用户名: 密码: 验证码:
不确定性下的多学科设计优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的发展,工程系统越来越复杂,其设计研发涉及到多个学科领域,并且学科之间存在着较强的耦合关系。多学科设计优化(Multidisciplinary Design Optimization, MDO)是一种复杂耦合系统设计的综合方法,其充分利用学科间的耦合作用,从系统的角度对复杂耦合系统进行优化设计,以期获得系统的整体最优解,达到提高产品性能、降低成本和缩短设计周期的目的。
     不确定性广泛存在于实际复杂耦合系统中,其大致可分为随机不确定性和认知不确定性两类。为获得高可靠性和高安全性的复杂耦合系统,考虑不确定性对系统的影响已成为工程系统设计的焦点之一。针对连续变量和参数含有随机不确定性的情形,基于可靠性的多学科设计优化受到了广泛关注,并取得了丰硕的研究成果。本文基于可能性理论,研究了连续变量和参数仅含认知不确定性的MDO问题、连续变量和参数同时含有随机和认知不确定性的MDO问题、单学科随机和认知不确定性下的混合离散变量设计优化问题、随机和认知不确定性下的混合离散变量MDO问题,拓展和完善了不确定性下MDO的理论体系,为不确定性下的多学科耦合系统的设计提供了有效的方法。
     本文的研究成果主要体现在如下几个方面:
     (1)基于可能性的多学科设计优化(Possibility Based MDO, PBMDO)。当连续变量和参数仅含有认知不确定性时,建立了MDO环境下的不确定性分析模型,提出了PBMDO问题的两种优化求解方法:PBMDO的顺序优化和可靠性评估法(PBMDO in framework of Sequential Optimization and Reliability Assessment, PBMDO-SORA); PBMDO的安全系数法(PBMDO in framework of Safety Factor based Approach, PBMDO-SFA)。
     (2)随机和认知不确定性下的多学科设计优化(Mixed Variables MDO, MVMDO)。当连续变量和参数同时含有随机和认知不确定性时,建立了MDO环境下的不确定性分析模型,提出了MVMDO问题的两种优化求解方法:MVMDO的顺序优化和可靠性评估法(MVMDO in framework of SORA, MVMDO-SORA); MVMDO的安全系数法(MVMDO in framework of SFA, MVMDO-SFA)。
     (3)单学科随机和认知不确定性下的混合离散变量设计优化(Random/Fuzzy Continuous Discrete Variables Design Optimization, RFCDV-DO)。单学科中,当离散、连续变量和参数同时含有随机和认知不确定性时,基于条件失效可能性,推导和提出了两种不确定性分析方法;提出了求解RFCDV-DO问题的顺序优化和可靠性分析方法(Random/Fuzzy SORA, RFSORA)。
     (4)随机和认知不确定性下的混合离散变量多学科设计优化(Random/Fuzzy Continuous Discrete Variables MDO, RFCDV-MDO)。当离散、连续变量和参数同时含有随机和认知不确定性时,在单学科不确定性分析方法的基础上,建立了MDO环境下两种不确定性分析模型;提出了求解RFCDV-MDO问题的顺序优化和可靠性分析方法(RFCDV-MDO in framework of SORA, RFCDV-MDO-SORA)。
With the development of science and technology, engineering system becomes more and more complex. Design of the system will involve multi-discipline field, and there are coupling relationships among disciplines. Multidisciplinary design optimization (MDO) is a synthesis method for design of complex and coupled system: with the aim of improving performance, reducing cost and shortening design period, it fully utilizes the coupling relationships among disciplines, and proceeds design optimization from system point of view to obtain the global optimum of a complex and coupled system.
     In practical complex and coupled system, uncertainty widely exists, and it can be divided into aleatory uncertainty and epistemic uncertainty. For achieving high reliable and safe complex and coupled system, the consideration of uncertainty's effect to the system has been a focus of engineering system design. For the case of continuous variables and parameters associated with aleatory uncertainty, Reliability Based Multidisciplinary Design Optimization (RBMDO) has gained increasing attention, and lots of achievements have been achieved. In this paper, based on possibility theory, different design optimization problems are studied:MDO problem with continuous variables and parameters associated with epistemic uncertainty; MDO problem with continuous variables and parameters associated with both aleatory and epistemic uncertainties; in single disciplinary, design optimization problem with discrete and continuous variables and parameters associated with both aleatory and epistemic uncertainties; MDO problem with discrete and continuous variables and parameters associated with both aleatory and epistemic uncertainties. The research in this paper extends and develops the study of MDO under uncertainty, and also provides effective design methods for multi-discipline coupling system.
     The contributions of this dissertation are summarized as follows:
     (1) Possibility Based Multidisciplinary Design Optimization (PBMDO). In MDO, when continuous variables and parameters are associated with epistemic uncertainty, the uncertainty analysis method is proposed, and two methods for solving PBMDO problems are developed, named as PBMDO in framework of Sequential Optimization and Reliability Assessment (PBMDO-SORA) and PBMDO in framework of Safety Factor based Approach (PBMDO-SFA), respectively.
     (2) MDO under both aleatory and epistemic uncertainties (Mixed Variables MDO, MVMDO). In MDO, when continuous variables and parameters are associated with both aleatory and epistemic uncertainties, the uncertainty analysis method is proposed, and also two methods for solving MVMDO problems are developed, named as MVMDO in framework of SORA (MVMDO-SORA) and MVMDO in framework of SFA (MVMDO-SFA), respectively.
     (3) Random/Fuzzy Continuous Discrete Variables Design Optimization (RFCDV-DO). In single discipline, when continuous and discrete variables and parameters are associated with both aleatory and epistemic uncertainties, based on conditional possibility of failure, two uncertainty analysis method are developed, and a method, named as Random/Fuzzy SORA (RFSORA), is developed to solve RFCDV-DO problems.
     (4) Random/Fuzzy Continuous Discrete Variables MDO (RFCDV-MDO). In MDO, when continuous and discrete variables and parameters are associated with both aleatory and epistemic uncertainties, based on developed uncertainty analysis methods in single discipline, two uncertainty analysis methods are proposed, and also a method of RFCDV-MDO in framework of SORA (RFCDV-MDO-SORA) is developed to solve RFCDV-MDO problems.
引文
[1]李旭宇,钟掘.基于多学科设计的复杂机电系统并行设计方法研究[J].机械与电子,2002,(6):29-31.
    [2]AIAA Multidisciplinary Design Optimizatoin Technical Committee. Current state of the art on multidisciplinary design optimization (MDO)[S]. AIAA White Paper. ISBN 1-56347-021-7,1991-09.
    [3]Helton J C. Uncertainty and sensitivity analysis in the presence of stochastic and subjective uncertainty[J]. Journal of Statistical Computation and Simulation,1997,57(1-4):3-76.
    [4]Agarwal H, Renaud J E, Preston E L, et al. Uncertainty quantification using evidence theory in multidisciplinary design optimization[J]. Reliability Engineering and System Safety,2004, 85(1-3):281-294.
    [5]Oberkampf W L, Helton J C, Joslyn C A, et al. Challenge problems:uncertainty in system response given uncertain parameters[J]. Reliability Engineering and System Safety,2004,85: 11-19.
    [6]Klir G J. Generalized information theory:aims, results, and open problems[J]. Reliability Engineering and System Safety,2004,85(1-3):21-38.
    [7]Sobieszczanski-Sobieski J, Haftka R T. Multidisciplinary aerospace design optimization: survey of recent developments[J]. Structural Optimization,1997,14:1-23.
    [8]余雄庆,丁运亮.多学科设计优化算法及其在飞行器设计中应用[J].航空学报,2000,21(1):1-6.
    [9]Chen T Y, Yang C M. Multidisciplinary design optimization of mechanisms[J]. Advances in Engineering Software,2005,36(5):301-311.
    [10]Fusato D, Celi R. Multidisciplinary design optimization for aeromechanics and handling qualities[J]. Journal of Aircraft,2006,43(1):241-252.
    [11]Perez R E, Liu H H T, Behdinan K. Multidisciplinary optimization framework for control configuration integration in aircraft conceptual design[J]. Journal of Aircraft,2006,43(6): 1937-1948.
    [12]Peoples R, Willcox K. Value-based multidisciplinary optimization for commercial aircraft design and business risk assessment[J]. Journal of Aircraft,2006,43(4):913-921.
    [13]Kim Y, Jeon Y H, Lee D H. Multi-objective and multidisciplinary design optimization of supersonic fighter wing[J]. Journal of Aircraft,2006,43(3):817-824.
    [14]Chiba K, Oyama A, Obayashi S, et al. Multidisciplinary design optimization and data mining for transonic regional-jet wing[J]. Journal of Aircraft,2007,44(4):1100-1112.
    [15]Chiba K, Obayashi S. Data mining for multidisciplinary design space of regional-jet wing[J]. Journal of Aerospace Computing, Information,2007,4(11):1019-1036.
    [16]Padula S L, Gumbert C R, Li W. Aerospace applications of optimization under uncertainty[J]. Optimization and Engineering,2006,7(3):317-328.
    [17]Brown N F, Olds J R. Evaluation of multidisciplinary optimization techniques applied to a reusable launch vehicle[J]. Journal of Spacecraft and Rockets,2006,43(6):1289-1300.
    [18]Tsuchiya T, Takenaka Y, Taguchi H. Multidisciplinary design optimization for hypersonic experimental vehicle[J]. AIAA Journal,2007,45(7):1655-1662.
    [19]Roshanian J, Keshavarz Z. Effect of variable selection on multidisciplinary design optimization:A flight vehicle example[J]. Chinese Journal of Aeronautics,2007,20(1): 86-96.
    [20]Yokoyama N, Suzuki S, Tsuchiya T, et al. Multidisciplinary design optimization of space plane considering rigid body characteristics[J]. Journal of Spacecraft and Rockets,2007, 44(1):121-131.
    [21]Roshanian J, Keshavarz Z. Multidisciplinary design optimization applied to a sounding rocket[J]. Journal of the Indian Institute of Science,2006,86(4):363-375.
    [22]Park E J, Da Luz L F, Suleman A. Multidisciplinary design optimization of an automotive magnetorheological brake design[J]. Computers and Structures,2008,86(3-5):207-216.
    [23]Peri D, Campana E F. Multidisciplinary design optimization of a naval surface combatant[J]. Journal of Ship Research,2003,47(1):1-12.
    [24]Neu W L, Hughes O, Mason W H, et al. A prototype tool for multidisciplinary design optimization of ships[C]. The 9th Congress of the International Maritime Association of the Mediterranean, Naples, Italy,2000.
    [25]Yang Y S, Park C K, Lee K H, et al. A study on the preliminary ship design method using deterministic approach and probabilistic approach including hull form[J]. Structural and Multidisciplinary Optimization,2007,33(6):529-539.
    [26]Young G S, Wu B C. Optimization of sequentially coupled elements in multistage multidisciplinary system design[C]. The 6th AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Bellevue, WA,1996.
    [27]Koch P N, Wujek B, Golovidov O, et al. Facilitating probabilistic multidisciplinary design optimization using kriging approximation model[C]. The 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Atlanta, GA,2002.
    [28]Besnard E, Schmitz A, Hefazi H, et al. Constructive neural networks and their application to ship multidisciplinary design optimization[J]. Journal of Ship Research,2007,51(4): 297-312.
    [29]Tann W, Shaw H J. The collaboration modelling framework for ship structural design[J]. Ocean Engineering,2007,34(5-6):917-929.
    [30]陈炉云,郭维,王德禹.多学科设计优化技术在舰船设计中的应用[J].航海工程,2006,35(4):28-31.
    [31]潘彬彬,崔维成.多学科设计优化方法用于船舶设计[J].船舶力学,2008,12(6):914-931.
    [32]潘彬彬,崔维成,冷文浩.水面舰船多学科设计优化[J].船舶力学,2009,13(3):56-65.
    [33]Kroo I, Altus S, Braun R, et al. Multidisciplinary optimization methods for aircraft preliminary design[S]. AIAA-94-4325,1994.
    [34]Sobieszczanski-Sobieski J. A step from hierarchic to non-hierarchic systems[S]. NASA-CP-3031,NASA,1989.
    [35]Balling R J, Sobieszczanski-Sobieski J. Optimization of coupled systems:a critical overview of approaches[J]. AIAA Journal,1996,34(1):6-17.
    [36]Balling R J, Wilkison C A. Execution of multidisciplinary design optimization aproaches on common test problems[J]. AIAA Journal,1997,35(1):178-186.
    [37]Hajela P, Bloebaum C L, Sobieszczanski-Sobieski J. Application of global sensitivity equations in multidisciplinary aircraft synthesis[J]. Journal of Aircraft,1990,27(12): 1002-1010.
    [38]Renaud J E, Gabriele G A. Improved coordination in non-hierarchic system optimization[J]. AIAA Journal,1993,31(12):2367-2373.
    [39]Sellar R S, Batill S M, Renaud J E. Response surface based, concurrent subspace optimization for multidisciplinary system design[C]. AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV,1996.
    [40]Sobieszczanski-Sobieski J, Agte J S, Sandusky R. Bi-level integrated system synthesis[S]. NASA-98-tm208715,1998.
    [41]Sobieszczanski-Sobieski J, Altus T D, Phillips M, et al. Bi-level integrated system synthesis (BLISS) for concurrent and distributed processing. The 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Atlanta, GA,2002.
    [42]Wang D, Wang G G, Naterer G F. Collaboration pursuing method for multidisciplinary design optimization problems[J]. AIAA Journal,2007,45(5):1091-1103.
    [43]Wang D, Wang G G, Naterer G F. Extended collaboration pursuing method for solving larger multidisciplinary design optimization problems[J]. AIAA Journal,2007,45(6):1208-1221.
    [44]McAllister C D, Simpson T W, Hacker K, et al. Integrating linear physical programming within collaborative optimization for multiobjective multidisciplinary design optimization[J], Structural and Multidisciplinary Optimization,2005,29(3):178-189.
    [45]Huang C H, Galuski J, Bloebaum C L. Multi-objective Pareto concurrent subspace optimization for multidisciplinary design[J]. AIAA Journal,2007,45(8):1894-1906.
    [46]Lin P P, Jules K. Fast multidisciplinary design optimization via Taguchi methods and soft computing[J]. Journal of Aerospace Computing, Information and Communication,2006,3(6): 309-319.
    [47]Haftka R T, Watson L T. Decomposition theory for multidisciplinary design optimization problems with mixed integer quasiseparable subsystems[J]. Optimization and Engineering, 2006,7(2):135-149.
    [48]Kim H M, Chen W, Wiecek M M. Lagrangian coordination for enhancing the convergence of analytical target cascading[J]. AIAA Journal,2006,44(10):2197-2207.
    [49]Gonzalez L F, Periaux J, Srinivas K, et al. A generic framework for the design optimization of multidisciplinary UAV intelligent systems using evolutionary computing[C]. The 44th AIAA Aerospace Science Meeting and Exhibit, Reno, NV,2006.
    [50]Gonzalez L F, Periaux J, Damp L, et al. Evolutionary methods for multidisciplinary optimization applied to the design of UAV systems[J]. Engineering Optimization,2007, 39(7):773-795.
    [51]Schut E J, Van Tooren M J L. Design "feasilization" using knowledge-based engineering and optimization techniques[J]. Journal of Aircraft,2007,44(6):1776-1786.
    [52]Geyer P. Multidisciplinary grammars supporting design optimization of buildings[J]. Research in Engineering Design,2008,18(4):197-216.
    [53]Sues R H, Oakley D R, Rhodes G S. Multidisciplinary stochastic optimization[C]. The 10th Conference on Engineering Mechanics, Boulder, CO,1995.
    [54]Du X, Chen W. Collaborative reliability analysis for multidisciplinary systems design[C]. The 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Atlanta, GA,2002.
    [55]Padmanabhan D, Batill S. Decomposition strategies for reliability based optimization in multidisciplinary system design[C]. The 9th AIAA/UASF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Atlanta, GA,2002.
    [56]Padmanabhan D, Batill S. Reliability based optimization using approximations with applications to multidisciplinary system design[C]. The 40th AIAA Science Meeting and Exhibit, Reno, NV,2002.
    [57]Padmanabhan D, Tappeta R V, Batill S M. Monte Carlo simulation in reliability based optimization applied to multidisciplinary system design[C]. The 44th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference, Norfolk, VA,2003.
    [58]Ahn J, Lee J, Kim S. Sequential reliability analysis framework for multidisciplinary systems[C]. The 10th AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Albany, NY,2004.
    [59]Gu X, Renaud J E, Penninger C L. Implicit uncertainty propagation for robust collaborative optimization[J]. Journal of Mechanical Design, ASME,2006,128(4):1001-1013.
    [60]Du X, Chen W. Methodology for uncertainty propagation and management in simulation based systems design[J]. AIAA Journal,2000,38(8):1471-1478.
    [61]Du X, Chen W. Efficient uncertainty analysis methods for multidisciplinary robust design[J]. AIAA Journal,2002,40(3):545-552.
    [62]Gu X, Renaud J E, Batill S M, et al. Worst case propagated uncertainty of multidisciplinary systems in robust design optimization[J]. Structural and Multidisciplinary Optimization, 2000,20(3):190-213.
    [63]Sues R H, Cesare M A. An innovative framework for reliability based MDO[C]. The 41st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Atlanta, GA,2000.
    [64]Koch P K, Wujek B, Golovidov O. A multi-stage, parallel implementation of probabilistic design optimization in an MDO framework[C]. The 8th AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Long Beach, CA,2000.
    [65]Agarwal H, Renaud J E, Mack J D. A decomposition approach for reliability based multidisciplinary design optimization. The 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Norfolk, VA,2003.
    [66]Chiralaksanakul A, Mahadevan S. Decoupled approach to multidisciplinary design optimization under uncertainty[J]. Optimization and Engineering,2007,8(1):21-42.
    [67]Du X, Guo J, Beeram H. Sequential optimization and reliability assessment for multidisciplinary systems design[J]. Structural and Multidisciplinary Optimization,2008, 35(2):117-130.
    [68]Ahn J, Kwon J H. An efficient strategy for reliability based multidisciplinary design optimization using BLISS[J]. Structural and Multidisciplinary Optimization,2006,31(5): 363-372.
    [69]余雄庆,姚卫星,薛飞,等.关于多学科设计优化计算框架的探讨[J].机械科学与技术,2004,23(3):286-289.
    [70]余雄庆,薛飞,穆雪峰,等.用遗传算法提高协同优化方法的可靠性[J].中国机械工程,2003,14(21):1808-1811.
    [71]胡洁,彭颖红,熊光楞.基于系统论的并行协同设计方法研究[J].计算机集成制造系统,2005,11(2):151-156.
    [72]Hu J, Peng Y, Xiong G. Parameter coordination and robust optimization for multidisciplinary design[J]. Chinese Journal of Mechanical Engineering (English Edition),2006,19(3): 368-372.
    [73]Hu J, Peng Y, Xiong G. Parameter coordination and optimization for collaborative design based on the constraints network[J]. International Journal of Advanced Manufacturing Technology,2007,32(11-12):1053-1063.
    [74]Hu J, Peng Y, Xiong G. Knowledge network driven coordination and robust optimization to support concurrent and collobrative parameter design[J]. Concurrent Engineering Research and Applications,2007,15(1):43-52.
    [75]刘蔚,崔维成.多学科设计优化:载人潜水器设计的一种新工具[J].船舶力学,2004,8(6):95-112.
    [76]刘蔚,苟鹏,操安喜,等.两层分级多学科设计框架在AUV的总体设计中的应用[J].船舶力学,2006,10(6):122-130.
    [77]操安喜,赵敏,刘蔚,等.多学科设计优化方法在潜艇概念设计中的应用研究[J].船舶力学,2007,11(3):373-382.
    [78]Gou P, Liu W, Cui W C. Comparison of approximation methods for multidisciplinary design optimization of ship structures[J]. Journal of Ship Mechanics,2007,11(6):913-923.
    [79]陈琪锋,戴金海.异步并行的分布式协同进化MDO算法研究[J].宇航学报,2002,23(4):57-61.
    [80]陈琪锋,戴金海.卫星星座系统多学科设计优化研究[J].宇航学报,2003,24(5):502-509,533.
    [81]谷良贤,龚春林.多学科设计优化方法比较[J].弹箭与制导学报,2005,25(1):60-62.
    [82]龚春林,谷良贤,袁建平.基于系统分解的多学科集成设计过程与工具[J].计算机集成制造系统,2006,12(3):334-338.
    [83]陈建江,孙建勋,常伯浚,等.基于人工神经网络的多学科优化设计研究[J].计算机集成制造系统,2005,11(10):1351-1356.
    [84]Chen J, Zhong Y, Xiao R, et al. The research of the decomposition-coordination method of multidisciplinary collaboration design optimization[J]. Engineering Computations,2005, 22(3):274-285.
    [85]Chen J, Xiao R, Zhong Y. A response surface based hierarchical approach to multidisciplinary robust optimization design[J]. International Journal of Advanced Manufacturing Technology,2005,26(4):301-309.
    [86]吴立强,尹泽勇,蔡显新.航空发动机涡轮叶片的多学科设计优化[J].航空动力学报,2005,20(5):795-801.
    [87]韩明红,邓家提.协同优化算法的改进[J].机械工程学报,2006,42(11):34-38.
    [88]李晓斌,熊波,王中伟,张为华.飞行器固体火箭助推器设计优化方法比较[J].固体火箭技术,2006,29(6):422-426.
    [89]袁亚辉,黄洪钟,张小玲.一种新的多学科系统不确定性分析方法—协同不确定性分析法[J].机械工程学报,2009,45(7):174-182.
    [90]Huang H Z, Yu H, Zhang X, et al. Collaborative optimization with inverse reliability for multidisciplinary systems uncertainty analysis[J]. Engineering Optimization,2010,42(8): 763-773.
    [91]黄洪钟,余辉,袁亚辉,等.基于单学科可行法的多学科可靠性设计优化[J].航空学报,2009,30(10):1871-1876.
    [92]韩明红,邓家提.多学科设计优化中的不确定性建模[J].北京航空航天大学学报,2007,33(1):115-1 18.
    [93]张为华,李晓斌.飞行器多学科不确定性设计理论概述[J].宇航学报,2004,25(6):702-706.
    [94]曹鸿钧,段宝岩.多学科系统非概率可靠性分析研究[J].机械科学与技术,2005,24(6):646-649.
    [95]曹鸿钧,段宝岩.基于凸集模型的多学科耦合系统不确定性分析[J].西安电子科技大学学报,2005,32(3):335-338,382.
    [96]Zadeh L A. Fuzzy sets as a basis for a theory of possibility[J]. Fuzzy Sets and Systems,1978, 1(1):3-28.
    [97]Dubois D, Prade H. Fuzzy sets in approximate reasoning. Part 1:Inference with possibility distributions[J]. Fuzzy Sets and Systems,1991,40(1):143-202.
    [98]Dubois D, Prade H. Fuzzy sets and probability:misunderstanding, bridges and gaps[C]. The 2nd IEEE International Conference on Fuzzy Systems, San Francisco, CA,1993.
    [99]Dubois D. Possibility theory and statistical reasoning[J]. Computational Statistics and Data Analysis,2006,51(1):47-69.
    [100]Dubois D, Hullermeier E. Comparing probability measures using possibility theory:a notion of relative peakedness[J]. International Journal of Approximate Reasoning,2007,45(2): 364-385.
    [101]Dubois D, HadjAli A, Prade H. A possibility theory based approach to the handling of uncertain relations between temporal points[J]. International Journal of Intelligent Systems, 2007,22(2):157-179.
    [102]Klir G J, Harmanec D. On modal logic interpretation of possibility theory[J]. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,1994,2(2):237-245.
    [103]Klir G J. On fuzzy set interpretation of possibility theory[J]. Fuzzy Sets and Systems,1999, 108(3):263-273.
    [104]De Cooman G. Possibility theory I:the measure and integral theoretic groundwork[J]. International Journal of General Systems,1997,25(4):291-323.
    [105]De Cooman G. Possibility theory II:conditional possibility [J]. International Journal of General Systems,1997,25(4):325-351.
    [106]De Cooman G. Possibility theory III:possibilistic independence[J]. International Journal of General Systems,1997,25(4):353-371.
    [107]Mesiar R. Fuzzy measures and integrals[J]. Fuzzy Sets and Systems,2005,156(3):365-370.
    [108]Kozine I O, Filimonov Y V. Imprecise reliabilities:experiences and advances[J]. Reliability Engineering and System Safety,2000,67(1):75-83.
    [109]Moller B, Graf W, Beer M. Discussion on "Structural reliability analysis through fuzzy number approach, with application to stability"[J]. Computers & Structures,2004,82(2-3): 325-327.
    [110]Moller B, Beer M, Graf W, et al. Possibility theory based safety assessmentJ]. Computer-Aided Civil and Infrastructure Engineering,1999,14(2):81-91.
    [111]Delmotte F, Borne P. Modeling of reliability with possibility theory[J]. IEEE Transactions on Systems, Man, and Cybernetics,1998,28(1):78-88.
    [112]Cai K Y, Wen C Y, Zhang M L. Fuzzy variables as a basis for a theory of fuzzy reliability in the possibility context[J]. Fuzzy Sets and Systems,1991,42(2):145-172.
    [113]Cai K Y, Wen C Y, Zhang M L. Posbist reliability behavior of typical systems with two types of failure[J]. Fuzzy Sets and Systems,1991,43(1):17-32.
    [114]Cai K Y, Wen C Y, Zhang M L. Fuzzy states as a basis for a theory of fuzzy reliability[J]. Microelectronics and Reliability,1993,33(15):2253-2263.
    [115]Cai K Y, Wen C Y, Zhang M L. Posbist reliability behavior of fault-tolerant systems[J]. Microelectronics and Reliability,1995,35(1):49-56.
    [116]Cai K Y, Wen C Y, Zhang M L. Mixture models in profust reliability theory[J]. Microelectronics and Reliability,1995,35(6):985-993.
    [117]Utkin L V, Gurov S V, Shubinsky I B. Reliability of systems by mixture forms of uncertainty[J]. Microelectronics and Reliability,1997,37(5):779-783.
    [118]Utkin L V. Fuzzy reliability of repairable systems in the possibility context[J]. Microelectronics and Reliability,1994,34(12):1865-1876.
    [119]Utkin L V, Gurov S V, Shubinsky I B. A method to solve fuzzy reliability optimization problem[J]. Microelectronics and Reliability,1995,35(2):171-181.
    [120]Utkin L V, Gurov S V. A general formal approach for fuzzy reliability analysis in the possibility context[J]. Fuzzy Sets and Systems,1996,83(2):203-213.
    [121]Cayrac D, Dubois D, Prade H. Handling uncertainty with possibility theory and fuzzy sets in a satellite fault diagnosis application[J]. IEEE Transactions on Fuzzy Systems,1996,4(3): 251-269.
    [122]Kangas A S, Kangas J. Probability, possibility and evidence:approaches to consider risk and uncertainty in forestry decision analysis[J]. Forest Policy and Economics,2004,6(2): 169-188.
    [123]Nikolaidis E, Chen S, Cudney H, et al. Comparison of probability and possibility for design against catastrophic failure under uncertainty[J]. Journal of Mechanical Design,2004,126(3): 386-394.
    [124]Choi K K, Youn B D, Du L. Integration of reliability-and possibility based design optimization using performance measure approach[C]. SAE World Congress, Detroit, Ml, 2005.
    [125]Youn B D. Integrated framework for design optimization under aleatory and/or epistemic uncertainties using adaptive-loop method[J]. Journal of Risk and Reliability,2007,221(2): 107-119.
    [126]Youn B D, Choi K K, Du L, et al. Integration of possibility-based optimization and robust design for epistemic uncertainty[J]. Journal of Mechanical Design,2007,129(8):876-882.
    [127]Du L, Choi K K, Youn B D. Inverse possibility analysis method for possibility-based design optimization[J]. AIAA Journal,2006,44(11):2682-2690.
    [128]Du L, Choi K K, Youn B D, et al. Possibility-based design optimization method for design problems with both statistical and fuzzy input data[J]. Journal of Mechanical Design,2006, 128(4):928-935.
    [129]Du L, Choi K K. An inverse analysis method for design optimization with both statistical and fuzzy uncertainties[J]. Structural and Multidisciplinary Optimization,2008,37(2):107-119.
    [130]Mourelatos Z p, Zhou J. Reliability estimation and design with insufficient data based on possibility theory[J]. AIAA Journal,2005,43(8):1696-1705.
    [131]Zhou J, Mourelatos Z P. A sequential algorithm for possibility-based design optimization[J]. Journal of Mechanical Design,2008,130(1):011001-1-011001-10.
    [132]Allison J T. Complex system optimization:a review of analytical target cascading, collaborative optimization, and other formulations[D]. PhD dissertation, Michigan: University of Michigan,2004.
    [133]Allison J T, Kokkolaras M K, Papalambros P Y. On selecting single-level formulations for complex system design optimization[J]. Journal of Mechanical Design,2007,129(9): 898-906.
    [134]Tedford N P, Martins J. Comparison of MDO architectures within a universal framework[C]. The 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Newport, Rhode Island,2006.
    [135]Renaud J E, Gabriele G A. Improved coordination in non-hierarchic system optimization[C]. The 33rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Washington, DC,1992.
    [136]Robinson D G. A survey of probabilistic methods used in reliability, risk and uncertainty analysis:analytical techniques I[S]. SANDIA report. SAND98-1189,1998-06.
    [137]北京大学数学科学学院.概率论[OL].http://www.math.pku.edu.cn:8000/misc/course/probability/index.html.2004.
    [138]Du L. Reliability-and possibility-based design optimization using inverse analysis methods[D]. PhD dissertation, Iowa:University of Iowa,2006.
    [139]刘宝碇,彭锦.不确定理论教程[M].北京:清华大学出版社,2005.
    [140]Shan S, Wang G G. Reliable design space and complete single-loop reliability-based design optimization[J]. Reliability Engineering & System Safety,2008,93(8):1218-1230.
    [141]Tu J, Choi K K. A new study on reliability based design optimization[J]. Journal of Mechanical Design,1999,121(4):557-564.
    [142]Youn B D, Choi K K. Selecting probabilistic approaches for reliability-based design optimization[J]. AIAA Journal,2004,42(1):124-131.
    [143]Youn B D, Choi K K. Enriched performance measure approach for reliability-based design optimization[J]. AIAA Journal,2005,43(4):874-884.
    [144]Youn B D, Choi K K, Park Y H. Hybrid analysis method for reliability-based design optimization[J]. Journal of Mechanical Design,2003,125(2):221-232.
    [145]Youn B D, Choi K K, Du L. Adaptive probability analysis using an enhanced hybrid mean value method[J]. Structural and Multidisciplinary Optimization,2005,29(2):134-148.
    [146]Yin X, Chen W. Enhanced sequential optimization and reliability assessment method[J]. Structure and Infrastructure Engineering,2006,2(3):261-275.
    [147]Du X, Chen W. Sequential optimization and reliability assessment method for efficient probabilistic design[J]. Journal of Mechanical Design,2004,126(2):225-233.
    [148]Wu Y T, Shin Y, Sues R, et al. Safety-factor based approach for probability-based design optimization[C]. The 42nd AIAA/ASME/ASC/AHS/ASC Structures, Structural Dynamics, and Materials Conference & Exhibit, Seattle, Washington,2001.
    [149]Yang R J, Gu L. Experience with approximate reliability-based optimization methods[J]. Structural and Multidisciplinary Optimization,2004,26(1-2):152-159.
    [150]Lewis K, Mistree F. Collaborative, sequential, and isolated decisions in design[C]. ASME Design Engineering Technical Conference, Sacramento, CA,1997.
    [151]MDO Test Suite. http://www.eng.buffalo.edu/Research/MODEL/test problem_4.html.
    [152]Hart C G. Multidisciplinary design optimization of complex engineering systems for cost assessment under uncertainty[D]. PhD dissertation, Michigan:University of Michigan,2010.
    [153]Parsons M G, Scott R L. Formulation of multicriterion design optimization problems for solution with scalar numerical optimization methods[J]. Journal of Ship Research,2004, 48(1):61-76.
    [154]Dubois D, Prade H. Unfair coins and necessary measures:a possible interpretation of histograms[J]. Fuzzy Sets and Systems,1983,10(1-3):15-20.
    [155]余俊,周济.最优化方法程序库OPB-2—原理及应用[M].武汉:华中理工大学出版社,1997.
    [156]Azarm S, Li W C. Multi-level design optimization using global monotonicity analysis[J]. Journal of Mechanisms, Transmissions, and Automation in Design,1989,111(2):259-263.
    [157]Gunawan S, Azarm S, Wu J, et al. Quality-assisted multi-objective multidisciplinary genetic algorithms[J]. AIAA Journal,2003,41(9):1752-1762.
    [158]Aute V, Azarm S. A genetic algorithms based approach for multidisciplinary multiobjective collaborative optimization[C].11th AIAA/1SSMO Multidisciplinary Analysis and Optimization Conference, Portsmouth, VA,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700