用户名: 密码: 验证码:
基于CFD/CSD的机翼气动弹性计算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机翼气动弹性设计是飞行器研制和改型的关键内容。跨音速区存在颤振边界的“跨音速凹坑”,是气动弹性稳定性问题最为严重的区域。大变形改变了线性结构特性,是引起机翼极限环振荡(LCO)的重要因素。跨音速、大变形等非线性使得相应的计算分析和物理机理趋于复杂,由此展开的非线性气动弹性计算研究成为当前的理论热点和分析难点。提高跨音速气动力分析效率以满足工程设计需求,也是气动弹性领域的前沿课题。本论文紧扣上述研究进展,在高精度气动弹性计算和耦合界面插值方法、气动力降阶模型及高效颤振分析、典型机翼的气动弹性特性研究等方面开展了一些探索和应用性工作。发展了一种基于计算流体力学/计算结构动力学(CFD/CSD)的非线性气动弹性分析方法,并用于涉及大变形结构的跨音速LCO计算研究。1)建立了厚薄通用的四边形板单元和高性能
     的四边形膜单元,二者组合构成线性平板壳元分析;应用更新的拉格朗日(UL)格式,推导了适用于大变形、大转动、小应变的平板壳元几何非线性列式,并采用Newmark时间积分方法实现非线性动力分析。2)发展了一种新型的局部形式界面插值方法,利用薄板样条插值位移,相应函数的定义域选取局部形式。给出定义域的高效设置过程并由能量守恒原则推导出气动力的插值矩阵。3)以Euler方程作为流动控制方程,采用格心式有限体积法和双时间步长推进格式分别进行流场的空间和时间离散,且按照分区并行方式加速CFD计算。结构分析和界面插值模块以子程序形式和CFD求解器进行联接,进而形成完整的流固耦合分析能力。机翼的跨音速颤振计算表明了所建CFD/CSD方法的有效性。应用该方法研究了切尖三角翼的大幅LCO现象,其计算精度明显优于已有结果。实现了基于CFD技术的非定常气动力ARMA降阶模型(ROM),并开展跨音速颤振问题的高效计算研究。针对“3211”型多步训练输入,借鉴CFD/CSD方法完成关键的ROM训练过程。基于MATLAB系统辨识工具箱进行ARMA模型的参数估计和模型验证,并耦合结构模
     态叠加法构成颤振和伺服颤振分析。标准翼型和机翼的跨音速颤振计算体现了ARMA/ROM技术的精度和效率。应用该方法进行BACT二元翼段的伺服颤振分析,适当的舵面主动偏转有效提高了跨音速颤振速度。基于通用流固耦合分析程序,对新型运输机机翼和切尖三角翼模型的跨音速颤振和LCO特性进行了计算研究。运输机基本机翼的颤振结果接近于试验值,相应LCO现象是由大幅激波运动所引起的。翼梢小翼和C型翼梢对基本机翼的颤振特性产生了明显不利影响。分析中还采用虚拟质量方法分离了翼梢装置质量和气动力的作用。切尖三角翼LCO的计算和试验值吻合良好。小动压情况下,LCO主要由结构几何非线性引起;大动压情况下,LCO的产生受到结构几何及材料非线性的共同作用;源于塑性的材料非线性导致LCO幅值的急剧增大。首次发现材料非线性对气动弹性特性产生了显著影响。
     最后对本论文的工作进行总结,并展望了未来的研究方向。
Aeroelastic design of the wings is one of the crucial contents of aircraft development and retrofit. The transonic flight region presents the most serious conditions for aeroelastic instability since the wing experiences a sharp drop of the flutter behavior (transonic dip). The large deflection normally induces obvious changes in the characteristics of original wing structure and turns into an important aspect in the occurrence of limit-cycle oscillation (LCO). Some nonlinear factors, such as transonic flow and large deflection, are usually involved in the wing aeroelasticity, and make the associated computational analyses and physical mechanism be more complicated. Therefore, numerical investigation on nonlinear aeroelasticity currently becomes the theoretic hotspot and research challenge in international community. Another leading subject in aeroelasticity, which could significantly improve the efficiency of aerodynamic analysis in the transonic region, occurs to meet the demand of engineering design. This dissertation sticks to research progresses as highlighted above and performs relevant explorations and applications that will include:high precision aeroelastic analysis and interface interpolating approaches, reduced order model for the aerodynamics and its utilization in efficient flutter prediction, and aeroelastic mechanism studies of two typical wings.
     A nonlinear aeroelastic analysis approach using computational fluid dynamics/computational structure dynamics (CFD/CSD) is developed and applied to the study of transonic LCO that involves large structural deflection,(ⅰ) A quadrilateral flat-shell element is established, and it consists of a plate part for thick/thin plate analysis and a membrane part with high performance. Based on updated Lagrange (UL) scheme, geometrically nonlinear formulation is derived for the modeling of the structure with large deflation, large rotation and small strain. Newmark integration method is used for the time advancing of structural dynamics.(ⅱ) A new type interface interpolating method with the character of local form is presented and applied to fluid-structure interaction (FSI) problem. Thin plate spline is selected to fitting the function for displacement interpolation, and relevant domain is set effectively in a local form. Aerodynamic interpolating matrix is derived according to the energy conservation principle.(ⅲ) The transonic flow is governed by the Euler equations. A cell-centred finite volume approximation, in conjunction with the implicit dual time-stepping scheme, is used to discretize the governing equations. Also CFD calculation is conducted by parallel computing. The modules of nonlinear structure analysis and interface interpolation present as the subroutine of CFD solver, thus producing a FSI analysis capability. The transonic flutter simulation indicates the validity of presented CFD/CSD approach. Meanwhile, large-amplitude LCO of a cropped delta wing is studied, and its analysis precision is obviously better than existing results.
     An ARMA-based reduce order model (ROM) of unsteady aerodynamics is developed on the basis of CFD technique and system identification theory. The aerodynamic ROM is applied to efficient numerical study on transonic flutter problem. As a key aspect of ROM, the training procedure that involves generalized "3211" type input is formally conducted by the use of CFD/CSD. Then system identification toolbox in MATLAB environment is used for the estimation of system parameters and the verification of built model. The coupling of aerodynamic ROM and structural modal superposition method constitutes the flutter and servo-flutter analysis capability. Transonic flutter simulations of NACA0012airfoil and AGARD445.6wing indicate the precision and efficiency of the proposed ARMA/ROM. Besides, servo-flutter analysis of BACT airfoil in the transonic region is conducted by the ROM method, and the results indicate that active deflection of control surface heightens the flutter speed efficiently.
     Numerical investigations of transonic flutter and LCO behavior of new transport-type wing and cropped delta wing models are performed based on the general purpose FSI solver. Flutter characteristics of the basic transport wing numerically approach to the existing experimental values, and relevant LCO phenomenon is caused by the large-amplitude shock-wave motion. Contrastive analyses indicate that the winglet and C-type wingtip produce remarkable adverse effects on flutter characteristics of transport wing. Also the aerodynamic and mass effects of wingtip devices are identified separately by way of setting virtual mass. The simulation of the LCO of cropped delta wing correlates well with the experimental measurement. For lower dynamic pressures, geometric nonlinearity provides the proper mechanism for the development of the LCO. For higher dynamic pressures, material nonlinearity that arises from plasticity leads to a rapid rise in the LCO amplitude. This study demonstrates that material nonlinearity could have a remarkable influence on the aeroelastic behavior in some specific situations.
     Finally, the accomplished work of this dissertation is summarized, and the prospect of further research is also discussed.
引文
[1]陈桂彬,邹丛青,杨超.气动弹性设计基础.北京:北京航空航天大学出版社,2004.
    [2]叶正寅,张伟伟,史爱明等.流固耦合力学基础及其应用.哈尔滨:哈尔滨工业大学出版社,2010.
    [3]Kamakoti, R., Wei, S.. Fluid-structure interaction for aeroelastic applications. Progress in Aerospace Sciences,2004,40(8):535-558.
    [4]Dowell, E.H., Peters, D.A., Clark, R., et al. A modern course in aeroelasticity. Dordrecht, Springer,2005.
    [5]Friedmann, P.P., McNamara, J.J.. Thuruthimattam, B.J., et al.. Aeroelastic analysis of hypersonic vehicles. Journal of Fluids and Structures,2004,19(5):681-712.
    [6]McNamara, J.J., Friedmann, P.P., Powell, K.G., et al.. Aeroelastic and aerothermoelastic behavior in hypersonic flow. AIAA Journal,2008,46(10):2591-2610.
    [7]张伟伟.基于CFD技术的高效气动弹性分析方法研究,[博士学位论文].西安:西北工业大学,2006.
    [8]Raveh, D.H., Levy, Y., Karpel, M.. Structural optimization using computational aerodynamics. AIAA Journal,2000,38(10):1974-1982.
    [9]Mor, M., Livne, E.. Integrated aeroelastic shape optimization of flight vehicles. AIAA Paper2005-1890.
    [10]吴志刚,杨超.考虑物理参数摄动的静气动弹性鲁棒分析.航空学报,2006,27(4):565-569.
    [11]Yun, H., Han, J.. Robust flutter analysis of a nonlinear aeroelastic system with parametric uncertainties. Aerospace Science and Technology,2009,13(2-3):139-149.
    [12]Pendleton, E.W., Bessette, D., Miller, G.D., et al.. Active aeroelastic wing flight research program:technical program and model analytical development. Journal of Aircraft,2000,37(4):554-561.
    [13]伏欣H.W..气动弹性力学原理(沈克扬译).上海:上海科学技术文献出版社,1982.
    [14]Dugundji, J.. Personal perspective of aeroelasticity during the years1953-1993. Journal of Aircraft,2003,40(5):809-812.
    [15]Doggett R.V., Cazier, F.W.. Aircraft aeroelasticity and structural dynamics research at the NASA Langley research center-some illustrative results. NASA TM-100627,1988.
    [16]Ricketts, R.H.. Experimental aeroelasticity history, status and future in brief. NASA TM-100651,1990.
    [17]Cole, S.R., Noll, T.E., Perry, B.. Transonic dynamics tunnel aeroelastic testing in support of aircraft development. Journal of Aircraft,2003,40(5):820-831.
    [18]Ricketts, R.H., Doggett, R.V.. Wind-tunnel experiments on divergence of forward-swept wings. NASA TP-1685,1980.
    [19]Tang, D., Li, A., Dowell, E.H.. Experimental and theoretical study on rolling effectiveness of multiple control surfaces. AIAA Journal,2003,41(2):160-167.
    [20]Doggett, R.V., Rainey, A.G., Morgan, H.G.. An experimental investigation of aerodynamci effects of airfoil thickness on transonic flutter characteristics. NASA TM-X-79,1959.
    [21]Yates, E.C., Land, N.S., Foughner, J.T.. Measured and calculated subsonic and transonic flutter characteristics of A45°sweptback wing platform in air and in Freon-12in the Langley transonic dynamics tunnel. NASA TN-D-1616,1963.
    [22]Farmer, M.G., Hanson, P.W., Wynne, E.C.. Comparison of supercritical and conventional wing flutter characteristics. AIAA Paper1976-1560.
    [23]Doggett, R.V., Farmer, M.G.. Preliminary study of effects of winglets on wing flutter. NASA TM-X-3433,1976.
    [24]Ruhlin C.L., Rauch, F.J., Waters C.. Transonic flutter model study of a supercritical wing and winglet. Journal of Aircraft,1983,20(8):711-716.
    [25]Bhatia, K.G., Ruhlin, C.L.. Winglet effects on the flutter of a twin-engine transport-type wing. Journal of Aircraft,1985,22(7):587-594.
    [26]Dobbs, S. K. and Miller, G. D.. Self-induced oscillation wind tunnel test of a variable sweep wing. AIAA Paper1985-0739.
    [27]Cole S.R., Rivera, J.A.. Flutter study of an advanced composite wing with external stores. AIAA Paper1987-0880.
    [28]Gibbons, M.D.. Aeroelastic calculations using CFD for a typical business jet model. NASA CR-4753,1996.
    [29]Edwards, J.W., Schuster, D.M., Spain, C.V., et al. MAVRIC flutter model transonic limit cycle oscillation test. NASA TM-2001-210877,2001.
    [30]Schairer, E.T., Hand, L.A.. Measurements of unsteady aeroelastic model deformation by stereo photogrammetry. Journal of Aircraft,1999,36(6):1033-1040.
    [31]Dietz, G., Schewe, G., Kiebling, F., et al.. Limit-cycle-oscillation experiments at a transoport aricraft wing model. IFASD Ge-16,2003.
    [32]Schewe, G., Mai, H., Dietz, G.. Nonlinear effects in transonic flutter with emphasis on manifestations of limit cycle oscillations. Journal of Fluids and Structures,2003,18(1):3-22.
    [33]Dietz, G., Schewe, G., Mai, H.. Amplification and amplitude limitation of heave/pitch limit-cycle oscillations close to the transonic dip. Journal of Fluids and Structures,2006,22(4):505-527.
    [34]Tang, D., Dowell, E.H.. Experimental and theoretical study on aeroelastic response of high-aspect-ratio wings. AIAA Journal,2001,39(8):1430-1441.
    [35]Tang, D., Dowell, E.H.. Limit-cycle hysteresis response for a high-aspect-ratio wing model. Journal of Aircraft,2002,39(5):885-888.
    [36]Attar, P.J., Dowell, E.H., White, J.R.. Modeling delta wing limit-cycle oscillations using a high-fidelity structural model. Journal of Aircraft,2005,42(5):1209-1217.
    [37]Tang, D., Attar, P.J., Dowell, E.H.. Flutter/limit cycle oscillation analysis and experiment for wing-store model. AIAA Journal,2006,44(7):1662-1675.
    [38]Tang, D., Dowell, E.H.. Flutter and limit-cycle oscillations for a wing-store model with freeplay. Journal of Aircraft,2006,43(2):487-503.
    [39]Tang, D., Dowell, E.H.. Aeroelastic airfoil with free play at angle of attack with gust excitation. AIAA Journal,2010,48(2):427-442.
    [40]叶正寅.不同迎角下翼型的气动弹性性质研究.首届全国航空航天领域中的力学问题学术研讨会,成都,2004:240-42.
    [41]季辰,刘子强,傅光明.舵面跨声速气动弹性特性实验装置设计与分析.实验流体力学,2008,22(4):80-83.
    [42]袁锐知,吴志刚,杨超.基于虚拟仪器的气动弹性振动测试与分析系统.测控技术,2010,29(6):14-17.
    [43]张新,吴志刚,杨超.大变形状态机翼振动试验与气动弹性分析.航空工程进展,2010,1(1):76-79.
    [44]Lee, B.H.K.. Oscillatory shock motion caused by transonic shock boundary-layer interaction. AIAA Journal,1990,28(5):942-944.
    [45]陈忠实,余立.2.4m风洞飞行器模型抖振边界试验技术研究.流体力学实验与测量,2004,18(4):24-28.
    [46]Steiml, P.C., Schroder, W., Klaas, M.. Transonic shock buffet interference of an oscillating high aspect ratio swept wing. AIAA Paper2008-6908.
    [47]Gray, J.M., Gursul I., Butler R.. Aeroelastic response of a flexible delta wing due to unsteady vortex flows. AIAA Paper2003-1106.
    [48]Gordon, S.T., Gursul, I.. Lift enhancement over a flexible delta wing. AIAA Paper2004-2618.
    [49]Dixon, S.C., Gardner, J.E.. Loads and aeroelasticity division research and technology accomplishments for FY1987and plans for FY1988. NASA TM-100534,1988.
    [50]Healey, M.D.. F/A-18E/F vertical tail buffet design,analysis and test. AIAA Paper2003-1886.
    [51]李劲杰,杨青,肖春生等.边条翼布局流场及其双垂尾抖振特性研究.航空学报,2006,27(3):395-398.
    [52]吕志咏,张明禄,高杰.双立尾/三角翼布局的立尾抖振研究.实验流体力学,2006,20(1):13-17.
    [53]Tang, D., Dowell, E.H.. Experimental and theoretical study of gust response for high-aspect-ratio wing. AIAA Journal,2002,40(3):419-429.
    [54]Tang, D., Grasch, A., Dowell, E.H.. Gust response for flexibly suspended high-aspect ratio wings. AIAA Journal,2010,48(10):2430-2444.
    [55]陈磊,吴志刚,杨超等.多控制面机翼阵风减缓主动控制与风洞试验验证.航空学报,2009,30(12):2250-2256.
    [56]Waszak, M.R.. Modeling the benchmark active control technology wind-tunnel model for application to flutter suppression. AIAA Paper1996-3437.
    [57]孙伟.基于多级磁流变阻尼颤振半主动抑制,[博士学位论文].南京:南京航空航天大学,2005.
    [58]于明礼.基于超声电机作动器的二维翼段颤振主动抑制,[博士学位论文].南京:南京航空航天大学,2006.
    [59]Schuster, D.M., Liu, D.D., Huttsell, L.L.. Computational aeroelasticity:success, progress, challenge. Journal of Aircraft,2003,40(5):843-856.
    [60]Yurkovich, R.. Status of unsteady aerodynamic prediction for flutter of high-performance aircraft. Journal of Aircraft,2003,40(5):832-842.
    [61]Dowell, E.H., Edwards, J., Strganac, T.. Nonlinear aeroelasticity. Journal of Aircraft,2003,40(5):857-874.
    [62]Conner, M.D., Tang, D.M., Dowell, E.H., et al. Nonlinear behaviour of a typical airfoil section with control surface freeplay:a numerical and experimental study. Journal of Fluids and Structures,1997,11(1):89-109.
    [63]Liu, L., Wong, Y.S., Lee, B.H.K.. Application of the centre manifold theory in non-linear aeroelasticity. Journal of Sound and Vibration,2000,234(4):641-659.
    [64]赵永辉,胡海岩.具有操纵面间隙非线性二维翼段的气动弹性分析.航空学报,2003,24(6):521-525.
    [65]谷迎松,杨智春.带迟滞非线性环节二元机翼的气动弹性响应分析.机械科学与技术,2006,25(8):900-904.
    [66]牟让科,杨永年,叶正寅.带有结构刚度非线性的跨音速翼型颤振特性研究.振动工程学报,2001,14(3):319-321.
    [67]Thomas, J.P., Dowell, E.H., Hall, K.C.. Nonlinear inviscid aerodynamic effects on transonic divergence, flutter, and limit-cycle oscillations. AIAA Journal,2002,40(4):638-646.
    [68]Dowell, E.H., Thomas, J.P., Hall, K.C.. Transonic limit cycle oscillation analysis using reduced order aerodynamic models. Journal of Fluids and Structures,2004,19(1):17-27.
    [69]Kirshman, D.J., Liu, F.. Flutter prediction by an Euler method on non-moving Cartesian grids with gridless boundary conditions.Computers and Fluids,2006,35(6):571-586.
    [70]张伟伟,叶正寅.基于气动力降阶模型的跨音速气动弹性稳定性分析.振动工程学报,2007,24(6):768-772.
    [71]Geissler, W.. Numerical study of buffet and transonic flutter on the NLR7301airfoil. Aerospace Science and Technology,2003,7(7):540-550.
    [72]Deck, S.. Numerical simulation of transonic buffet over a supercritical airfoil. AIAA Journal,2005,43(7):1556-1566.
    [73]Raveh, D.E., Dowell, E.H.. Frequency lock-in phenomenon for oscillating airfoils in buffeting flows. Journal of Fluids and Structures,2011,27(1):89-104.
    [74]Tang, D.M., Dowell, E.H.. Comments on the ONERA stall aerodynamic model and its impact on aeroelastic stability. Journal of Fluids and Structures,1996,10(4):353-366.
    [75]Sarkar, S., Bijl, H.. Nonlinear aeroelastic behavior of an oscillating airfoil during stall-induced vibration. Journal of Fluids and Structures,2008,24(6):757-777.
    [76]Peiro, J., Galvanetto, U., Chantharasenawong, C. Assessment of added mass effects on flutter boundaries using the Leishman-Beddoes dynamic stall model. Journal of Fluids and Structures,2010,26(5):814-840.
    [77]Johansen, J.. Prediction of stall-induced vibrations using two-dimensional computational fluid dynamics. AIAA Paper2000-0021.
    [78]金琰,袁新,申炳禄.机翼大攻角下失速颤振的气动弹性研究.工程热物理学报,2003,23(5):573-575.
    [79]叶正寅,谢飞.中等及大迎角下的翼型气动弹性性质研究.风机技术,2009,30(2):9-13.
    [80]叶正寅,谢萌.翼型厚度对气动弹性特性的影响.力学与实践,2009,31(3):27-31.
    [81]Hwang, G.Y., Bendiksen,O.O.. Parallel finite element solutions of nonlinear aeroelastic problems in3D transonic flow. AIAA Paper1997-1032.
    [82]Seber, G.. Aeroelastic wing response analysis using finite elements in a large deformation direct Eulerian-Lagrangian formulation,[PhD thesis]. Los Angles:University of California in Los Angles,2004.
    [83]Seber, G., Bendiksen,O.O.. Nonlinear flutter calculations using finite elements in a direct Eulerian-Lagrangian formulation. AIAA Journal,2008,46(6):1331-1341.
    [84]Geuzaine, P., Brown, G., Harris, C., et al.. Aeroelastic dynamic analysis of a full F-16configuration for various flight conditions. AIAA Journal,2003,41(3):363-371.
    [85]Denegri, J., Charles, M., Dubben, J.A.. F-16limit cycle oscillation analysis using transonic small-disturbance theory. AIAA Paper2005-2296.
    [86]Dowell, E.H., Thomas, J.P., Hall, K.C.. Theoretical predictions of F-16fighter limit cycle oscillations for flight flutter testing. Journal of Aircraft,2009,46(5):1667-1672.
    [87]Chen, PC., Zhang Z.C., Sengupta, A., et al.. Overset Euler/boundary-layer solver with panel-based aerodynamic modeling for aeroelastic applications. Journal of Aircraft,2009,46(6):2054-2068.
    [88]Beran, P.S., Khot, N.S., Eastep, F.E., et al.. Numerical analysis of stroe-induced limit-cycle oscillation. Journal of Aircraft,2004,41(6):1315-1326.
    [89]Parker, G.H., Maple, R.C., Beran, P.S.. Computational aeroelastic analysis of store-induced limit-cycle oscillation. Journal of Aircraft,2007,44(1):48-59.
    [90]Woodgate, M.A., Badcock, K.J.. Fast prediction of transonic aeroelastic stability and limit cycles. AIAA Journal,2007,45(6):1370-1381.
    [91]Chen, G., Li, Y.M., Yan, G.R.. A nonlinear POD reduced order model for limit cycle oscillation prediction. Science China:Physics, Mechanics&Astronomy,2010,53(7):1325-1332.
    [92]陆志良,郭同庆,管德.跨音速颤振计算方法研究.航空学报,2004,25(3):214-217.
    [93]郭同庆.复杂组合体跨音速非定常气动力和颤振计算,[博士学位论文].南京:南京航空航天大学,2006.
    [94]杨国伟,钱卫.飞行器跨声速气动弹性数值分析.力学学报,2005,37(6):769-776.
    [95]徐敏,安效民,陈士橹.一种CFD/CSD耦合计算方法.航空学报,2006,27(1):33-37.
    [96]曾宪昂,徐敏,安效民等.基于CFD/CSD耦合算法的机翼颤振分析,西北工业大学学报,2008,26(1):79-82.
    [97]卢学成,叶正寅,张陈安.基于ANSYS/CFX耦合的机翼颤振分析.计算机仿真,2010,27(9):88-91.
    [98]Smith, M.J., Patil, M.J., Hodges, D.H.. CFD-based analysis of nonlinear aeroelastic behavior of high-aspect ratio wings. AIAA Paper2001-1582.
    [99]Garcia, J.A.. Numerical investigation of nonlinear aeroelastic effects on flexible high-aspect ratio wings. Journal of Aircraft,2005,42(4):1025-1036.
    [100]Palacios, R., Cesni, C.S.. Static nonlinear aeroelasticity of flexible slender wings in compressible flow. AIAA Paper2005-1945.
    [101]Beran, P.S., Hur, J.Y., Snder, R.D.. Static nonlinear aeroelastic analysis of a blended wing body. AIAA Paper2005-1944.
    [102]杨智春,党会学,李毅.大展弦比机翼非线性气动弹性特性的数值模拟研究.第十一届全国空气弹性学术交流会,昆明,2009:411-416.
    [103]Tang, D.M., Dowell, E.H.. Effects of geometric structural nonlinearity on flutter and limit cycle oscillations of high-aspect-ratio wings. Journal of Fluids and Structures,2004,19(3):291-306.
    [104]Wang, Z., Chen, PC, Liu, D.D., et al. Nonlinear aeroelastic analysis for a HALE wing including effects of gust and flow separation. AIAA Paper2007-2106.
    [105]冉玉国,刘会,韩景龙.大展弦比机翼的非线性气动弹性响应分析.空气动力学学报,2009,27(4):394-399.
    [106]Kim, K.S., Lee, I., Yoo, J.H., et al.. Efficient numerical aeroelastic analysis of a high-aspect ratio wing considering geometric nonlinearity. Journal of Aircraft,2010,47(1):338-342.
    [107]Gordnier, R.E., Melville, R.B.. Numerical simulation of limit-cycle oscillations of a cropped delta wing using the full navier-stokes equations. Internal Journal of CFD,2001,14(3):211-224.
    [108]Gordnier, R.E.. Computation of limit-cycle oscillations of a delta wing. Journal of Aircraft,2003,40(6):1206-1208.
    [109]Attar, P.J., Gordnier, R.E.. Aeroelastic prediction of the limit cycle oscillations of a cropped delta wing. Journal of Fluids and Structures,2006,22(1):45-58.
    [110]Attar, P.J., Dowell, E.H., Tang, D.M.. Delta wing with store limit-cycle-sscillation modeling using a high-fidelity structural model. Journal of Aircraft,2008,45(3):1054-1061.
    [111]张伟伟,夏巍,叶正寅.一种高超音速热气动弹性数值研究方法.工程力学,2006,23(2):41-46.
    [112]张伟伟,叶正寅.大后掠翼前缘涡对其颤振特性的影响.航空学报,2009,30(12):2263-2268.
    [113]Gordnier, R.E., Visbal, M.R.. Computation of the aeroelastic response of a flexible delta wing at high angles of attack. Journal of Fluids and Structures,2004,19(6):785-800.
    [114]Gordnier, R.E., Visbal, M.R.. Numerical simulation of nonslender delta wing buffet at high angle of attack. AIAA Paper2004-2047.
    [115]Attar, P.J., Gordnier, R.E., Visbal, M.R.. Numerical simulation of full-span delta wing buffet at high angle of attack,Journal ofAircraft.2008,45(3):857-867.
    [116]Edwards,J.W..Calculated viscous and scale effects on transonic aeroelasticity.Journal ofAircraft,2008,45(6):1863.1871
    [117]Bendiksen,O.O.Transonic limit cycle flutter of high-aspect-ratio swept wings.Journal ofAircraft,2008,45(5):1522-1533
    [118]Bendiksen,O.O..High-altitude limit cycle flutter of transonic wings.Joural ofAircraft,2009,46(1):123-136.
    [119]Bendiksen,O.O..Influence of shocks on transonic flutter of flexible wings.AIAAPaper2009-2313.
    [120]Guruswamy,G.P.,Tu,E.L..Navier-Stokes computations on nexible advanced transport Wings in transonic regime.Journal ofAircraft,1996,33(3):576-581.
    [121]张书俊,庞宇飞,王光学等.静气弹分析在超临界机翼设计中的应用.第十一届全国空气弹性学术交流会,昆明,2009:423-427.
    [122]王慧.民用飞机若干气动弹性问题研究,[硕士学位论文].北京:北京航空航天大学,2007.
    [123]司亮,王和平,龚翠翠.翼梢装置对机翼颤振特性影响研究.航空计算技术,2009,39(4):83-86.
    [124]郭同庆,董璐,陆志良.跨声速机翼抖振初始迎角N-S方程定常计算分析.航空学报,2008,29(4):840-844.
    [125]Brunet,V.,Deck,S..Zonal-detached eddy simulation of transonic buffet on a civil aircraf type configurati'on. Berlin,Springer-Verlag,2008:182-191.
    [126]Tang,D.M.,Dowell,E.H..Theoretical and experimental aeroelastic study for folding Wing structures.Journal of Aircrafl,2008,45(4):1136-1147.
    [127]Snyder,M.P.,Sanders,B.,Eastep,F.E.,et al..Vibratiion and flutter characteristics of a folding Wing.Journal of Aircrafl,2009,46(3):791-799.
    [128]Attar,P J.,Tang,D.M.,Dowell,E.H..Nonlinear aeroelastic study for folding Wing structures.AIAA Journal,2010,48(10):2187-2195.
    [129]Isogai,K.,Harino,Y..Optimum aeroelastic design of a flapping Wing.Journal ofAircraft,2007,44(6):2040-2048
    [130]Chimakurthi,S.K.,Tang,J.,Palacios,R.,et al..Computational aeroelasticity framework for analyzing flapping Wing micro air vehicles.AIAA Journal,2009,47(8):1865-1878.
    [13l]Shyy,W.,Aono,H.,Chimakurthi,S.K.,et al..Recent progress in flapping Wing aerodynamics and aeroelasticity. Progress in Aerospace Sciences,2010,46(7):284-327.
    [132]Djayapertapa,L.,Allen,C.B..Aeroservoelastic computations in unsteady transoni flow.AIAA Paper2000-4226.
    [133]Allen,C.B.,Djayapertapa,L..Numerical simulation of transonic flutter suPPression by active control.AIAA Paper2002-2713.
    [134]Stephens,C.H.,Arena,A.S..Gupta,K.K.,CFD-based aeroservoelastic predictions with comparisons to benchmark experimental data.AIAA Paper1999-0766.
    [135]Gupta,K.K.,Voelker,L.S.Bach,C.,et al..CFD-based aeroelastic analysis of the X-43hypersonic flight vehicle. AIAA Paper2001-0712.
    [136]Gupta,K.K.,Voelker,L.S.Bach,C..Finite element CFD-based aeroservoelastic analysis.AIAA Paper2002-0953
    [137]Gupta,K.K.,Bach,C..Computational fluid dynamics-based aeroservoelastic analysis with Hyper-X applications. AIAA Journal,2007,45(7):1459-1471.
    [138]Gupta,K.K.,Bach,C..Systems identification approach for a computational fluid dynamics-based aeroelastic analysis. AIAA Journal,2007,45(12):2820-2827.
    [139]张伟伟,叶正寅.非线性伺服气动弹性的时域数值模拟.振动工程学报,2005,18(1):103-107.
    [140]张伟伟,叶正寅.操纵面对跨声速机翼气动弹性特性的影响.航空学报,2007,28(2):257-262.
    [141]姚伟刚,徐敏.基于Volterra级数降阶模型的气动弹性分析.宇航学报,2008,29(6):1711-1716.
    [142]Cavagna, L., Ricci, S., Scotti, A.. Active aeroelastic control over a four control surface wing model. Aerospace Science and Technology,2009,13(7):374-382.
    [143]Friedmann, P.P., Guillot, D., Presente, E.. Adaptive control of aeroelastic instabilities in transonic flow and its scaling. AIAA Paper1997-0581.
    [144]张伟伟,叶正寅.跨音速颤振的主动抑制研究.振动工程学报,2007,20(3):224-231.
    [145]张子健,徐敏,陈士橹等.基于气动力辨识的ASE模型降阶研究.力学学报,2009,41(5):641-650.
    [146]Danowsky, B.P., Thompson, P.M., Farhat, C. et al.. Incorporation of feedback control into a high-fidelity aeroservoelastic fighter aircraft model. Journal of Aircraft,2010,47(4):1274-1282.
    [147]陈刚,李跃明,闫桂荣.基于降阶模型的气动弹性主动控制律设计.航空学报,2010,31(1):12-18.
    [148]Henshow, M.J., Badcock, K.J., Vio, G.A., et al.. Non-linear aeroelastic prediction for aircraft applications. Progress in Aerospace Sciences,2007,43(1):65-137.
    [149]安效民,徐敏,陈士橹.多场耦合求解非线性气动弹性的研究综述.力学进展,2009,39(3):284-298.
    [150]Bendiksen,O.O.. Review of unsteady transonic aerodynamics:theory and applications. Progress in Aerospace Sciences,2011,47(2):135-167.
    [152]Blazek, J.. Computational fluid dynamics:principles and aplications. Oxford, Elserier,2001.
    [153]阎超.计算流体力学方法及应用.北京:北京航空航天大学出版社,2006.
    [154]张兵,韩景龙.基于GPU和隐式格式的CFD并行计算方法.航空学报,2010,31(2):249-256.
    [155]Lucia, D.J., Beran, P.S., Silva, W.A.. Reduced-order modeling:new approaches for computational physics. Progress in Aerospace Sciences,2004,40(1):51-117.
    [156]Dowell, E.H., Hall, K.C.. Modeling of fluid structure interaction. Annual Review of Fluid Mechanics,2001,33:445-490.
    [157]张伟伟,叶正寅.基于CFD的气动力建模及其在气动弹性中的应用.力学进展,2008,38(1):77-86.
    [158]凌道盛,徐兴.非线性有限元及程序.杭州:浙江大学出版社,2004.
    [159]巴斯,K.J..工程分析中的有限元法(傅子智译).北京:机械工业出版社,1991.
    [160]Felippa, C.A., Haugen, B.. A unified formulation of small-strain corotational finite elements:Ⅰ. theory. Comput. Methods Appl. Mech. Engrg.,2005,194(21):2285-2335.
    [161]Tang, D.M., Henry, J., Dowell, E.H.. Limit cycle oscillations of delta wing models in low subsonic flow. AIAA Journal,1999,37(11):1355-1362.
    [162]Farhat, C., Zee, K.G., Geuzaine, P.. Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity. Comput. Methods Appl. Mech. Engrg.,2006,195(20):1973-2001.
    [163]Ahn, H.T., Kallinderis, Y.. Strongly coupled flow/structure interactions with a geometrically conservative ALE scheme on general hybrid meshes. Journal of Computational Physics,2006,219(2):671-696.
    [164]蒋跃文,张伟伟,叶正寅.基于CFD技术的流场/结构时域耦合求解方法研究.振动工程学报,2007,20(4):396-400.
    [165]Kim, Y.H., Kim, J.E.. A new hybrid interpolation method using surface tracking, fitting and smoothing function applied for aeroelasticity. AIAA Paper2005-2347.
    [166]Murti, V., Valliappan, S.. Numerical inverse isoparametric mapping in remeshing and nodal quantity contouring. Computers and Structures,1986,22(6):1011-1021.
    [167]Gorua, G.S.L., Badcock, K.J.. A data exchange method for fluid-structure interaction problems. The Aeronatuical Journal,2001,105(1046):215-221.
    [168]Sadeghi, M., Liu, F., Lai, K.L., et al. Application of three-dimensional interfaces for date transfer in aeroelastic computations. AIAA Paper2004-5376.
    [169]Guruswany, G.P.. A review of numerical fluids/structures interface methods for computations using high-fidelity equations. Computers and Structures,2002,80(1):31-41.
    [170]ZONA. ZAERO theoretical manual, version8.2,2008.
    [171]Smith, M.J., Hodges, D.H., Cesnik, C. Evaluation of computational algorithms suitable for fluid-structure interactions. Journal of Aircraft,2000,37(2):282-294.
    [172]Cavagna, L., Quaranta, G.., Mantegazza, P.. Application of Navier-Stokes simulations for aeroelastic stability assessment in transonic regime. Computers and Structures,2007,85(11-14):818-832.
    [173]王勖成,邵敏.有限单元法基本原理和数值方法.北京:清华大学出版社,1997.
    [174]龙驭球,龙志飞,岑松.新型有限元论.北京:清华大学出版社,2004.
    [175]岑松.新型厚薄板、层合板元与四边形面积坐标法,[博士学位论文].北京:清华大学,2000.
    [176]Stolarski, H.K., Chiang, Y.M.. Thin plate elements with relaxed Kirchhoff constraints. Int. J. Num. Meth. Eng.,1988,26(4):913-933.
    [177]岑松,龙志飞,龙驭球.对转角场和剪应变场进行合理插值的厚薄板通用四边形单元.工程力学,1999,16(4):1-15.
    [178]胡宇峰,戚震华.带旋转自由度的膜单元的研究进展.上海铁道大学学报,1999,20(6):78-83.
    [179]Ibrahimbegovic, A.. A novel membrane finite element with an enhanced displacement interpolation. Finite Elements in Analysis and Design,1990,7(2):167-179.
    [180]朱菊芬,郑罡.带旋转自由度CO类任意四边形板(壳)单元.计算力学学报,2000,17(3):287-292.
    [181]Macneal, R.H., Harder, R.L.. A refined four-noded membrane element with rotational degrees of freedom. Computers and Structures,1988,28(1):75-84.
    [182]Stolarski, H.K., Chiang, Y.M.. Assumed strain formulation for triangular C0plate elements based on a weak form of the Kirchhoff constraints. Int. J. Num. Meth. Eng.,1989,28(10):2323-2338.
    [183]Ibrahimbegovic, A.. Quadrilateral finite elements for analysis of thick and thin plates. Comput. Methods Appl. Mech. Engrg.,1993,110(3-4):195-209.
    [184]杨连.构造厚、薄板通用的可靠板元DM4单元.应用数学和力学,1999,20(3):305-313.
    [185]Bathe, K. J., Dvorkin E.N.. A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation. Int. J. Num. Meth. Eng.,1985,21(2):367-383.
    [186]Huang, H.C.. Implementation of assumed strain degenerated shell elemtnts. Computers and Structures,1987,25(1):147-156.
    [187]陈万吉,李勇东.带旋转自由度的精化非协调平面四边形等参元.计算结构力学及其应用,1993,10(3):22-29
    [188]Allman, D.J.. A compatible triangular element including vertex rotations for plane elasticity analysis. Computers and Structures,1984,19(1):1-8.
    [189]Cook, D.. On the Allman triangle and a related quadrilateral element. Computers and Structures,1986,22(6):1065-1067.
    [190]MacNeal, R.H., Harder, R.. A refined four-noded membrane element with rotational degrees of freedom. Computers and Structures,1988,28(1):75-84.
    [191]Ibrahimbegovic, A.. A novel membrane finite element with an enhanced displacement interpolation. Finite Elements in Analysis and Design,1990,7(2):167-179.
    [192]Yunus, S.H., Saigal, L., Cook, R.D.. On improved hybrid finite elements with ratational degree of freedom. Int. J. Num. Meth. Eng.,1989,28(6):785-800.
    [193]王福军.冲击接触问题有限元法并行计算及其工程应用,[博士学位论文].北京:清华大学,2000.
    [194]Fafard, M., Dhatt, C., Batoz, J.L.. A new discrete Kirchhoff plate_shell element with updated procedures. Computers and Structures,1989,31(4):591-606.
    [195]Rankin, C.C., Nour-Omid, B.. The use of projectors to improve finite element performance. Computers and Structures,1988,30(1-2):257-267.
    [196]Hinton, E., Owen, D.R.J.. Finite element software for plates and shells. Seansea, Pineridge Press,1984
    [197]Belytschko, T, Liu, W.K., Moran, B连续体和结构的非线性有限元(庄茁译).北京:清华大学出版社,2002.
    [198]陆明万,张雄,葛东云.工程弹性力学与有限元法.北京:清华大学出版社,2005.
    [199]Intel. Intel math kernel library feference manual. USA, Intel, Inc.,2008
    [200]Bathe, K. J., Cimento, A.P.. Some practical procedures for the solution of nonlinear finite element equations. Comput. Methods Appl. Mech. Engrg.,1980,22(1):59-85.
    [201]史爱明.杨永年,叶正寅.带结构刚度非线性的超音速弹翼颤振分析方法研究.西北工业大学学报,2003,21(4):481-485.
    [202]安效民.徐敏.一种几何大变形下的非线性气动弹性求解方法.力学学报,2011,43(1):97-104.
    [203]Gao, W.K.. Numerical simulation of3-D wing flutter in time domain. Journal of Astronautics,2008,29(4):1151-1156.
    [204]Quaranta, G., Masarati, P., Mantegazza, P.. A conservative mesh-free approach for fluid-structure interface problems. Int. Conf. on Computational Methods for Coupled Problems in Science and Engineering,2005.
    [205]Becker, A., Wendland, H.. Multivariate interpolation for fluid-structure-interaction problems using radial basis functions. Aerospace Science and Technology,2001,5(2):125-134.
    [206]Duhon, J.. Splines minimizing rotation-invariant semi-norms in sobolev spaces. Lecture Notes in Mathematics,1977,571(1):85-100.
    [207]Powell, M.J.D.. The theory of radial basis function approximation in1990. Advances in Numerical Analysis, Oxford, Clarendon Press,1992.
    [208]Fluent, Inc.. FLUENT6.3user's guide. USA:Fluent, Inc.,2006.
    [209]Fluent, Inc.. FLUENT6.3UDF manual. USA:Fluent, Inc.,2006.
    [210]Gordnier, R.E.. Computation of limit cycle oscillations of a delta wing. AIAA Paper2002-1411.
    [211]Melville, R.B., Grodnier, R.E.. Numerical simulation of large amplitude aeroelastic wing response. AIAA Paper1998-2657.
    [212]Raveh, D.E.. Computational-fluid-dynamics-based aeroelastic analysis and structural design optimization-a researcher's perspective. Comput. Methods Appl. Mech. Engrg.,2005,194(21):3453-3471.
    [213]Silva, W.A., Bartels, R.E.. Development of reduced-order models for aeroelastic analysis and flutter prediction using the CFL3Dv6.0code. Journal of Fluids and Structures,2004,19(5):729-745.
    [214]Melville, R.. Nonlinear mechanisms of transonic aeroelastic instability for the F-16. AIAA Paper2002-0871.
    [215]Silva, W.A.. Discrete-time linear and nonlinear aerodynamic impulse responses for efficient CFD analyses,[PhD thesis]. Virginia:The College of William and Mary,1997.
    [216]张伟伟,叶正寅.基于非定常气动力辨识技术的气动弹性数值模拟.航空学报,2006,27(4):579-583.
    [217]叶正寅,张伟伟.基于CFD的高效气动弹性计算方法.航空科学技术,2008,8(1):26-31.
    [218]徐敏,安效民,曾宪昂等.基于BPOD的气动弹性降阶及其在主动控制中的应用.中国科技论文在线,2008,3(10):781-86.
    [219]陈刚,李跃明,闫桂荣等.基于POD降阶模型的气动弹性快速预测方法研究.宇航学报,2009,30(5):1765-1769.
    [220]姚伟刚,徐敏,叶茂.基于特征正交分解的非定常气动力建模技术.力学学报,2010,42(4):637-644.
    [222]Romanowski, M.C., Dowell, E.H.. Reduced order unsteady aerodynamic and aeroelastic models using Karhunen-Loeve eigenmodes. AIAA Paper1996-3981.
    [223]Hall, K.C., Thomas, J.P., Dowell, E.H.. Proper orthogonal decomposition technique for transonic unsteady aerodynamic flows. AIAA Journal,2000,38(10):1853-1862.
    [224]Pettit, C.L., Beran, P.S.. Application of proper orthogonal decomposition to the discrete Euler equations. Int. J. Num. Meth. Eng.,2002,55(4):479-497.
    [225]Thomas, J.P., Hall, K.C., Dowell, E.H.. Three-dimensional transonic aeroelasticity using proper orthogonal decomposition-based reduced-order models. Journal of Aircraft,2003,40(3):544-551.
    [226]Lucia, D.J., Beran, P.S.. Reduced-order model development using proper orthogonal decomposition and Volterra theory. AIAA Journal,2004,42(6):1181-1190.
    [227]Lucia, D.J., Beran, P.S., Silva, W.A.. Aeroelastic system development using proper orthogonal decomposition and Volterra theory. Journal of Aircraft,2005,42(2):509-518.
    [228]Lieu, T., Farhat, C. Adaptation of aeroelastic reduced-order models and application to an F-16configuration. AIAA Journal,2007,45(6):1244-1257.
    [229]Amsallem, D., Farhat, C. Interpolation method for adapting reduced-order models and application to aeroelasticity. AIAA Journal,2008,46(7):1803-1813.
    [230]Thomas, J.P., Dowell, E.H., Hall, K.C.. Using automatic differentiation to create a nonlinear reduced-order-model aerodynamic solver. AIAA Journal,2010,48(1):19-24.
    [231]Crowell, A.R., McNamara, J.J., Kecskemety, K.M., et al. A reduced order aerothermodynamic modeling framework for hypersonic aerothermoelasticity. AIAA Paper2010-2969.
    [232]Ljung, L.. System identification toolbox for use with MATLAB. The MathWorks, Inc.,1995
    [233]Cowan, T.J., Arena, A.S., Gupta, K.K.. Accelerating computational fluid dynamics based aeroelastic predictions using system identification. Journal of Aircraft,2001,38(1):81-87.
    [234]Tang, D, Kholodar, D., Juang, J., et al.. System identification and proper orthogonal decomposition method applied to unsteady aerodynamics. AIAA Journal,2001,39(8):1569-1576.
    [235]陈刚,徐敏,陈士橹.基于Volterra级数的非线性非定常气动力降阶模型.宇航学报,2004,25(5):492-495.
    [236]徐敏,李勇,曾宪昂等.基于Volterra级数的非定常气动力降阶模型.强度与环境,2007,34(5):22-28.
    [237]Silva, W.A., Raveh, D.E.. Development of unsteady aerodynamic state-space models from CFD-based pulse responses. AIAA Paper2001-1213.
    [238]Raveh, D.E.. Reduced-order models for nonlinear unsteady aerodynamics. AIAA Journal,2001,39(8):1417-1429.
    [239]Raveh, D.E., Levy, Y., Karpel, M.. Efficient aeroelastic analysis using computational unsteady aerodynamics. Journal of Aircraft,2001,38(3):547-556.
    [240]Munteanu, S., Rajadas, J., Nam, C., et al. Reduced-order-model approach for aeroelastic analysis involving aerodynamic and structural nonlinearities. AIAA Journal,2005,43(3):560-571.
    [241]Silva, W. A.. Simultaneous excitation of multiple-input/multiple-output CFD-based unsteady aerodynamic systems. Journal of Aircraft,2008,45(4):1267-1274.
    [242]窦怡彬,徐敏,安效民.高超音速舵面颤振分析.工程力学,2009,26(11):232-237.
    [243]刘晓燕,杨超,吴志刚.适用于气动弹性的小波非定常气动力降阶方法.航空学报,2010,31(6):1149-1155.
    [244]刘晓燕,杨超,吴志刚.适用于气动弹性的气动力自适应辨识方法.工程力学,2010,27(12):201-205.
    [245]王博斌,张伟伟,叶正寅.基于神经网络模型的动态非线性气动力辨识方法.航空学报,2010,31(7):1379-1388
    [246]Marques, F.D.. Multi-layer functional approximation of non-linear unsteady aerodynamic response,[PhD thesis]. Glasgow, U.K.:University of Glasgow,1997.
    [247]Marques, F.D., Anderson, J.. Identification and prediction of unsteady transonic aerodynamic loads by multi-layer functions. Journal of Fluids and Structures,2001,15(1):83-106.
    [248]Won, K.S., Tsai, H.M.. Sadeghi, M., et al., Non-linear impulse methods for aeroelastic simulations. AIAA Paper2005-4845.
    [249]张伟伟,王博斌,叶正寅.跨音速极限环型颤振的高效数值分析方法.力学学报,2010,42(6):1023-1032.
    [250]Cowan, T.J.. Efficient aeroelastic CFD predictions using system identification,[Master thesis]. Oklahoma: Oklahoma State University,1998.
    [251]Raveh, D.E.. Identification of computational-fluid-dynamics based unsteady aerodynamic models for aeroelastic analysis. Journal of Aircraft,2004,41(3):620-632.
    [252]Zaide, A., Raveh, D.E.. Numerical simulation and reduced-order modeling of airfoil gust response. AIAA Journal,2006,44(8):1826-1834.
    [253]杨国伟,王济康.CFD结合降阶模型预测阵风响应.力学学报,2008,40(2):145-153.
    [254]张伟伟,叶正寅.基于ROM技术的阵风响应分析方法,力学学报.2008,40(5):593-598.
    [255]MATLAB. Function Reference for System Identification Toolbox software. The MathWorks, Inc.,2010.
    [256]蔡金狮,汪清,王文正.飞行器系统辨识学.北京:国防工业出版社,2003.
    [257]Munteanu, S., Rajadas, J., Nam, C., et al.. An efficient approach for solving nonlinear aeroelastic phenomenona using reduced-order modeling. AIAA Paper2004-2037.
    [258]魏巍MATLAB控制工程工具箱技术手册.北京:国防工业出版社,2004.
    [259]Zhang, W.W., Ye, Z.Y.. Control law design for transonic aeroservoelasticity. Aerospace Science and Technology,2007,11(1):136-145.
    [260]Rivera, J.A., Dansberry, B.E., Bennett, R.M., et al.. NACA0012benchmark model experimental flutter results with unsteady pressure distributions. AIAA Paper1992-2396-CP.
    [261]Stephens, C.H.. CFD-based aeroservoelastic predictions on abenchmark configuration using the transpiration method,[Master thesis]. Oklahoma:Oklahoma State University,1995.
    [262]张彦仲.大飞机气动总体技术的发展.中国工程科学,2009,11(5):4-17.
    [263]Kroo, I.. Nonplanar wing concepts for increased aircraft. VKI lecture series on Innovative Configurations and Advanced Concepts for Future Civil Aircraft,2005, pp.1-29.
    [264]宋笔锋,张彬乾,韩忠华.大型客机总体设计准则与概念创新.航空学报,2008,29(3):583-595.
    [265]连婷婷,张彬乾,陈真利.C型机翼几何参数影响规律和流动机理研究.航空计算技术,2008,38(2):43-47.
    [266]朱卫东,张彬乾.C型机翼局部优化设计研究.飞行力学,2009,27(3):11-14.
    [267]Ning, S. A., Kroo, I.. Multidisciplinary considerations in the design of wings and wing tip devices. Journal of Aircraft,2010,47(2):534-543.
    [268]Bunton, R.W., Denegri, C.M.. Limit cycle oscillation characteristics of fighter aircraft. Journal of Aircraft,2000,37(5):916-918.
    [269]Marsden, C.C., Price, S.J.. The aeroelastic response of a wing section with a structural freeplay nonlinearity:An experimental investigation. Journal of Fluids and Structures,2005,21(3):257-276.
    [270]Demasi, L., Livne, E.. Aeroelastic coupling of geometrically nonlinear structures and linear unsteady aerodynamics:Two formulations. Journal of Fluids and Structures,2009,25(5):918-935.
    [271]ANSYS, Inc.. ANSYS CFX-Solver Theory Guide, release12.0. USA:ANSYS, Inc.,2009.
    [272]ANSYS, Inc.. Theory Reference for the Mechanical APDL and Mechanical Applications, release12.0. USA: ANSYS, Inc.,2009.
    [273]Bendiksen, O.O.. Transonic limit cycle flutter/LCO. AIAA Paper2004-1694.
    [274]Byers, B.A., Brault, P.C., Dodson, R.O.. Design and analysis of winglets for military aircraft. AD AFFDL-TR-76-6,1976.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700