用户名: 密码: 验证码:
广东凡口铅锌矿矿床成因矿相学及成因矿物学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
凡口铅锌矿床是我国有名的超大型铅锌矿床之一,其位于南岭成矿带曲仁构造盆地的北缘。本文以宏观地质为基础,利用成因矿相学和成因矿物学,首先研究了凡口矿区的矿石类型、矿石物质组成、矿石结构构造特征、矿物世代特征、矿物共生组合等矿相学特征并得出该矿田成矿作用的期次和阶段及矿物生成顺序;其次对矿石中主要矿物的形态与内部结构、闪锌矿的微区成分特征、闪锌矿流体包裹体成分、闪锌矿成矿温度及硫同位素组成特征等进行成因矿物学研究。为矿区深边部找矿预测研究提供新的资料,从而有助于本区新一轮找矿勘查工作。主要的认识如下:
     1、根据凡口矿区矿石结构构造、矿物共生组合、矿物形成世代、矿化围岩蚀变等特征及其时空分布,不考虑表生氧化期的变化情况,可以确定矿区硫化物成矿全过程具有两个成矿期和三个成矿阶段。两个成矿期分别为沉积成岩成矿期和热液成矿期。三个成矿阶段分别为早期黄铁矿成矿阶段,中温铅锌硫化物成矿阶段和低温铅锌硫化物成矿阶段。
     2、从代表性矿体的矿石组构和矿物组合特点来看,凡口矿区多阶段成矿表现显著。其中闪锌矿具有三次结晶:第一世代棕黑色闪锌矿;第二世代棕褐色闪锌矿;第三世代黄褐色闪锌矿。方铅矿亦具有三次结晶,而黄铁矿在矿体内部则至少有四个世代。
     3、根据闪锌矿的铁含量、闪锌矿流体包裹体均一温度及变化规律、闪锌矿—方铅矿对的硫同位素平衡分馏温度,认为凡口矿区铅锌硫化物成矿作用发生在中—低温环境,但随着成矿作用的演化,自早到晚是经历了升温再到降温的过程,其中降温过程比较显著。
     4、凡口矿区铅锌硫化物的成矿流体为Na+-Cl--SO42-成分类型,而δ34S的组成经历由高到低的变化,显示各阶段成矿作用是相同成矿体系有规律的演化结果,但的δ34S值从中期阶段到晚期阶段远比早期阶段到中期阶段降低幅度更加显著,显示成矿流体在成矿晚期至少有部分的δ34S显著较低的流体参与成矿。
Fankou Pb-Zn ore deposit is one of the famous super-large Pb-Zn deposits in China. It is situated on the north of Quren structural basin in Nanling mineralization belt. Directed by the genetic mineralography and genetic mineralogy, based on the macro-geological research, firstly, some mineralograph properties of ore, such as ore type, ore composition, texture and structural feature, characteristics of mineral generations, mineral assemblage in Fankou Pb-Zn ore deposit have been researched. And the stage of mineralization and mineral formation order of this ore field was obtained. Secondly, based on X-ray diffraction, microprobe analysis, homogenization temperature and composition measurement of fluid inclusions and sulphur isotopic composition measurement, some genetic mineralogical properties of lead-zinc sulphides (especially sphalerite) have been studied. It provides new data for the prediction of depth and margin prospecting in the mining area. Thus, this contributes to the work of new round of prospecting in this area. The major cognition is as follows:
     1. According to the characteristics of texture and structural feature of ore, mineral assemblage, mineral generations and mineralized wall rock alteration in Fankou Pb-Zn district. Without considering the changes of supergenesis period, the whole sulfide ore mineralization process is classified into two metallogenic period and three mineralization stages. Two periods are sedimentary diagenetic period and hydrothermal metallogenic period. Three stages are the early pyrite mineralization stage, middle temperature lead-zinc sulphide mineralization stage, and low temperature lead-zinc sulphide mineralization stage.
     2. From the characteristics of ore fabric and mineral assemblage in representative ore-bodies, it can be discovered that multi-stage mineralization in Fankou ore district is significantly. Among them, sphalerite has three generations:the first generation of brown-black sphalerite, the second generation of brown sphlerite, the third generation of yellow-brown sphalerite. Galena also has three generations. And the pyrite in ore-body at least has four generations.
     3. According to the iron content of sphalerite, the homogenization temperature of sphalerite fliud inclusions.δ34S fractionation equilibrium temperature of sphalerite and galena, it is considered that the mineralization of lead-zinc sulfide in Fankou ore district occurred in middle-low temperature environment. But with the evolution of mineralization, from the early stage to the last stage, the temperature varied from low through high to low again, in which the cooling process is more significant.
     4. The compositions of ore-forming fluid in Fankou Pb-Zn ore deposit is Na+-Cl-SO42-.The value ofδ34S decreased, but the decreasing was much more drastic from the second to the third stage than from the first to the second stage, implying that a portion of newly-produced solution with much lower values of 834S participated in the ore-forming fluid during the third stage.
引文
[1]吴延之.凡口矿区成矿及外围找矿方向(摘要).[A].中国实用矿山地质学(下册)[C].2010
    [2]赖应篯.凡口铅-锌矿床的成因[J].地质论评,1988,(3):220-230
    [3]赖应篯.地热增温在层控成矿作用中的影响和意义[J].广东地质,1989,4(4):77-88
    [4]赖应钱.凡口铅锌矿矿石的硫同位素特征及其地质意义[J].广东地质,1990,(3):57-64
    [5]赖应篯.凡口铅锌矿矿石的成岩组构特征[J].广东地质,1991,6(4):43-48
    [6]赖应篯.凡口狮岭盲矿体群发现和评价过程的若干启迪[J].广东地质,1993,8(3):83-88
    [7]陈耀钦,曾波夫.试论凡口大型层控铅锌矿床的地质特征及矿床成因[J].沉积学报,1984,2(3):34-47
    [8]邱小平.凡口铅锌矿床矿石退化结构研究.矿床地质[J].1993,12(2):109-119
    [9]郑庆年.广东凡口铅锌矿床[M].北京:冶金工业出版社,1996
    [10]吴延之,黄生文.广东凡口铅锌矿床主要金属矿物的标型特征及其成因意义[J].桂林冶金地质学院学报,1987,7(1,2):1-10
    [11]卢焕章.广东凡口铅锌矿的成因研究[J].地球化学,1984,(4):357-365
    [12]吴健民,张声炎.论广东凡口铅锌矿床成矿作用及双源卤水成矿模式讨论[J].矿产与地质,1987,1(1):46-55
    [13]姜齐节,刘东升等.论渗流热卤水成矿作用的意义与成因标志(上)[J].地质与勘探,1980,(1):1-6
    [14]孙克祥.热卤水成矿说[J].地球与环境,1980,(1):23-37
    [15]陈学明.粤北地区层控矿床构造演化成矿模式和找矿预测[M].北京:地质出版社.1992
    [16]陈学明,邓军,翟裕生.凡口铅锌矿床海底热泉喷溢成矿的物理化学环境[J].矿床地质,1998,17(3):240-246
    [17]陈学明,邓军,翟裕生.凡口铅锌矿床地球化学特征及成矿作用分析[J].地质地球化学,1999,27(1):6-14.
    [18]陈学明,邓军,沈崇辉,兰景志.凡口超人型铅锌矿床成矿流体的物理特征和地球化学特征[J].地球科学,2000,17(4):438-442.
    [19]McCuaig T C, Kerrich R. P-T-deformation-fluid characteristics of lode gold deposits:evidence from alteration systematics. Ore Geology Review,1998, 12:381-54
    [20]Kaihui Yang, Steven D Scott. Possible contribution of a metal-rich magmatic fluid to a sea-floor hydrothermal system. Nature,1996,383:420-423
    [21]刘继顺.喷流沉积成矿作用研究的若干问题[J].矿产与地质,1996,10(1):6-10
    [22]邓军,陈学明.粤北凡口超大型铅锌矿床矿化流体喷溢中心的确定[J].岩石学报,2000,16(4):528-530
    [23]於崇文、骆庭川、鲍征宇等.南岭地区区域地球化学,中华人民共和国地质矿产部地质专报,(三)岩石矿物地球化学[M].北京:地质出版社,1987
    [24]於崇文.热液成矿作用动力学[M].武汉:中国地质大学出版社.1993
    [25]鲍征宇,於崇文.广东韶关地区区域地球化学研究[J].地球科学-中国地质大学学报,1986,(4):32
    [26]王濮,翁玲宝,陈代璋.粤北凡口铅锌矿床的成因,成矿时代,成矿模式与找矿[J].现代地质,1995,19(1):60-68
    [27]Doe B R, Stacey J S. The application of lead isotopes to the problems of ore genesis and ore prospect evaluation:a review. Econ Geol,1974,69:575-776
    [28]Zhang Shugen, Zhou Jianpu, et al. Geological and Geochemical Study on the Genesis of Fankou Pb-Zn Deposit[J].Geotectonica at Metallogenia 2001, 25(1-2):125-131
    [29]汪礼明.广东凡口超大型铅锌矿田成矿学研究:[博士学位论文].长沙:中南大学,2006
    [30]陈国达.多因复成矿床并从地壳演化规律看其形成机理[J].大地构造与成矿学,1982,6(1):1-55
    [31]陈国达.关于多因复成矿床的一些问题[J].大地构造与成矿学,2000,24(3):323-332
    [32]彭省临,陈子龙.多因复成矿床及其研究方法[M].见:地洼学说研究与应用.长沙:中南工业大学出版社,1992
    [33]王力,彭省临等.广东凡口铅锌矿多因复合成矿作用[J].桂林工学院学报,2003,23(2),149-153
    [34]张术根,周建普,黄满湘等,广东凡口铅锌(银)矿床成矿流体来源研究[J].矿产与地质,2002,16(4):199-202
    [35]广东省地质矿产局.广东省区域地质志[M].北京:地质出版社,1988
    [36]陈国达.地洼学说-活化构造及成矿理论体系概述[M].长沙:中南工业大学 出版社,1996
    [37]彭省临.湘南地洼型铅锌矿形成机制[M].长沙:中南工业大学出版社,1992
    [38]陈国达.地洼学说的新进展[M].北京:科学出版社,1992
    [39]陈国达.地洼学说讲义[M].长沙:中国科学院长沙大地构造研究所出版,1985
    [40]陈国达等.亚洲陆海壳体大地构造[M].长沙:湖南教育出版社,1998
    [41]陈国达.中国地台“活化区”的实例并着重讨论“华夏古陆”问题[J].地质学报,1956,36(3):239-272
    [42]陈尊达.广东凡口铅锌矿床的成矿特征及矿床成因[J].广东有色金属地质,1992,(2):18-26
    [43]郭福祥.华南大地构造演化的几点认识[J].广西地质,1994,7(1):1-15
    [44]王濮,翁玲宝,陈代璋.构造体系演化与成矿作用的多旋回性[M].见:中国矿床学-纪念谢家荣诞辰90周年文集.北京:学术书刊出版社,1989
    [45]林绍标.凡口超大型铅锌矿床地质特征[J].有色金属,1998,50(增刊):3-12
    [46]邱小平.广东凡口铅锌矿床成矿构造动力研究[J].中国地质科学院院报,1991,(23):57-72
    [47]邱小平.粤北韶关盆地构造演化与多金属成矿作用[J].地学探索,1992,(7):36-39
    [48]邱小平.广东凡口铅锌矿床成矿构造动力研究:[博士学位论文].北京:中国地质科学院,1988
    [49]张术根,马国秋,刘瑞第等.凡口铅锌矿东矿带成矿规律与成矿预测研究报告.中南大学,2001.
    [50]张术根,丁存根,李明高等.凡口铅锌矿区闪锌矿的成因矿物学研究[J].岩石矿物学杂志,2009,28(4):364-374
    [51]张先容.广东凡口铅锌矿床单矿物中微量元素的地球化学特征[J].桂林冶金地质学院学报,1993,13(1):68-75
    [52]曾波夫.试论凡口大型层控铅锌矿床的地质特征及矿床成因[J].沉积学报,1984,2(3):34-47
    [53]马国秋.凡口铅锌矿狮岭矿区成矿作用分析与找矿预测:[硕士学位论文].长沙:中南大学,2002
    [54]刘瑞弟.凡口铅锌矿的地质地球化学特征及成矿模式研究:[硕士学位论文].长沙:中南大学,2002
    [55]Skinner B J..American Mineralogist crystal structure database. American Mineralogist,1991(46):1399-1411
    [56]Skinner B J. Unit cell edges of natural and synthenic sphalerite, Amer,Miner.1991,(46):
    [57]Scott S. D. and Barnes H. L. Sphalerite-Wurtzite Equilibria and Stoichiometry. Geochim. Cosmochim. Acta.1972,(36):1275-1295
    [58]George Beaudoin, Acicular Sphalerite Enriched in Ag, Sb and Cu embedded within color-banded sphalerite from the Kokanee Range, British Columbia, Canada. Canada Mineralogist,2000 (38):1387-1398
    [59]Scott S D and Barnes H L. Sphalerite Geothermometry and Geobarometry. Econ. Geol.,1971(66):653-669
    [60]Barton P B. and Toulmin P. Phase Relations Involving Sphalerite in the Fe-Zn-S System, Econ. Geol.1986 (61):815-849
    [61]刘新星.矿物作用下A.ferrooxidans中磁小体相关基因的差异表达[J].生物技术,2010,20(1):21-24
    [62]高文亮,詹国年.赣北张十八铅锌矿流体包裹体研究[J].东华理工学院学报,2006,(S1):36-45
    [63]郭洪中,李兆麟.广东凡口超大型铅锌矿成矿温度研究[J].中山大学学报(自然科学版)增刊,1996(35):111-116
    [64]Czamanske G K. Experimentally determined sulfur isotope fractionation between sphalerite and galena in the temperature range 600 to 275℃, Econ. Geol.,1974, 69:17-25
    [65]Smith J W. A sulfur isotope geothermometer for the trisulfide system galena-sphalerite-pyrite. Chem Geol.,1977,19:83-90
    [66]Beaty D W and Hahn G A. Threlkeld W.E.Field. isotopie and chemical studies of tourmaline-bearing rocks in the Belt-Parcell supergroup:genetic constrains and exploration significance for Sullivan type ore deposits. Canadian. J. Earth Sci. 1988, (25):392-420.
    [67]Hutchinson R W. Mineral deposits as guides to superacrustal evolution in o'Connell, R. J. and Fyfe, W.S.(ed), Evolution of the Earth, A. G. U. G. A Geodynamics Series,1981,(5):120-140.
    [68]兰井志.粤北地区典型矿床矿物标型特征研究:[硕士学位论文].北京:中国地质大学,2002
    [69]Ohmoto H. systematics of sulfur and cabon isotopes in hydrothermal ore deposits. EeonGeol.1992, (67):551-554.
    [70]Ohmoto H. and Rye. Ro. Isotope of sulfur and Carbon. In Geochemistry of Hydrothermal ore Deposits. (ed. H. L Barnes), and Edition.John Wiley and sons. New York.1999,P509-567.
    [71]Ohmoto H and Goldhaber M B. Sulfur and carbon isotopes. In Geochemistry of Hydrothermal ore Deposits(ed. H. L Barnes),3rd Edition.John Wiley and sons. New York.1997,P517-611.
    [72]Roedder E and Dwornik E J. Sphalerite Color Banding:Lack of correlation with Iron Content, Pine Point, Northwest Torritories, Canada. Amer. Mineral.1998,53, 1523-1529

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700