用户名: 密码: 验证码:
稳健可靠性理论及优化方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不确定性因素的处理在可靠性工程中起着至关重要的作用,与之相联系的可靠性各种研究方法也日益引起诸多学者的关注。经过几十年的发展,基于概率模型的常规可靠性理论已广泛应用于各个领域,其成熟性毋庸置疑,但是这种方法对于统计数据缺乏或者信息不完备的情况以及概率论本身固有的缺陷却无能为力,而非概率可靠性却可以弥补这一不足。本文在前人工作的基础上,对非概率的稳健可靠性理论及其应用做了进一步的研究和探讨,其主要内容如下:
     (1)对机械静强度稳健可靠性理论进行了分析和研究,给出了机械零件静强度稳健可靠性设计准则;对振动构件的稳健可靠性进行了分析和探讨,给出了振动构件的稳健可靠性设计准则:对概率可靠性和基于非概率的稳健可靠性方法进行了对比研究。
     (2)提出了一种新的稳健可靠性指标度量方法和设计准则,并进行了相应的系统稳健可靠性的研究,对简单的振动系统的稳健可靠性进行了分析。将本文提出的稳健可靠性度量方法与Ben-Haim教授提出的度量准则进行了比较。
     (3)针对在实际工程中影响可靠性的不确定性因素具有多样性和复杂性的特点,为了更充分合理地利用现有的数据来处理实际工程中的可靠性问题,研究了稳健可靠性与传统可靠性以及模糊可靠性的融合问题。对于不确定性变量较多的复杂系统,分析了如何建立将稳健可靠性和传统的可靠性以及模糊可靠性结合的混合可靠性分析模型,综合各模型的优点最大限度地将已有的信息利用到产品的可靠性分析中去。对数据掌握得较多的不确定性变量应考虑采用概率可靠性来分析,而对一些数据掌握较少或数据不完备的情况则考虑采用集合模型来描述,然后建立混合的可靠性模型,并对模型进行了求解。
     (4)对稳健可靠性优化方法进行了研究。对数据信息缺乏或不完备的不确定结构的可靠性优化设计,考虑用非概率模型求解。基于不确定性的凸集模型描述,研究了非概率优化设计模型,在此模型基础上给出了概率信息和非概率信息同时并存的非概率可靠性优化模型。基于物理规划方法研究机械结构的稳健可靠性优化问题,用凸集模型描述结构设计中存在的不确定性,借助于物理规划方法描述不确定性参数的不满意度函数,极小化不满意度函数最劣值来实现目标函数的稳健性,采用最坏情况分析方法实现约束函数的稳健性,进行结构的稳健可靠性优化设计。研究了基于灵敏度分析的稳健可靠性优化方法,提出一种在以可靠度为目标函数或者约束函数的可靠性优化设计中加入灵敏度约束作为附加目标函数来实现稳健性的稳健可靠性优化设计方法,建立了三种稳健可靠性优化设计模型,这三种模型是分别考虑目标函数的灵敏度、约束函数的灵敏度、目标函数和约束函数的灵敏度分析产生的附加目标函数来实现的。用MATLAB优化工具箱求解优化问题。
     稳健可靠性理论的提出具有重大的理论和现实意义。虽然该理论还不成熟、完善,
Uncertain factors are critical in the applications of reliability engineering. The study on methods of reliability theory has been gaining increasing attentions to many researchers. During the past several decades, the traditional reliability approach based on probability theory has been widely applied to various engineering fields and has demonstrated its maturity. However, that method is not capable to deal with the situation when the statistical data or information is lacking. It can not overcome the limitations of the probability theory either. To overcome those barriers, a new reliability theory called the non-probabilistic reliability is proposed as a complement to the traditional reliability theory. This dissertation further develops the non-probabilistic reliability theory and studies its applications based on the exiting work in literature. The contributions of this paper include the following aspects:(1) The robust reliability theory of mechanical static strength is investigated and analyzed. The corresponding design criterion for mechanical components is proposed. The robust reliability of vibration components is analyzed, and the corresponding design criterion is established. We also compare the present robust reliability method with the traditional reliability method.(2) A new measure and a design criterion of the robust reliability theory are proposed. They are applied to study the system robust reliability. An example of the robust reliability analysis of a simple vibration system is used to demonstrate the validity of the proposed method. We compare the proposed robust reliability index with the Ben-Haim's robust reliability index.(3) Considering the variety and complexity of the uncertain factors with impact on the reliability in engineering practice, it is necessary to study the combination of the robust reliability, the traditional reliability, and the fuzzy reliability. To handle the real reliability problems, hybrid reliability models are established to fully utilizing available data. When we have sufficient data to describe the probabilistic characteristics of uncertain parameters, probabilistic reliability models or fuzzy reliability models can be adopted. When there is insufficient data, non-probabilistic set models should be chosen. When the above three conditions exist at the same time, we may choose to use hybrid reliability models. In engineering analysis, the ability of different possible reliability methods allows for mutual compensation for the disadvantages inherent in each individual method. After establishing the hybrid models, programs can be built to obtain corresponding solutions.(4) The robust reliability optimization methods are studied. In the lacking of data or deficiency of information on the uncertain structures, non-probabilistic models are proposed to be used to solve robust reliability optimization design problems. Based on convex models
    for uncertainty description, structural design models of the non-probabilistic optimization are established. Furthermore, non-probabilistic reliability models are proposed in the presence of both probabilistic and non-probabilistic information. Based on the physical programming method, the robust reliability optimization of mechanical structures is investigated. The uncertainties in mechanical structures are described by convex models. The unsatisfactory functions are created by means of the physical programming. The robustness of objective functions is achieved by minimizing the unfavorable unsatisfactory functions. The robustness of constraints is ensured by a sub-optimization of the worst case scenario. Treating the reliability index as constraint functions or objective functions, another new method of the robust reliability optimization is presented by adding sensitivities as additive objectives. Three models of the robust reliability optimization are developed based on the conventional reliability optimization models with the additive objective functions. They are created respectively considering the sensitivity of objective functions, constraint functions, and the objective and constraint functions, with respect to design parameters. Optimization problems are solved by the optimization toolbox of MATLAB.The research on the robust reliability theory is important not only in academic research, but also in engineering applications. Although the robust reliability theory is not yet a mature theory, its idea is innovative providing a new method for the reliability engineering. This method is suited to the scarce statistical information, severe uncertainties, and the problems which the traditional reliability methods can deal with.
引文
[1] Henley E J. Reliability Engineering and Risk Assessment. Englewood Cliffs, New Jersey: Prentice Hall, 1981
    [2] 牟致忠.机械零件可靠性设计.北京:机械工业出版社,1988
    [3] 宋保维.系统可靠性设计与分析.西安:西北工业大学出版社,2000
    [4] 牟致忠,朱文予。机械可靠性设计.北京:机械工业出版社,1993
    [5] 孙志礼,陈良玉.实用机械可靠性设计理论与方法.北京:科学出版社,2003
    [6] 高社生,张玲霞.可靠性理论与工程应用.北京:国防工业出版社,2002
    [7] 洪其麟.机械结构可靠性.北京:航空工业出版社,1993
    [8] Carter A D S. Mechanical Reliability. Houndmills: Macmillan, 1986
    [9] 徐灏.机械强度的可靠性设计.北京:机械工业出版社,1984
    [10] 高镇同.疲劳应用统计学.北京:国防工业出版社,1986
    [11] 曾攀.材料的概率疲劳损伤特性及现代结构分析原理.北京:科学技术文献出版社,1993
    [12] 黄洪钟.机械传动可靠性理论与应用.北京:中国科学技术出版社,1995
    [13] 卢玉明.机械零件的可靠性设计.北京:高等教育出版社,1989
    [14] 王超,王金.机械可靠性工程.北京:冶金工业出版社,1992
    [15] 赵国藩.工程结构可靠性理论与应用.大连:大连理工大学出版社,1996
    [16] 黄洪钟.对常规可靠性理论的批判性综述—兼论模糊可靠性理论的产生、发展和应用前景.机械设计,1994,11(3):1~5,47
    [17] 黄洪钟.机械模糊可靠性设计.北京:高等教育出版社(待出版)
    [18] Cai K Y. System failure engineering and fuzzy methodology: An introductory overview. Fuzzy Sets and Systems, 1996, 83:113-133
    [19] 吕震宙,冯蕴雯.结构可靠性问题研究的若干进展.力学进展,2000,30(1):21~28
    [20] Ben-Haim Y. Robust Reliability in the Mechanical Sciences. Berlin: Springer-Verlag, 1996
    [21] Ben-Haim Y, Elishakoff I. Convex Models of Uncertainty in Applied Mechanics. Amsterdam: Elsevier, 1990
    [22] Elishakoff I. Essay on uncertainties in elastic and viscoelastic structures: From A.M. Freudenthal's criticisms to modem convex modeling. Computers and Structures, 1995, 56(6): 871~895
    [23] Ben-Haim Y. A non-probabilistic concept of reliability. Structural Safety, 14(4), 1994:227~245
    [24] Elishakoff I. Discussion on: A non-probabilistic concept of reliability. Structural Safety, 1995, 17(3): 195-199
    [25] 董玉革.机械模糊可靠性设计.北京:机械工业出版社,2000
    [26] 黄洪钟.影响机械结构可靠性的不确定性分析.机械设计,1995,9:56~57
    [27] 郭书祥.非随机不确定结构的可靠性方法和优化设计研究[博士学位论文].西北工业大学,2002
    [28] 王光远.工程软设计理论.北京:科学出版社,1992
    [29] 王光远,张跃.模糊随机过程理论.北京:贵州科技出版社,1994
    [30] 张跃,王光远.模糊随机动力系统理论.北京:科学出版社,1993
    [31] Cai K Y, Wen C Y, Zhang M L. Fuzzy states as a basis for a theory of fuzzy reliability. Microelectronics and Reliability, 1993, 33(15): 2253-2263
    [32] Cai K Y, Wen C Y, Zhang M L. Posbist reliability behavior of fault-tolerant systems. Microelectronics and Reliability, 1995, 35(1): 49~56
    [33] Cai K Y, Wen C Y, Zhang M L. Mixture models in profust reliability theory. Microelectronics and Reliability, 1995, 35(6): 985~993
    [34] Savoia M. Structural reliability analysis through fuzzy number approach, with application to stability. Computers and Structures, 2002, 80:1087~1102
    [35] Landley R S. Unified approach to probabilistic and possibilistic analysis of uncertain systems. Journal of Mechanical Design, 2000, 126(11): 1163~1172
    [36] Rao S S, Berke L. Analysis of uncertain structural systems using interval analysis. AIAA, 1997, 35(4):727~735
    [37] Qiu Zhiping, Chen Suhuan, Elishakoff I. Non-probabilistic eigenvalue problem for structures with uncertain parameters via interval analysis. Chaos, Solitons and Fractals, 1996, 7(3): 303~308
    [38] Muharnna R L, Mullen R L. Uncertainty in mechanics problems-interval-based approach. Journal of Engineering Mechanics, 2001, 127(6): 557~566
    [39] 李永华,黄洪钟,马启明.轴静强度的非概率可靠性设计.电子产品可靠性与环境试验,2003,3:24~27
    [40] Rao S S, Sawyer J P. Fuzzy finite element approach for the analysis of imprecisely defined systems. AIAA, 1995, 33(12): 2364~2370
    [41] Huang Hong-Zhong, Tong Xin, Zuo Ming J. Posbist fault tree analysis of coherent systems. Reliability Engineering and System Safety, 2004, 84(2): 141~148
    [42] Qiu Z P, Chen S H, Elishakoff I. Natural frequencies of structures with uncertain but nonrandom parameters. Journal of Optimization Theory and Applications, 1995, 86(3): 669~683
    [43] William S M. Anti-optimization of uncertain structures using interval analysis. Computers and Structures, 2001, 79:421~430
    [44] Elishakoff I, Haftka R T, Fang J. Structural design under bounded uncertainty optimization with anti-optimization. Computers and Structures, 1994, 53(6): 1401~1405
    [45] Lombardi M. Optimization of uncertain structures using non-probabilistic models. Computers and Structures, 1998, 67(1/3): 99~103
    [46] Lombardi M, Haftka R T. Anti-optimization technique for structural design under load uncertainties. Computer Methods in Applied Mechanics and Engineering, 1998, 157:19~31
    [47] Canzerli S, Pantelides C P. Load and resistance convex models for optimum design. Structural Optimization, 1999, 17(2): 259~268
    [48] Ganzerli S, Pantelides P C. Optimum structural design via convex model superposition. Computers and Structures, 2000,74(6): 639~647
    [49] Pantelides C P, Canzedi S. Design of trusses under uncertain loads using convex models. Journal of Structural Engineering, 1998, 124(3): 318~329
    [50] Elishakoff I, Cai G Q, Statrnes J H. Non-linear bucking of a column with initial imperfection via stochastic and non-stochastic convex models. International Journal of Non-linear Mechanics, 1994, 29(1): 71~82
    [51] Elishakoff I. Three versions of the finite element method based on concept of either stochasticity, fuzziness, or anti-optimization. Applied Mechanics Review, 1998, 51(3): 209~218
    [52] Elishakoff I, Zingales M. Contrasting probabilistic and anti-optimization approaches in an applied mechanics problem. International Journal of Solids and Structures, 2003, 40(16): 4281~4297
    [53] 李永华,黄洪钟,孙占全,等.可靠性研究的新理论与方法.可靠性工程进展(2002年全国可靠性学术交流会论文集),2002:214~217
    [54] Huang Hong-Zhong, Li Yong-Hua, Zuo Ming J. Robust reliability analysis of vibration components. International Journal of Reliability and Applications, 2004, 5(2): 59~74
    [55] Onisawa T. An approach of system reliability analysis using failure possibility and success possibility. Fuzzy Sets and Systems, 1988, 27:87~103
    [56] Onisawa T. An approach of system reliability analysis using failure possibility and success possibility. Fuzzy Systems, 1995. International Joint Conference of the Fourth IEEE International Conference on Fuzzy Systems and The Second International Fuzzy Engineering Symposium. Proceedings of 1995 IEEE International Conference on, 1995, 4:2069~2076, 20~24
    [57] Utkin L V, Gurov S V. A general formal approach for fuzzy reliability analysis in the possibility context. Fuzzy Sets and Systems, 1996, 83:203~213
    [58] Cai K Y, Wen C Y, Zhang M L. Fuzzy variables as a basis for a theory of fuzzy reliability in the possibility context. Fuzzy Sets and Systems, 1991, 33:71~79
    [59] Gurov S V, Utkin L V. Reliability and optimization of systems with periodic modifications in the probability and possibility contexts. Microelectronics and Reliability, 1997, 37(5): 801~808
    [60] Utkin L V, Gurov S V, Shubinsky I B. Reliability of systems by mixture forms of uncertainty. Microelectronics and Reliability, 1997, 37(5): 779~783
    [61] Cappelle B, Kerre E E. On a possibilistic approach to reliability theory. In: Proceedings of the Second International Symposium on Uncertainty Analysis, Maryland MD, 1993, 415~418
    [62] Cremona C, Gao Y. The possibilistic reliability theory: theoretical aspects and applications. Structural Safety, 1997, 19(2): 173~201
    [63] 郭书祥,吕震宙,冯立富.基于可能性理论的结构模糊可靠性方法.计算力学学报,2002,19(1):89~93
    [64] 郭书祥,张陵,吕震宙.机械结构的能度可靠性分析方法.西北工业大学学报,2004,22(5):572~575
    [65] Shinozuka M. Maximum structural response to seismic excitations. Journal of Engineering Mechanics,1970, 96(3): 729~738
    [66] Pantelides C P, Tzan S-R. Convex model for seismic design of structures-1: analysis. Earthquake Engineering and Structural, 1996, 125:927~944
    [67] Pantelides C P, Tzan S-R. Convex model for seismic design of structures-2: design of conventional and active structures. Earthquake Engineering and Structural, 1996, 125:945~963
    [68] Tzan S-R, Pantelides C R Convex models for impulsive response of structures. Journal of Engineering Mechanics, 1996, 122(6): 521~529
    [69] Ben-Haim Y. Convex models of uncertainty in radial pulse bucking of shells. Journal of Applied Mechanics, 1993, 60(2): 683~688
    [70] Lindberg H E. An evaluation of convex modeling for multimode dynamic buckling. Journal of applied mechanics, 1992, 59:929~936
    [71] Lindberg H E. Convex models for uncertain imperfection control in multimode dynamic buckling. Journal of applied mechanics, 1992, 59:937~945
    [72] Elishakoff I, Elissaaff P, Glegg S A L. Nonprobabilistic convex-theoretic modeling of scatter in material properties. AIAA Journal, 1994, 32(4): 843~849
    [73] Elishakoff I, Fang J J. Diagnosis of local uncertain modifications in the boundary conditions of a rectangular plate via convex modeling. Computer Methods in Applied Mechanics and Engineering, 1995, 124:303~319
    [74] Elishakoff I, Colombi P. Combination of probabilistic and convex models of uncertainty when scarce knowledge is present on acoustic excitation parameters. Computer Methods in Applied Mechanics and Engineering, 1993, 104:187~209
    [75] Ben-Haim Y. A non-probabilistic measure of reliability of linear systems based on expansion of convex models. Structural Safety, 1995, 17(3): 91~109
    [76] Ben-Haim Y, Genda C, Soong T T. Maximum structural response using convex models. Journal of Engineering Mechanics, 1996, 122(4): 325~333
    [77] Ben-Haim Y. Sequential tests based on convex models of uncertainty. Mechanical Systems and Signal Processing, 1998, 12(3): 427~448
    [78] Ben-Haim Y, Elishakoff I. Non-probabilistic models of uncertainty in the nonlinear bucking of shells with general imperfections: theoretical estimates of the knockdown factor. Journal of Applied Mechanics, 1989, 56:403~410
    [79] Ben-Haim Y. Fatigue lifetime with load uncertainty represented by convex model. Journal of Engineering Mechanics, 1994, 120(3): 445~462
    [80] Ben-Haim Y, Laufer A. Robust reliability of projects with activity-duration uncertainty. ASCE Journal of Construction Engineering and Management, 1998, 124:125~132
    [81] Seiboid S, Ben-Haim Y. Robust reliability of diagnostic multi-hypothesis algorithms: application to rotating machinery, www.itwm.fraunhofer.de/zentral/download/berichte/bericht03.pdf
    [82] Pantelides C P. Buckling of elastic columns using convex model of uncertain springs. Journal of Engineering Mechanics, 1995, 121(7): 837~844
    [83] Yoshikawa N, Elishakoff I. Worst case estimation of homology design by convex analysis. Computers and Structures, 1998, 67:191~196
    [84] Qiu Z P, Elishakoff I. Antioptimization of structures with large uncertain-but-nonrandom via interval analysis. Computer Methods in Applied Mechanics and Engineering, 1998, 152(3/4): 361~372
    [85] Qiu Z P, Elishakoff I, Starnes J H. Derivation of multi-dimensional ellipsoidal convex model for experimental data. Mathematics Computation Modeling, 1996, 24(2): 103~114
    [86] Ganzerli S, Burkhart M F. Genetic algorithms for optimal structural design using convex models of uncertainties, www.cs.washington.edu/homes/burkhart/gangaf.pdf
    [87] Ganzerli S, DePalma P, Smith J D. Efficiency of genetic algorithms for structural design considering convex models of uncertainty, www.cs.washington.edu/homes/burkhart/GANEOG.pdf
    [88] Pantelides C P, Booth B C. Computer-aided design of optimal structures with uncertainty. Computers and Structures, 2000, 74:293~307
    [89] 常亮明.稳健可靠性:概念、方法和应用.质量与可靠性,2001,1:19~22
    [90] 常亮明.稳健可靠性理论的数学模型—凸集和凸模型.质量与可靠性,2001,2:21~24
    [91] 常亮明.与时间无关问题的稳健可靠性.质量与可靠性,2001,3:17~19,23
    [92] 常亮明.与时间有关问题的稳健可靠性.质量与可靠性,2002,6:15~18
    [93] 常亮明,周伦.稳健可靠性理论在科研管理中的应用.质量与可靠性,2003,6:28~30
    [94] 郭书祥,吕震宙,冯元生.基于区间分析的结构非概率可靠性模型.计算力学学报,2001,18(1):56~60
    [95] 郭书祥,吕震宙.结构的非概率可靠性方法和概率可靠性方法的比较.应用力学学报,2003,20(3):108~110
    [96] 郭书祥,吕震宙,冯元生.机械静强度可靠性设计的非概率方法.机械科学与技术(增刊),2000,19(1):56~60
    [97] 郭书祥,吕震宙.结构可靠性分析的概率和非概率混合模型.机械强度,2002,24(4):524~526
    [98] 郭书祥,吕震宙.结构体系的非概率可靠性分析方法.计算力学学报,2002,19(3):332~335
    [99] 吕震宙,冯蕴雯,岳珠峰.改进的区间截断法及基于区间分析的非概率可靠性分析方法.计算力学学报,2002,19(3):260~264
    [100] 郭书祥,吕震宙.基于非概率模型的结构稳健可靠性设计方法.航空学报,2001,22(5):451~453
    [101] 郭书祥,吕震宙.基于非概率模型的结构可靠性优化设计.计算力学学报,2002,19(2):198~201
    [102] Zhu L P, Elishakoff I. Hybrid probabilistic and convex modeling of excitation and response of periodic structures. Mathematical Problem in Engineering, 1996, 2:143~163
    [103] Zhingping Qiu. Comparison of static response of structures using convex models and interval analysis method. International Journal for Numerical Methods in Engineering, 2003, 56:1735~1753
    [104] Zhingping Qiu, Xiaojun Wang. Comparison of dynamic response of structures with uncertain-but-bounded parameters using non-probabilistic interval analysis method and probabilistic approach. International Journal of Solids and Structures. 2003.40:5423~5439
    [105] 邱志平,顾元宪.结构静力位移的非概率凸集合理论模型的摄动数值算法.固体力学学报,1997,18(1):86~89
    [106] 邱志平,陈山奇,王晓军.结构非概率鲁棒可靠性准则.计算力学学报,2004,21(1):1~6
    [107] 王晓军,邱志平.结构振动的鲁棒可靠性.北京航空航天大学学报,2003,29(11):1006~1010
    [108] 程远胜,曾广武.结构非概率可靠性优化设计.华中科技大学学报,2002,30(3):30~32
    [109] 程远胜,曾广武.考虑不确定性的船舶坐墩配墩优化.华中科技大学学报,2002,30(3):33~36
    [110] 程远胜,曾广武.非概率不确定性及其对船舶坐墩配墩优化的影响.工程力学,2003,20(3):129~133
    [111] 程远胜,钟玉湘,游建军,曾广武.基于凸集模型的船舶坐墩配墩鲁棒设计方法.中国造船,2004,45(1):72~78
    [112] 徐可君,江龙平,陈景亮,隋育松.叶片振动的非概率可靠性研究.机械工程学报,2002,38(10):17~19
    [113] Taguchi G Introduction to quality engineering. New York: Krauss International Publications, 1986
    [114] 中国机械工程学会,中国机械设计大典编委会.中国机械设计大典.南昌:江西科学技术出版社,2002
    [115] Chen W, Sahai A, Messac A, Sundararaj G J. Exploration of the effectiveness of physical programming in robust design. Journal of Mechanical Design, Transactions of the ASME, 2000, 122(2): 155~163
    [116] Chen W, Allen J K, Mistree F, Tsui K L. Procedure for robust design: minimizing variations caused by noise factors and control factors. Journal of Mechanical Design, Transactions of ASME, 1996,118(4): 478~485
    [117] Messac A, Ismail-Yahaya A. Multiobjective robust design using physical programming. Structural and Multidisciplinary Optimization, 2002, 23(5): 357-371
    [118] 陈立周.稳健设计.北京:机械工业出版社,1999
    [119] 陈立周.工程稳健设计的发展现状与趋势.中国机械工程,1998,9(6):59~63
    [120] Parkinson A, Sorensen C, Pourhassan N. A general approach for robust design. Journal of Mechanical. Design, 1993, 115:74~80
    [121] Parkinson A. Robust mechanical design using engineering models. Journal of Mechanical Design, 1995, 117:48~54
    [122] Belegundu A D., Zhang S. H. Robustness of design through minimum sensitivity. Journal of Mechanical design, 1992, 114(2): 213~217
    [123] Ting K L. Performance quality and tolerance sensitivity of mechanisms. Journal of Mechanical design,1996,118:144~150
    [124] 韩之俊.三次设计.北京:机械工业出版社,1992
    [125] 陈立周.基于随机模型的产品质量设计原理与方法.工程设计,1995,2(4):12~16
    [126] 陈立周.基于随机优化的工程稳健设计.北京科技大学学报,1999,21(1):57~59
    [127] 梁尚明,罗伟,徐礼钜.摆动活齿减速器的模糊稳健优化设计.机械设计,2004,21(10):21~23
    [128] 梁尚明,罗伟,李华,胡军,徐礼钜.摆动活齿减速器的双目标模糊稳健优化设计.四川大学学报,2004,36(3):81~84
    [129] 郭惠昕.模糊目标与模糊约束时的稳健设计研究.西安交通大学学报,2002,36(1):66~69
    [130] 郭惠昕,蔡安辉,何哲明.模糊约束条件的可行稳健性研究及其应用.机械科学与技术,2002,21(2):201~206
    [131] 郭惠昕.产品质量的模糊稳健性研究及模糊稳健优化设计方法.中国机械工程,2002,13(3):221~225
    [132] 郭惠昕.望大望小特性设计目标的模糊稳健优化设计方法.西安交通大学学报,2002,36(5):532~540

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700