资源学报,2008,23(5):773-780.
    [78]黄园淅,张雷,程晓凌.世界能源产消与流动分析[J].世界地理研究,2009,18(1):27-33.
    [79]廖华,魏一鸣.2008年中国能源流分析[J].中国能源,2010(9):17-18,46.
    [80]曹怀术,廖华,魏一鸣.2010年中国能源流分析[J].中国能源,2012(4):29-31,25.
    [81]沈镭,刘立涛,高天明,等.中国能源资源的数量、流动与功能分区[J].资源科学,2012,34(9):1611-1621.
    [82]张敏,姜巍,高卫东.基于资源流理论的山东省煤炭资源流动分析[J].资源开发与市场,2013,29(6):628-632.
    [83]汪应宏,郭达志,张海荣.我国煤炭资源势的空间分布及其应用[J].自然资源学报,2006,21(2):225-231.
    [84]徐增让.中国煤炭资源流动的机理、过程及效应研究[D].北京:中国科学院地理科学与资源研究所,2007.
    [85]成升魁,徐增让,沈镭.中国省际煤炭资源流动的时空演变及驱动力[J].地理学报,2008,63(6):603-612.
    [86]刘星厚,任晨晨.煤炭资源流动的系统分析[J].煤炭科技,2009(4):86-89.
    [87]王成金,莫辉辉,王姣娥[J].中国煤炭资源的流动格局及流场规律研究.自然资源学报,2009,24(8):1402-1411.
    [88]唐志鹏,王亮,刘卫东,等.我国区域闭合性煤炭流的时空分析[J].自然资源学报,2010,25(8):1332-1339.
    [89]高卫东,姜巍.中国煤炭资源供应格局演变及流动路径分析[J].地域研究与开发,2012,31(2):11-16.
    [90]吕涛,张华.我国煤炭生产重心与消费重心演变轨迹研究[J].资源开发与市场,2012(5):396-400.
    [91]刘满芝,马燕燕,周梅华,等.中国煤炭供需与经济的重心演变轨迹研究[J].中国管理科学,2012,20(专辑):820-826
    [92]姜巍,高卫东,张敏.中国煤炭资源铁路流通网络结构特征及其演变[J].经济地理,2013,33(1):98-104
    [93]赵媛,郝丽莎.20世纪末期中国石油资源空间流动格局与流场特征[J].地理研究,2006(5):753-764.
    [94]赵媛,杨足膺,郝丽莎,等.中国石油资源流动源—汇系统空间格局特征[J].地理学报,2012,67(4):455-466.
    [95]Yuan Zhao, Hai-ling Niu, Zu-ying Yang. The Spatial Structure and Evolution Characteristics of Source-Collection System of Crude Oil Flow in China[J]. Scientific Research Publishing, USA,2010.
    [96]刘晓洁.石油资源流动效应与机理研究[D].北京:中国科学院地理科学与资源研究所,2008.
    [97]田花敏,赵媛. 江苏省石油自给率研究及对策建议[J].江苏商论,2009(4):10-13
    [98]赵冰,王诺.21世纪初期世界石油流动的空间格局与流场特征研究[J].经济地理,2010,30(6):886-892.
    [99]苑蓓.石油资源流动特征与环境效应分析[D].南京:南京师范大学,2013.
    [100]罗洪波,刘晓彤.从能源安全看我国海上石油运输[J].中国水运,2003,(8):4-5.
    [101]张邦松.中国石油能否突破马六甲困境[N].新闻周刊,2004(21):34-35.
    [102]张宇燕,管清友.世界能源格局与中国的能源安全[J].世界经济,2007(9):17-30.
    [103]张运城.2004.中国突破“海峡困局”需要新思维[N].参考消息:2004-04-08.
    [104]张荣忠.世界能源运输线的咽喉要道:中国进口能源的运输风险与应对[J].港口经济,2004(5):36-38.
    [105]杨维新.国际能源环境下的中国能源安全[D].上海:上海社会科学研究 院,2006
    [106]朱孟珏,陈忠暖,蔡国田.基于系统论的世界能源空间格局分析[J].地理科学进展,2008,27(5):122-120.
    [107]李岩,王礼茂.从地缘政治角度看中国石油进口运输安全[J].资源科学,2008,30(12):1784-1790.
    [108]赵媛,嵇昊威.中非石油合作之石油运输通道研究[J].广东社会科学,2010(6):25-26.
    [109]贾若祥,刘毅.中国电力资源结构及空间布局优化研究[J].资源科学,2003,25(4):14-19.
    [110]Ot v io Cavalett, Enrique Ortega. Integrated Environment al Assessment of Biodiesel Product ion from Soybean in Brazil[J]. Journal of Cleaner Production,2010, (18) B55-70.
    [111]张露,龚承柱,李兰兰等.中国天然气供需重心迁移路径及贡献度分解[J].中国人口资源与环境,2013,23(12):90-97.
    [112]吴威,曹有挥,曹卫东,等.长江三角洲公路网络的可达性空间格局及其演化[J].地理学报,2006,61(10):1065-1074.
    [113]吴威,曹有挥,曹卫东,等.开放条件下长江三角洲区域的综合交通可达性空间格局[J]. 地理研究,2007,26(2):391-402.
    [114]吴威,曹有挥,曹卫东,等.区域综合运输成本的空间格局研究——以江苏省为例[J].地理科学,2009(4):485-492.
    [115]刘辉,申玉铭,孟丹,等.基于交通可达性的京津冀城市网络集中性及空间结构研究[J].经济地理,2013,33(8):37-45.
    [116]张雪燕,余先虎,黄文等[J]. 基于GIS物流交通网络可达性研究——以宁波建立全球物流分销中心为例.浙江万里学院学报,2013,26(6):1-4
    [117]李文正. 陕南旅游交通网可达性测算及其空间格局评价研究[J].西北大学学报(自然科学版),2013,43(4):637-642
    [118]程钰,刘雷,任建兰,等.县域综合交通可达性与经济发展水平测度及空间格局研究——对山东省91个县域的定量分析[J].地理科学,2013,33(9):1058-1065.
    [119]Sasaki K, Ohashi T, Ando A. High-speed rail transit impact on regional systems:does the Shinkansen contribute to dispersion? [J]. The Annals of Regional Science,1997,31 (1):77-98.
    [120]Gutierrez J. Location, economic potential and daily accessibility:an analysis of the accessibility impact of the high-speed line Madrid-Barcelona-French border[J]. Journal of Transport Geography,2001,9 (4):229-242.
    [121]金凤君,王姣娥.20世纪中国铁路网扩展及其空间通达性[J].地理学报,2004,59(2):293-302.
    [122]金凤君,王姣娥,孙炜,牛树海.铁路客运提速的空间经济效果评价[J].铁道学报,2003(6):1-7.
    [123]杨勉.区域铁路网可达性模型研究及应用[D].北京:北京交通大学,2008.
    [124]孟德友,陆玉麒.高速铁路对河南沿线城市可达性及经济联系的影响[J].地理科学,2011,31(5):537-543.
    [125]孟德友,陈文峰,陆玉麒.高速铁路建设对我国省际可达性空间格局的影响[J].地域研究与开发,2011,30(4):6-10.
    [126]孟德友,范况生,陆玉麒,等.铁路客运提速前后省际可达性及空间格局分析[J].地理科学进展,2010,29(6):709-715.
    [127]张莉,朱长宁,曹莉娜.沪宁城际高速铁路对区域可达性的影响研究[J].铁道运输与经济,2013(1):82-87.
    [128]何丹,杨彝.高速铁路对沿线地区可达性的影响研究——以皖北地区为例[J].长江流域资源与环境,2013,22(10):1264-1275.
    [129]冯长春,丰学兵,刘思君.高速铁路对中国省际可达性的影响[J].地理科学进展,2013,32(8):1187-1194.
    [130]杨金华,钟佩玲.高铁背景下的湖南城市群城际可达性变化研究[J].资源开发与市场.2013,29(12):1273-1275.
    [131]Dupuy G. Stransky V. Cities and highway network in Europe[J]. Journal of Transport Geography,1996,4 (2):107-121.
    [132]曹小曙,薛德升,阎小培.中国干线公路网络联结的城市通达性[J].地理学报,2005,60(6):903-910.
    [133]张兵,金凤君,于良.湖南公路网络演变的可达性评价[J].经济地理,2006(5):776-779,796.
    [134]张智林.沿海地区客运交通网络演变的可达性评价研究[J].广州:华南师范大学,2007.
    [135]叶祥峰,李晓,朱昱,等.基于GIS的福建省公路网络体系可达性分析 [J].亚热带资源与环境学报,2012(3):55-61.
    [136]阎欣,黄玖菊.基于交通可达性的厦漳泉大都市区同城化评价分析[J].福建建筑,2013(7):92-94.
    [137]梅志雄,徐颂军,欧阳军.珠三角公路网络可达性空间格局及其演化[J].热带地理,2014,34(1):27-33
    [138]Bowen J. Airline hubs in Southeast Asia national economic development and modal accessibility[J]. Journal of Transport Geography,2000,8(1): 25-41.
    [139]Humphreys, Franccis G. Policy issues and planning of U K regional airports[J]. Transport Geography,2002, (10):249-258.
    [140]HUMPHREYSI,ISONS, FRANCCIS G, et al. U K airport surface access targets[J]. Air Transport Management,2005, (11):117-124.
    [141]EIGHANAR, MCLAYP. Accessibility and attractiveness of European airport:A simple small community perspective[J]. Air Transport Manage-ment,2006, (12):313-323.
    [142]徐涛,王黎明,张大泉.中国民用航空机场的可达性研究[J].地理与地理信息科学,2008(4):88-91+102.
    [143]周蓓.四川省航空旅游网络空间特征及其结构优化研究[J].地理与地理信息科学,2008(1):100-104.
    [144]贾鹏,刘瑞菊,杨忠振.基于陆域和空域运输系统的空港可达性评价方法研究[J].经济地理,2013,33(6):91-97.
    [145]戴特奇,张玉韩,赵娟娟.中国民用运输机场的可达性溢出效应研究[J].地理学报,2013,68(12):1668-1677.
    [146]靳诚,范黎丽,陆玉麒.基于可达性技术的农业旅游布局研究——以江苏省为例[J].自然资源学报,2010(9):1506-1518.
    [147]靳诚,陆玉麒,张莉,等.基于路网结构的旅游景点可达性分析——以南京市区为例[J].地理研究,2009,28(1):246-258.
    [148]卢晓旭,陆玉麒,袁宗金,等.基于可达性的城市普通高中生源区研究[J].地理科学进展,2010,29(12):1541-1547.
    [149]尹燕,周应恒.基于时间可达性的农业旅游布局空间演化特征及形成机理——以江苏省为例[J].资源科学,2012,34(12):2409-2417.
    [150]韩艳红,陆玉麒.教育公共服务设施可达性评价与规划——以江苏省仪征市高级中学为例[J].地理科学,2012,31(7):822-827.
    [151]胡瑞山,董锁成,胡浩.就医空间可达性分析的两步移动搜索法——以 江苏省东海县为例[J].地理科学进展,2012,31(12):1600-1607.
    [152]徐慧,范颖骅,吕多智,等.基于网格划分的宜兴市区滨水区可达性评价[J].长江流域资源与环境,2012,21(11):1336-1341.
    [153]鲁莎莎,关兴良,王振波,等.基于可达性与数据场的长三角经济区空间场能[J].地理研究,2013,32(2):295-306.
    [154]鄢进军,丁真兵,郑凌予等.基于GIS-NetworkAnalyst的重庆城市公园绿地可达性分析[J].西南大学学报(自然科学版),2013,35(12):1-6
    [155]尚正永,张小林,卢晓旭等.基于可达性的城市功能用地空间格局演变研究——以江苏省淮安市为例[J].地理科学,2014,22(1):1-5
    [156]刘敏,李满春,黄秋昊等.合肥市中心城区城市绿地景观格局与可达性[J].林业科技开发,2014,28(1):128-133
    [157]M. Bielli, G. Calicchio, M. Cini, et, al. A model of coal transport management in a rail network[J]. Lecture Notes in Control and Information Sciences,1984, (59):135-142
    [158]王庆云,溢辉.我国煤炭运输系统发展展望.中国物流与采购[J],2006(11):16-23.
    [159]于良,金凤君,张兵.中国煤炭运输的现状、发展趋势与对策研究[J].铁道经济研究,2006(5):38-41.
    [160]马驹.全国主要煤炭基地煤炭运输铁路水路分工研究[J].铁道工程学报,2008(6):20-23.
    [161]郭蕾.陕西省煤炭产业运输物流体系优化研究[D].陕西:西北大学,2010.
    [162]曹学明,林柏梁,严贺祥.铁路直达运输条件下煤炭运输与库存一体化模型[J].北京交通大学学报,2006,30(6):27-31.
    [163]荣朝和.煤炭物流对我国铁路运输影响与挑战[J].中国铁路,2007(12):31-35.
    [164]严贺祥.铁路货运通道布局优化的模型和方法研究[D].北京:北京交通大学,2008.
    [165]王云.山西煤炭运输通道适应性分析及对策[J].综合运输,2008(9):27-30.
    [166]ZHANG Jin-chuan, YANG Hao, and WEI Yu-guang. Modeling Feedback Scheme of Empty Cars in Unloading End of Heavy Haul Railway[J]. Journal of Transportation Systems Engineering and Information Technology,2008,8 (2):96-102.
    [167]田花敏,赵媛.江苏省煤炭运输特点与发展对策研究[J].中国煤炭,2009,35(9):13-16.
    [168]宋彩萍.加强我国铁路煤炭运输通道建设的思考[J].中国工程科学.2009,11(9):78-80,86.
    [169]张杰.沿海煤炭港口通过能力分析及发展对策研究[D].大连:大连海事大学,2001.
    [170]刘勇.我国煤炭海运现状分析及发展研究[D].大连:大连海事大学,2003.
    [171]李艳.北煤南运运输形势分析暨秦皇岛港对策构想[D].大连:大连海事大学,2004.
    [172][1]赵克.北煤南运市场格局的变化趋势及对策研究[D].大连:大连海事大学,2004.
    [173]高阳.我国沿海煤炭运输主干航线研究[D].上海:上海交通大学,2008.
    [174]万德香.长江散货运输需求预测研究[D].武汉:武汉理工大学,2008.
    [175]田花敏.江苏省煤炭港口物流基地发展模式研究[D].南京:南京师范大学,2010.
    [176]李永盛.朔黄铁路实现年运量2亿t的技术条件研究[J].山西科技.2006(6):95-96.
    [177]武汛.创新重载运输技术,实现内涵挖潜扩能,把大秦线建成世界一流重载铁路[J].太原铁道科技,2007(3):4-6.
    [178]陆彦彬.侯月线亿t煤运通道扩能的实践[J].铁道运输与经济,2008,30(2):4-8.
    [179]丁学锋,付昌友.关于新月线第二双线功能定位的探讨[J].铁道勘察,2009(4):75-77,88.
    [180]吴国钦,李国军.铁路单线区段提高通过能力的方案研究与应用[J].铁道运输与经济,2009,31(8):35-37.
    [181]李宏,吴文化.鄂湘赣三省煤运通道建设方案建议[J].综合运输,2010(1):36-40.
    [182]丁明健.大别山电厂铁路运煤通道选择浅析[J].西铁科技,2010(2):21-23.
    [183]王春保.永煤矿区铁路运输能力提升研究与应用[J].煤矿现代化,2010(2):101-102.
    [184]王银根.芜湖东站二通道扩能分流的问题分析与对策实践[J].上海铁道 科技.2007(2):1-3.
    [185]张军,柳建波,杨军锁.挖掘侯马北站潜力,应对侯月线运输增量[J].铁道运输与经济,2008,30(9):11-14.
    [186]胡琦.压缩南京东站货车停留时间的思考[J].上海铁道科技,2008(1):91-93.
    [187]王法辉.基于GIS的数量方法与应用[M].姜世国,译.北京:商务印书馆,2009.
    [188]刘敬青. 铁路省际煤炭调运的分析与评价[J].中国能源,2010,32(10):20-25.
    [189]呼枭.准池铁路临管运营期间运输组织方案[J].科技创新与应用,2013(4):242-243.
    [190]中国煤炭工业协会.中国煤炭工业发展研究报告[R],2009
    [191]荣剑.浅议设定和谐货运机车乘务员交路的作用[J].内燃机车,2009(8):34-35
    [192]汤军.客运机车交路优化的研究与实践[J].上海铁道科技,2011(4):1-2.
    [193]王斌.集包通道客货分流优化运输组织的研究[J].中国铁路,2013(5):31-33.
    [194]费东斌.胶济线货物列车实行客车化管理的探索[J].铁道运输与经济,2010(3):5-8.
    [195]李洪斌.张唐重载铁路主要技术标准研究[J].铁道标准设计,2011(7):14-18.
    [196]袁广琳,高国琛.张唐线张家口地区引入方案研究[J].铁道勘察,2012(1):76-80.
    [197]李洪斌.张唐重载铁路的综合选线技术[J].铁道工程学报,2011(6):12-15.
    [198]山西日报.山西中南部铁路通道项目简介[Z]. http: //special.sxrb.com/xwzt/2010zdgc/104054/1048822.html
    [199]王风云,彭尼兰,韩浩.蒙西至华中铁路荆州地区线路方案研究[J].山西建筑,2012(16):168-170.
    [200]高杰.蒙西至华中地区煤运通道列车轴重选择研究[J].中国铁路,2013(5):88-91.
    [201]朱稳吉.蒙西至华中煤运通道北端集运系统方案研究[J].中国铁路,2012(5):40-43.
    [202]金福海,文望青,许三平.蒙西至华中地区铁路煤运通道设计活载选用 初探[J].铁道标准设计,2013:51-52.
    [203]袁博晖,孙彩红.蒙西至华中地区煤运通道在我国煤炭运输中的定位及其建设的必要性[J].科技信息,2012(18):488-489.
    [204]叶生威.抓住长江煤炭运输的新机遇[J].船海工程,2003(3):46-49.
    [205]蒋惠园,汪浪,谢奔一,等.蒙西新能源通道建设对长江煤炭水运格局的影响分析[J].铁道运输与经济,2013(3):52-57.
    [206]刘雷.蒙东地区煤炭下海铁路通路布局研究[J].铁道工程学报,2012(6):1-5.
    [207]张博.疆煤东运铁路通道运量分配研究[J].铁道建筑技术,2010(10):260-261+264.
    [208]王勇伟,赵小璇.额济纳旗铁路总体规划研究[J].中国铁路,2012(12):51-54.
    [209]郭全其,郑恩才.联系西北和西南的黄金通道——兰渝铁路[J].中学地理教学参考,2008(11):13-14.
    [210]罗君,白永平,张学斌.兰渝铁路辐射带经济空间差异研究[J].地理科学,2011,31(5):557-562.
    [211]李明申.向莆铁路接轨方案研究[J].铁道标准设计,2011(4):31-35.
    [212]赵忠保.向莆铁路选线的总体思路[J].铁道标准设计,2010(2):61-64.
    [213]马汉枨.六安景铁路牵引质量、到发线有效长研究[J].铁道建筑技术,2010(10):71-73+88.
    [214]蒋银海.阜阳至六安铁路线路走向方案设计[J].铁道货运,2010(11):28-32.
    [215]白存仓.六安景铁路主要技术标准选择探讨[J].铁道技术监督,2011(7):37-39
    [216]陈亮.渝怀铁路线路设计[J].铁道标准设计,2006(Z1):88-90.
    [217]周定祥.渝怀铁路增建二线综合选线研究与实践[J].重庆建筑,2011(5):19-22
    [218]闫华.黄韩侯铁路黄陵至韩城段线路走向研究[J].山西建筑,2010(8):286-287.
    [219]常建军.岭南运输组织的研究与实践[J].中国铁路,2012(5):36-39.
    [220]许波.西康线扩能探讨[J].中国科技信息,2005(2):135+152.
    [221]王晓刚.南疆铁路吐库段增建二线挡风墙设计[J].路基工程,2010(1):185-187.
    [222]孙成智.南疆铁路吐库段二线中天山越岭段的地质选线[J].广东公路交通,2006(增刊):52-55.
    [223]陈祥千.南疆铁路的运输现状及对策[J].中国铁路,2005(7):21-23+3.
    [224]吕明.中国煤炭消费预测模型研究与应用[D].北京:北京交通大学,2008.
    [225]王春宝.基于特征向量提取的核回归组合预测模型及在我国煤炭消费预测中的应用研究[D].重庆:重庆师范大学,2012.
    [226]刘顺艳,孙根年.中国省际煤炭消费与GDP增长关系及拐点预测[J].资源科学,2009(11):1880-1886.
    [227]马国旗,李凯明.基于ARIMA的江苏省煤炭消费预测[J].信息系统工程,2012(7):101-102.
    [228]李德波,柳春明,杨丽茵.2010年和2020年全国煤炭供需预测[J].电力技术经济,2007(2):25-29.
    [229]樊正中,邹杰龙.基于组合预测模型的煤炭消费预测分析[J].中国高新技术企业,2012(24):5-7,
    [230]索元宏.山西中南部重载铁路通道运输组织方案探讨[D].成都:西南交通大学,2011

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700