用户名: 密码: 验证码:
单轨应急梁稳定性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:单轨应急梁三面受力、曲线半径小,且线形多样化,采用了倒T形钢箱梁的结构形式,本文在总结国内外学者研究成果和相关设计规范的基础上,通过理论推导和有限元分析,并结合相关试验研究,对应急梁结构设计中的稳定问题展开较为系统的研究,主要完成了以下工作:
     (1)以侧向屈曲为控制因素,对应急梁在三种常见荷载作用下整体稳定的临界荷载计算公式进行了推导。对不同曲线半径的应急梁进行整体稳定的理论计算和数值分析,结果表明,应急梁侧向屈曲的临界荷载受曲线半径变化的影响不明显,可以按照直线梁的屈曲特性进行分析。
     (2)对影响应急梁侧向屈曲的重要因素进行参数分析,并推导了应急梁受压翼缘自由长度与其宽度之比的临界值计算公式,并由此给出了常见荷载作用下,不同截面尺寸比值时应急梁的最大跨宽比。
     (3)基于能量原理,对轴向压力、弯矩和剪力共同作用下,不等间距开口肋加劲板弹性屈曲的临界应力计算公式进行推导,将等间距布置的开口肋加劲板作为它的一种特殊情况,对公式进行了简化。
     (4)考虑截面实际形心轴的位置和闭口截面的抗扭刚度,单独计算母板与加劲肋的抗弯刚度,利用能量原理对不等间距闭口肋加劲板弹性屈曲的临界应力计算公式进行了推导。与目前文献中梯形肋加劲板屈曲的计算方法相比,本文方法能更准确地反映母板和加劲肋对截面抗弯刚度的贡献。
     (5)基于加劲板的弹性稳定理论,分别对影响开口肋和闭口肋加劲板屈曲临界应力的影响因素进行参数分析,根据应急梁加劲板的结构形式和纵向加劲肋的受力特点,推导得到了开口加劲肋和闭口加劲肋各自对应的最大尺寸限值和合理刚度的计算公式。
     (6)建立不同尺寸参数的矩形肋加劲板有限元模型,分别对其进行焊接残余应力的数值分析,并对影响矩形肋加劲板残余应力分布的影响因素进行了参数分析,在此基础上,对加劲板残余应力的数值计算结果进行分析处理,提出了矩形肋加劲板残余应力的简化计算模式。
     (7)同时考虑材料非线性和几何非线性,并计入初始几何缺陷和残余应力的影响,对采用不同尺寸参数的开口肋加劲板和矩形肋加劲板分别进行稳定极限承载力的有限元分析,并对影响其极限承载力的影响因素进行了参数分析。
ABSTRACT:Due to the properties:three sides loading, small curve radius and various linear of Monorail tracts, inverted T-shaped steel box girders are used for emergency beams. Based on the domestic and abroad researches, design rules and experiments, this paper investigate the stability issues in the design of emergency beams by theoretical and finite element analyses. The main works involved in this research are follows:
     (1) Lateral buckling as the controlling factor, the formulas used for calculating overall stability of emergency beams under different kinds of load were derived. The overall stabilities of the emergency beams with different radiuses were theoretically and numerically analyzed. The results showed that, the effect of radius on the critical buckling load was insignificant, and it can be calculated according to the characteristics of the buckling properties of linear beam.
     (2) A parametric study involving main factors which affect the lateral buckling of emergency beam was applied, and the formulas used for calculating critical values of the ratio (flange length/width, emergency beam) were deduced. So, the maximum ratios (span/width, emergency beam) under three kinds of load were presented for various emergency beams'cross-sections.
     (3) Based on the energy principle, the formulas used for calculating critical stress of elastic buckling of stiffened plates with unequal interval opening stiffeners were derived. The formulas were simplified later, regarding the stiffened plates with equal interval opening stiffeners as a special case.
     (4) Taking into account the actual position of the centroidal axis and tensional rigidity of the section, and considering the flexural rigidity of the stiffeners separately, the formula used for critical buckling stress of stiffened plates with unequal interval closed stiffeners was derived, using the energy theory. Comparing the current calculation methods of stiffened plates with trapezoidal stiffeners, the above formula can more accurately reflect the contribution of panels and stiffeners on bending stiffness of the cross-section.
     (5) Based on the elastic theory of stiffened plates, the main factors, which affect critical buckling stress of the stiffened plates with opening stiffeners and closed stiffeners, were parametric studied respectively. According to stiffened plates structures and force characteristics of the longitudinal stiffeners, the maximum limited sizes and reasonable stiffness formulas for opening stiffeners and closed stiffeners were derived.
     (6) Finite element models for the different size stiffened plates with rectangular stiffeners were established, for analyzing the welding residual stress of models. The factors which affect the residual stress profiles of the models were parametric studied. At last, the simplified diagrams for calculating residual stress profiles of the stiffened plates were presented.
     (7) Taking into account the material nonlinearly and geometric nonlinearity, and considering the initial geometric imperfections and residual stresses, the ultimate strength of stiffen plates with opening stiffeners and rectangular stiffeners, which are different on size, were analyzed by finite element models and, the factors affecting the ultimate strength were parametric studied.
引文
[1]李海川.城市单轨交通系统的选用探讨[J].铁道机车车辆,2003:40-42.
    [2]毛保华等编著.城市轨道交通[M].北京:科学出版社,2001.
    [3]蔡蔚,鲁强,李慕君.单轨列车城市新形象[J].交通与运输,2000(02):9-11.
    [4]雷慧锋,刘永锋.跨座式轨道交通建设中的关键技术[J].铁道标准设计,2001(01):1-4.
    [5]周庆瑞.重庆跨座式单轨交通的建设与技术创新[J].城市轨道交通研究,2005(04):5-8.
    [6]边晓春,陶明鹤.单轨线路在重庆轨道交通线网中的功能定位[J].现代城市轨道交通,2006(05):25-27.
    [7]张洪伟.应急轨道梁的结构设计计算[D].北京交通大学,2007.
    [8]张彩然.跨座式单轨交通PC轨道梁应急抢修系统的研究[D].北京交通大学,2004.
    [9]王浩.重庆轻轨应急轨道梁结构分析与研究[D].北京交通大学结构工程,2008.
    [10]鲁洋.应急梁制作控制软件系统的开发[D].北京交通大学,2008.
    [11]郭子煜.应急轨道梁支座与超高设计研究[D].北京交通大学,2008.
    [12]刘磊.单轨交通应急梁支座与超高研究以及轨道梁生产用模板误差分析[D].北京交通大学桥梁与隧道工程,2009.
    [13]董阁.跨座式单轨交通应急梁拼装控制系统和支撑垫石定位分析系统开发[D].北京交通大学桥梁与隧道工程,2009.
    [14]张红艳.应急轨道梁拼装台的设计与研究[D].北京交通大学桥梁与隧道工程,2010.
    [15]王宇.应急轨道梁拼装台和支座的结构设计[D].北京交通大学桥梁与隧道工程,2010.
    [16]李圣强.应急轨道梁支座的结构设计[D].北京交通大学,2011.
    [17]Troitsky M S. Stiffened plates:bending, stability, and vibrations[M]. Elsevier Scientific Pub. Co.,1976.
    [18]Timoshenko., S, Woinowski-Krieger, et al. Theory of plates and shells[M]. New York: McGraw-Hill,1959.
    [19]美铁摩辛柯S.弹性稳定理论[M].北京:科学出版社,1965.
    [20]柏拉希F.金属结构的屈曲强度[M].北京:科学出版社,1965.
    [21]Chatterjee, S. Ultimate load analysis and design of stiffened plates in compression[M]. London:London University,1978.
    [22]Kristek V, Skaloud M. Solution to The Stability Problem of Longitudinally Stiffened Compression Flanges by The Folded-Plate Theory.[J]. Acta Technica CSAV (Ceskoslovensk Akademie Ved),1977,22(4):387-412.
    [23]Kasparova H, Kristek V, Skaloud M. On Some Stability Problems of Steel Box Girder Bridges.[J]. Acta Technica CSAV (Ceskoslovensk Akademie Ved),1983,28(6):716-734.
    [24]Kasparova H, Kristek V, Skaloud M. On the Optimum Design of Steel Box-girder Bridges with Regard to Stability.[J]. Stavebnicky casopis,1984,32(6):451-463.
    [25]Sherbourne A N, Bedair O K. Plate-Stiffener Assemblies in Uniform Compression. Part Ⅱ: Postbuckling[J]. Journal of Engineering Mechanics,1993,119(10):1956-1972.
    [26]Osama K. B. Influence of in-plane restraint on the buckling behaviour of plates under uniform compression, shear and in-plane bending[J]. Computer Methods in Applied Mechanics and Engineering,1997,148(1-2):1-10.
    [27]Osama K. B. Influence of stiffener location on the stability of stiffened plates under compression and in-plane bending[J]. International Journal of Mechanical Sciences, 1997,39(1):33-49.
    [28]Osama K. B. The application of mathematical programming techniques to the stability analysis of plate/stiffener assemblies[J]. Computer Methods in Applied Mechanics and Engineering,1997,148(3-4):353-365.
    [29]Bedair O K, Troitsky M S. A study of the fundamental frequency characteristics of eccentrically and concentrically simply supported stiffened plates[J]. International Journal of Mechanical Sciences,1997,39(11):1257-1272.
    [30]Osama K. B. A Contribution to the stability of stiffened plates under uniform compression[J]. Computers & Structures,1998,66(5):535-570.
    [31]Bedair O K, Sherbourne A. On the stability of plates under combined compression and in-plane bending[J]. Computers & Structures,1994,53(6):1453-1464.
    [32]Bedair O, Sherbourne A. Unified Approach to Local Stability of Plate/Stiffener Assemblies[J]. Journal of Engineering Mechanics,1995,121(2):214-229.
    [33]Bedair O. Stability Analysis of Plates With Partial Restraints Using Unconstrained Optimization Techniques[J]. International Journal of Structural Stability and Dynamics, 2010,10(3):571-587.
    [34]Bedair O. Analysis and Limit State Design of Stiffened Plates and Shells:A World View[J]. Applied Mechanics Reviews,2009,62(2):20801-20816.
    [35]Higgins C. LRFD Orthotropic Plate Model for Live Load Moment in Filled Grid Decks[J]. Journal of Bridge Engineering,2003,8(1):20-28.
    [36]Higgins C. Orthotropic Plate Model for Estimating Deflections in Filled Grid Decks[J]. Journal of Bridge Engineering,2004,9(6):599-605.
    [37]Huang H, Kaliakin V N, Chajes M J, et al. Application of Orthotropic Thin Plate Theory to Filled Steel Grid Decks for Bridges[J]. Journal of Bridge Engineering,2007,12(6):807-810.
    [38]Turan O T, Higgins C. Analytical Solutions to General Orthotropic Plates under Patch Loading[J]. Journal of Engineering Mechanics,2011,137(7):504-508.
    [39]Higgins C, Turan O T, Connor R J, et al. Unified Approach for LRFD Live Load Moments in Bridge Decks[J]. Journal of Bridge Engineering,2011,16(6):804-811.
    [40]Sridharan S, Zeggane M. Stiffened plates and cylindrical shells under interactive buckling[J]. Finite Elements in Analysis and Design,2001,38(2):155-178.
    [41]Guo M, Harik I E, Ren W. Buckling behavior of stiffened laminated plates[J]. International Journal of Solids and Structures,2002,39(11):3039-3055.
    [42]Graciano C A, Edlund B. Nonlinear FE analysis of longitudinally stiffened girder webs under patch loading[J]. Journal of Constructional Steel Research,2002,58(9):1231-1245.
    [43]Hughes O F, Ghosh B, Chen Y. Improved prediction of simultaneous local and overall buckling of stiffened panels[J]. Thin-Walled Structures,2004,42(6):827-856.
    [44]Leheta H W, Mansour A E. Reliability-based method for optimal structural design of stiffened panels[J]. Marine Structures,1997,10(5):323-352.
    [45]A. C. A new formulation for longitudinally stiffened webs subjected to patch loading[J]. Journal of Constructional Steel Research,2007,63(10):1328-1340.
    [46]龚晖.折板理论在箱梁分析中的应用[J].西南交通大学学报,1989(02):103-110.
    [47]周世植.空腹箱形梁的整体稳定性分析[J].武汉水利电力学院学报,1990(4):31-37.
    [48]周维贤.正交异性板颈缩变形理论——Ⅰ.失稳变形开始判据[J].中国科学(A辑数学物理学天文学技术科学),1993(08):889-896.
    [49]王彪.四边简支正交异性板Reissner修正理论的解析解[J].华东冶金学院学报,1993(02):53-56.
    [50]张建武,林忠钦.正交异性板的后屈曲和Karman型精化理论[J].上海交通大学学报(博士后专辑),1994(04):109-114.
    [51]刘世恩.应用正交异性板理论分析正交异性桥面板[J].河北理工学院学报,1997(03):71-78.
    [52]苏庆田,吴炜,吴冲.一种新型扁平钢箱梁实腹式横隔板构造[J].结构工程师,2005(03):6-10.
    [53]吴炜.钢桥受压加劲板稳定与加劲肋设计方法研究[D].同济大学土木工程·桥梁与隧道工程,2006.
    [54]刘华峰,曹平周.加劲肋对简支钢梁整体稳定性影响分析[J].常州工学院学报,2005,18(z1):21-23.
    [55]李立峰,邵旭东.正交异性闭口加劲板的承载力分析理论及试验研究[J].土木工程学报,2007,40(6):42-48.
    [56]Zhang S, Khan I. Buckling and ultimate capability of plates and stiffened panels in axial compression[J]. Marine Structures,2009,22(4):791-808.
    [57]吴海洋,霍莉莉.交叉加劲肋对工字型钢梁稳定承载力的影响[J].钢结构,2010,25(7):23-25.
    [58]张哲,李国强,孙飞飞.波纹腹板钢梁受弯稳定性研究[J].工程力学,2011(8):77-82.
    [59]Evans H R, Tang K H. Longitudinal stiffeners for Girder webs; Their behaviour and design[J]. Journal of Constructional Steel Research,1986,6(3):173-197.
    [60]K. G. Experimental study of stiffened plates in compression up to collapse[J]. Journal of Constructional Steel Research,1994,28(2):197-221.
    [61]Jiang W, Bao G, Roberts J C. Finite element modeling of stiffened and unstiffened orthotropic plates[J]. Computers and Structures,1997,63(1):105-117.
    [62]Alagusundaramoorthy P, Sundaravadivelu R, Ganapathy C. Experimental study on collapse load of stiffened panels with cutouts[J]. Journal of Constructional Steel Research, 1999,52(2):235-251.
    [63]Alagusundaramoorthy P, Aruljayachandran S, Sundaravadivelu R. Stability of Stiffened Plates with Initial Imperfections[J]. Journal of Engineering Mechanics,2003,129(7):751-758.
    [64]Sheikh I A, Grondin G Y, Elwi A E. Stiffened steel plates under uniaxial compression[J]. Journal of Constructional Steel Research,2002,58(5-8):1061-1080.
    [65]C. A G. Ultimate resistance of longitudinally stiffened webs subjected to patch loading[J]. Thin-Walled Structures,2003,41(6):529-541.
    [66]Graciano C, Johansson B. Resistance of longitudinally stiffened I-girders subjected to concentrated loads[J]. Journal of Constructional Steel Research,2003,59(5):561-586.
    [67]Graciano C, Edlund B. Failure mechanism of slender girder webs with a longitudinal stiffener under patch loading[J]. Journal of Constructional Steel Research,2003,59(1):27-45.
    [68]Graciano C, Casanova E, Martinez J. Imperfection sensitivity of plate girder webs subjected to patch loading[J]. Journal of Constructional Steel Research,2011,67(7):1128-1133.
    [69]Chou C C, Uang C M, Seible F. Experimental evaluation of compressive behavior of orthotropic steel plates for the new San Francisco-Oakland Bay Bridge[J]. Journal of Bridge Engineering,2006,11(2):140-150.
    [70]Uang C M, Seible F, McDaniel C, et al. Performance evaluation of shear links and orthotropic bridge deck panels for the new San Francisco-Oakland Bay Bridge[J]. Earthquake Engineering and Structural Dynamics,2005,34(4-5):393-408.
    [71]Seible F, Dazio A, Restrepo J I. Proof testing in support of the new San Francisco-Oakland Bay Bridge[J]. Earthquake Engineering and Structural Dynamics,2005,34(4-5):369-391.
    [72]Graciano C, Casanova E. Ultimate strength of longitudinally stiffened I-girder webs subjected to combined patch loading and bending[J]. Journal of Constructional Steel Research, 2005,61(1):93-111.
    [73]Choi B H, Yoo C H. Strength of Stiffened Flanges in Horizontally Curved Box Girders[J]. Journal of Engineering Mechanics,2005,131(2):167-176.
    [74]Linde P, Schulz A, Rust W. Influence of modelling and solution methods on the FE-simulation of the post-buckling behaviour of stiffened aircraft fuselage panels[J]. Composite Structures,2006,73(2):229-236.
    [75]Ghavami K, Khedmati M R. Numerical and experimental investigations on the compression behaviour of stiffened plates[J]. Journal of Constructional Steel Research,2006,62(11, SI):1087-1100.
    [76]Zimmermann R, Klein H, Kling A. Buckling and postbuckling of stringer stiffened fibre composite curved panels-Tests and computations[J]. Composite Structures, 2006,73(2):150-161.
    [77]Mallela U K, Upadhyay A. Buckling of laminated composite stiffened panels subjected to in-plane shear:A parametric study[J]. Thin-Walled Structures,2006,44(3):354-361.
    [78]Patel S N, Datta P K, Sheikh A H. Buckling and dynamic instability analysis of stiffened shell panels[J]. Thin-Walled Structures,2006,44(3):321-333.
    [79]Pavlovcic L, Detzel A, Kuhlmann U, et al. Shear resistance of longitudinally stiffened panels 桺art 1:Tests and numerical analysis of imperfections[J]. Journal of Constructional Steel Research,2007,63(3):337-350.
    [80]Pavlovcic L, Beg D, Kuhlmann U. Shear resistance of longitudinally stiffened panels-Part 2:Numerical parametric study[J]. Journal of Constructional Steel Research, 2007,63(3):351-364.
    [81]Yap D C Y, Hancock G J. Experimental Study of Complex High-Strength Cold-Formed Cross-Shaped Steel Section[J]. Journal of Structural Engineering,2008,134(8):1322-1333.
    [82]Alinia M M, Habashi H R, Khorram A. Nonlinearity in the postbuckling behaviour of thin steel shear panels[J]. Thin-Walled Structures,2009,47(4):412-420.
    [83]Pellegrino C, Maiorana E, Modena C. Linear and non-linear behaviour of steel plates with circular and rectangular holes under shear loading[J]. Thin-Walled Structures, 2009,47(6-7):607-616.
    [84]Maiorana E, Pellegrino C, Modena C. Imperfections in steel girder webs with and without perforations under patch loading[J]. Journal of Constructional Steel Research, 2009,65(5):1121-1129.
    [85]Alinia M M, Moosavi S H. Stability of longitudinally stiffened web plates under interactive shear and bending forces[J]. Thin-Walled Structures,2009,47(1):53-60.
    [86]Amani M, Edlund B L O, Alinia M M. Buckling and postbuckling behavior of unstiffened slender curved plates under uniform shear[J]. Thin-Walled Structures,2011,49(8):1017-1031.
    [87]Alinia M M, Gheitasi A, Shakiba M. Postbuckling and ultimate state of stresses in steel plate girders[J]. Thin-Walled Structures,2011,49(4):455-464.
    [88]Gheitasi A, Alinia M M. Slenderness classification of unstiffened metal plates under shear loading[J]. Thin-Walled Structures,2010,48(7):508-518.
    [89]Alinia M M, Shakiba M, Habashi H R. Shear failure characteristics of steel plate girders[J]. Thin-Walled Structures,2009,47(12):1498-1506.
    [90]M. M. A. A study into optimization of stiffeners in plates subjected to shear loading[J]. Thin-Walled Structures,2005,43(5):845-860.
    [91]Alinia M M, Hosseinzadeh S A A, Habashi H R. Buckling and post-buckling strength of shear panels degraded by near border cracks[J]. Journal of Constructional Steel Research, 2008,64(12):1483-1494.
    [92]Alinia M M, Hosseinzadeh S A A, Habashi H R. Numerical modelling for buckling analysis of cracked shear panels[J]. Thin-Walled Structures,2007,45(12):1058-1067.
    [93]Alinia M M, Hosseinzadeh S A A, Habashi H R. Influence of central cracks on buckling and post-buckling behaviour of shear panels[J]. Thin-Walled Structures,2007,45(4):422-431.
    [94]Alinia M M, Hosseinzadeh S A A, Habashi H R. Influence of central cracks on buckling and post-buckling behaviour of shear panels[J]. Thin-Walled Structures,2007,45(4):422-431.
    [95]Choi B H, Hwang M, Yoon T, et al. Experimental study of inelastic buckling strength and stiffness requirements for longitudinally stiffened panels[J]. Engineering Structures, 2009,31(5):1141-1153.
    [96]Maiorana E, Pellegrino C, Modena C. Influence of longitudinal stiffeners on elastic stability of girder webs[J]. Journal of Constructional Steel Research,2011,67(1):51-64.
    [97]Maiorana E, Pellegrino C. Linear buckling analysis of welded girder webs with variable thickness[J]. STEEL AND COMPOSITE STRUCTURE,2011,11(6):505-524.
    [98]Maiorana E, Pellegrino C, Modena C. Elasto-plastic behaviour of perforated steel plates subjected to compression and bending[J]. Steel and Composite Structures, 2011,11(2):131-147.
    [99]Maiorana E, Pellegrino C, Modena C. Linear buckling analysis of perforated plates subjected to localised symmetrical load[J]. Engineering Structures,2008,30(11):3151-3158.
    [100]Maiorana E, Pellegrino C, Modena C. Elastic stability of plates with circular and rectangular holes subjected to axial compression and bending moment[J]. Thin-Walled Structures, 2009,47(3):241-255.
    [101]Cheng B, Zhao J. Strengthening of perforated plates under uniaxial compression:Buckling analysis[J]. Thin-Walled Structures,2010,48(12):905-914.
    [102]Sonmez M, Komur M A. Using FEM and artificial networks to predict on elastic buckling load of perforated rectangular plates under linearly varying in-plane normal load[J]. Structural Engineering and Mechanics,2010,34(2):159-174.
    [103]Khedmati M R, Bayatfar A, Rigo P. Post-buckling behaviour and strength of multi-stiffened aluminium panels under combined axial compression and lateral pressure[J]. Marine Structures,2010,23(1):39-66.
    [104]M. Aydin K. Elasto-plastic buckling analysis for perforated steel plates subject to uniform compression[J]. Mechanics Research Communications,2011,38(2):117-122.
    [105]El-Sawy K M, Ikbal Martini M. Elastic stability of bi-axially loaded rectangular plates with a single circular hole[J]. Thin-Walled Structures,2007,45(1):122-133.
    [106]Jeom Kee P. Ultimate strength of perforated steel plates under edge shear loading[J]. Thin-Walled Structures,2007,45(3):301-306.
    [107]Jeom K P. Ultimate strength of perforated steel plates under combined biaxial compression and edge shear loads[J]. Thin-Walled Structures,2008,46(2):207-213.
    [108]Aydin Komur M, Sonmez M. Elastic buckling of rectangular plates under linearly varying in-plane normal load with a circular cutout[J]. Mechanics Research Communications, 2008,35(6):361-371.
    [109]Kumar M S, Alagusundaramoorthy P, Sundaravadivelu R. Interaction curves for stiffened panel with circular opening under axial and lateral loads[J]. Ships and Offshore Structures, 2009,4(2):133-143.
    [110]李波,王肇民,黄斌,等.腹板开孔钢梁的极限承载力有限元分析[J].建筑结构,2005(06):41-42.
    [111]Kovesdi B, Dunai L. Determination of the patch loading resistance of girders with corrugated webs using nonlinear finite element analysis[J]. Computers & Structures, 2011,89(21-22):2010-2019.
    [112]Chacon R, Bock M, Real E. Longitudinally stiffened hybrid steel plate girders subjected to patch loading[J]. Journal of Constructional Steel Research,2011,67(9):1310-1324.
    [113]田跃.局部切口钢梁的稳定设计[J].建筑结构学报,1992(2):29-36.
    [114]韩邦飞.钢梁总体稳定性的试验研究[J].石家庄铁道学院学报,1992(3):57-64.
    [115]童乐为,沈祖炎.正交异性钢桥面板静力试验和有限元分析[J].同济大学学报(自然科学版),1997(06):617-622.
    [116]Yoo C H, Choi B H, Ford E M. Stiffness Requirements for Longitudinally Stiffened Box-Girder Flanges[J]. Journal of Structural Engineering,2001,127(6):705-711.
    [117]上海市建设和管理委员会.卢浦大桥工程[M].上海:上海科技出版社,2004.
    [118]章曾焕,王心方,赵炅,等.上海卢浦大桥钢箱拱节段模型(1:4)局部稳定加载试验与结构分析研究:中国公路学会桥梁和结构工程分会2005年全国桥梁学术会议,宁波,2005[C]:1041-1047.
    [119]宛海沫,顾强.工形梁腹板横向加劲肋的有限元分析[J].工业建筑,2005(S1):390-394.
    [120]童根树,赵伟.外伸端板连接端板加劲肋设计及有限元研究[J].沈阳建筑大学学报(自然科学版),2005(06):616-620.
    [121]赵伟,童根树.外伸端板加劲肋试验和有限元研究[J].土木工程学报,2008(08):22-30.
    [122]王宇,刘永军,李豪邦.门式刚架转角节点加劲肋设置试验研究及有限元分析[J].建筑结构,2010(04):31-33.
    [123]王宇,刘永军,李豪邦.门式刚架转角节点加劲肋设置探讨及有限元分析[J].钢结构,2008(12):9-12.
    [124]王清泉.大跨度斜拉桥扁平钢箱梁腹板极限承载力试验研究[D].同济大学土木工程·桥梁与隧道工程,2006.
    [125]张小华.正交异性钢箱梁加劲板局部稳定理论研究[D].湖南大学,2010.
    [126]宋恒扬.三汊矶湘江大桥钢箱梁加劲板件局部稳定分析研究[D].中南大学,2007.
    [127]李立峰,邵旭东.正交异性闭口加劲板的承载力分析理论及试验研究[J].土木工程学报,2007,40(6):42-48.
    [128]张国玺.带内外加劲肋箱形截面钢塔柱稳定性承载力研究[D].长安大学桥梁与隧道工程,2009.
    [129]安群慧,沈旺,王戒躁,等.西堠门大桥分体式钢箱梁节段模型试验研究[J].桥梁建设,2009(02):27-31.
    [130]舒兴平,姚尧,卢倍嵘,等.大悬挑钢箱梁与折线形钢箱柱连接节点试验研究[J].建筑结构学报,2010(10):69-75.
    [131]隋殿勇,刘春波.加劲肋对组合工字梁腹板局部稳定性影响的有限元分析[J].科技创新导报,2009(34):82-84.
    [132]李峰,高磊,权威.薄壁箱形截面钢柱稳定极限承载力的有限元数值模拟[J].钢结构,2010(02):23-26.
    [133]王飞娅,张伟,黄志,等.折线形钢箱柱竖向极限承载力及影响因素的有限元分析[J].水利与建筑工程学报,2010(05):97-100.
    [134]刘涛,何国民.焊接箱形截面短柱稳定承载力及设计方法[J].钢结构,2011(10):14-18.
    [135]狄谨,周绪红,吕忠达,等.正交异性钢箱梁U型肋加劲板极限承载力试验[J].中国公路学报,2009(02):59-64.
    [136]狄谨,周绪红,乔朋,等.波纹钢腹板屈曲性能(英文)[J].交通运输工程学报,2009(03):11-18.
    [137]罗永峰,韩庆华,李海旺编著.建筑钢结构稳定理论与应用[M].北京:人民交通出版社,2010.
    [138]张多星.薄壁曲线箱形钢梁的弹性稳定性[D].铁道部科学研究院中国铁道科学研究院桥梁隧道及结构工程,1990.
    [139]包世华,周坚编著.薄壁杆件结构力学[M].北京:中国建筑工业出版社,2006.
    [140]Atle G. The Theory of Thin Walled Bars[M]. John Wiley & Son,1981.
    [141]Bleich F. Buckling Strength of Metal Structures[M]. New York:McGraw-Hill,1952.
    [142]潘有昌.单轴对称箱形简支梁的整体稳定性[R].
    [143]陈骥.钢结构稳定理论与设计[M].北京:科学出版社,2011.
    [144]刘古岷等编著.应用结构稳定计算[M].北京:科学出版社,2004.
    [145]唐家祥等编写.结构稳定理论[M].北京:中国铁道出版社,1989.
    [146]夏志斌潘有昌编.结构稳定理论[M].北京:高等教育出版社,1988.
    [147]吴冲主编.现代钢桥.上册[M].北京:人民交通出版社,2006.
    [148]Bryan G H. On the Stability of a plane plate under Thrusts in its Own Plane with Application on the "Buckling " of the Sides of a Ship[J]. Proceedings of the London Mathematical Society,1890,s1-22(1):54-67.
    [149]狄谨.钢箱梁梯形肋加劲板受力性能与设计方法研究[D].长安大学桥梁与隧道工程, 2009.
    [150]American Institute Of Steel Construction I. Load and Resistance Factor Design Specification for Structural Steel Buildings[S].2005.
    [151]严国敏.日本本州四国联络桥公团基准·同解说.上部构造设计基准·同解说[M].成都:1992.
    [152]Institution B S. Steel, Concrete and Composite Bridges(BS5400-3)[S].2000.
    [153]Structures A S.AS4100-1998[S].1998.
    [154]Structures B S O P. DNV-RP-C201[S].2002.
    [155]GB50017-2003钢结构设计规范[S].北京:中国计划出版社,2003.
    [156]American Institute Of Steel Construction I. Specification for Structural Steel Buildings[S]. 2005.
    [157]中华人民共和国交通部部标准.JTJ 025-86公路桥涵钢结构及木结构设计规范[S].北京:人民交通出版社,1987.
    [158]中华人民共和国行业标准.铁路桥梁钢结构设计规范(TB10002.2-2005)[S].中华人民共和国铁道部,2005.
    [159]郭乙木,陶伟明,庄茁.线性与非线性有限元及其应用[M].北京:机械工业出版社,2005.
    [160]British Standard T E S E. Eurocode 3:Design of steel structures[S].2005.
    [161]郑宏著.钢构件非线性稳定[M].北京:科学出版社,2002.
    [162]王国周,瞿履谦主编.钢结构[M].北京:清华大学出版社,1993.
    [163]伍尚礼,袁发荣.残余应力测试与计算[M].长沙:湖南大学出版社,1987.
    [164]宋天民编著.焊接残余应力的产生与消除[M].北京:中国石化出版社,2010.
    [165]沈世钊,吕烈武,沈祖炎.钢结构构件稳定理论[M].北京:中国建筑工业出版社,1983.
    [166]沈祖炎等著.钢结构学[M].北京:中国建筑工业出版社,2005.
    [167]陈绍蕃著.钢结构设计原理[M].北京:科学出版社,2005.
    [168]S, Chatterjee. The design of modern steel bridges[M]. Oxford:BSP Professional Books,1991.
    [169]藤井裕司,山口和范,远藤和男.斜张桥主桁腹板的屈曲实验报告[J].本四技报,1994,18(71):2-8.
    [170]大桥治一,大川宗男.长大斜张桥钢床板的压缩强度的评价[J].本四技 报,1996,20(78):2-10.
    [171]李立峰.正交异性钢箱梁局部稳定分析理论及模型试验研究[D].湖南大学结构工程,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700