用户名: 密码: 验证码:
透平静叶前缘气膜冷却特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着燃气轮机透平前燃气温度的不断提高,气膜冷却技术已经成为透平叶片冷却的重要手段之一。作为叶片上热负荷最高的区域,叶片前缘,尤其是滞止线附近的流动极为复杂,受主流滞止、叶片曲率、射流孔排之间的相互作用等多种因素的影响,必须对气膜冷却以及叶片前缘的流动和换热特性进行深入分析,才能为开展有针对性的高温透平气膜冷却设计和改进提供依据。
     针对这一问题,本论文首先建立了平板气膜冷却实验台,应用热敏液晶测量技术测量射流孔下游的壁面温度分布,进而得到绝热气膜冷却效率和换热系数。文中讨论了不同吹风比、不同射流孔长径比、不同射流注入角等因素对射流孔下游冷却特性的影响,绝热气膜冷却效率被作为衡量不同条件下气膜冷却性能优劣的重要参数;为了补充和验证实验数据,采用CFD软件CFX数值模拟了平板气膜冷却的流动和换热特性;在实验测量和数值模拟结果基础上,深入研究了某重型燃气轮机透平静叶的气膜冷却,分析了静叶前缘及滞止线附近的气膜冷却效果、传热及冷气喷射对气动性能的影响等问题,发现了静叶前缘气膜冷却设计中存在的问题和不足;在此基础上,提出了对静叶前缘气膜冷却结构的五个改进设计方案,并进一步采用CFX对改进设计后的前缘气膜冷却进行数值模拟,分析比较了不同改进设计方案的优劣,探索了提高前缘气膜冷却效果的方法。本文的主要研究结论如下:
     对于平板气膜冷却,在低吹风比条件下,与主流相比,射流动量较低,受主流影响,射流容易贴附在射流孔下游表面,射流孔近孔区域取得良好的冷却效果;高吹风比条件下,由于射流动量较高,在冷却孔下游容易发生“吹离”和“再附”现象。在低射流孔长径比条件下(L/D=2),射流流动未能在孔内允分发展,射流孔下游的平均冷却效率相对较低;通过设置不同的射流注入角条件来考察不同垂直方向速度分量对射流孔下游冷却特性的影响,极限情况下,即当射流注入角为90°时,低吹风条件下冷却孔下游近孔区域等值线依然呈现锥形分布的特点。
     对于透平静叶气膜冷却,当冷却孔的出口恰好位于滞止线上时,在压力面侧冷却射流的径向速度分量起主导作用,而在吸力面一侧由于主流的加速作用,射流的径向速度分量相对较弱;当冷却孔的出口位于滞止线一侧时,此时射流的周向速度分量起主导作用。要想获得滞止线及两侧壁面更好的冷却效果,应当沿着滞止线方向定位两排孔,这两排孔分别位于滞止线的各一侧并且交错排列,同时保证滞止线穿过每一个孔的出口边缘,同时要调整这两排孔的径向喷射角,避免径向逆主流喷射。分离结点附近的壁面很难被完全气膜覆盖,通过降低吹风比和增加射流孔出口与分离结点的距离可以获得相对较好的冷却效果。本文的5种改进方案中,方案Ⅴ的改进结果是最好的。
Film cooling, as one of the cooling types, has been used in gas turbines for many years and proved to be an efficient method protecting blade or vane, especially the vicinity of the stagnation line, is a critical region because thermal load is at its highest in this area and particular protection and cooling design are required. The flow around the leading edge is always associated with mainstream stagnation, strong pressure gradient, variable curvature, and interaction between rows of showerhead holes. It is necessary to understand flow and heat transfer characteristics of the leading edge film cooling for achieving a reliable film cooling design improvement for gas turbines.
     In this dissertation, the experimental setup of film cooling on flat plates is configured firstly, and thermo-chromic liquid crystal is utilized to measure the temperature distributions downstream of the injection holes. Then we discuss the influences on film cooling brought by different blowing ratio, different injection hole length to diameter ratios and different injection angles, etc. The adiabatic film cooling effectiveness is regarded as an important parameter to weigh the cooling performance at different experimental conditions. Numerical simulations for film cooling characteristics on flat plat were also performed. Based on the experimental and numerical results, the investigations on the leading-edge film cooling of an inlet guide vane have been done. The original design is simulated to obtain flow mechanism and heat transfer characteristics of the leading edge film cooling. The film cooling characteristics and interactions between jets and mainstream around the leading edge, especially near the stagnation line, are analyzed in detail. To provide better coolant coverage on the leading edge, the cooling configuration is modified based upon the analysis and understanding of the 3D prediction for the original design. The modified designs are compared with the original design and provide better coolant coverage on the leading edge. The main conclusions of the dissertation are as follows:
     At a low blowing ratio, the secondary injection flow has low momentum compared to the mainstream, so it is easily suppressed by the mainstream to a region near the cooper plate surface. Better cooling performance can be achieved in the region immediately out of the injection holes. When the blowing ratio increases, the phenomenon of "blowing off" and "re-attachment" happen downstream of the film holes. At a low hole length to diameter ratio (L/D=2), the air flow cannot fully develop in the hole and the adiabatic film cooling effectiveness of are lower. The effect on the cooling performance due to different vertical velocity component is considered in connection with different injection angles downstream the injection hole. The results show that the contours still appear in a taper shape in the nearby region of the film hole at a low blowing ratio when only vertical velocity exists
     When the holes just locate on the stagnation line, the radial movement of the coolant is dominating only at the pressure side close to the holes. At the suction side close to the holes, the radial movements is weakened by mainstream accelerating. When the holes locate alongside the stagnation line, the circumferential movement of the coolant dominates. Better cooling effects at the stagnation line and both sides of the line can be obtained two intercross rows of holes at both sides of stagnation line and assuring that the stagnation line traverses the exit of each hole. It is necessary to avoid opposite jets occurring in the radial direction by changing the radial angles. It is difficult to obtain full coverage near the attachment node. Adopting lower blowing ratio and adding the circumferential distance to the attachment node can obtain better cooling better cooling effects. The modified design V is the best in the five designs.
引文
[1]黄文华,世界范围内燃气轮机发电技术的发展趋势.中国电机工程学会燃气轮机发电专业委员会成立大会论文集,1998年6月.
    [2]糜洪元,徐文军等,国内外燃气轮机发电现状和21世纪展望.中国能源网,http://www.china5e.com/dissertation/gasturbines/20030801142345.html.
    [3]倪维斗,焦树建,我国发展燃气轮机的可行道路.清华大学研究通讯,2000年第28期.
    [4]林汝谋,蔡睿贤,工业燃气轮机的发展趋势和特点.中国电机学会燃气轮机发电专业委员会成立大会论文集,1998年6月.
    [5]薛福培,我国工业燃气轮机的现状与前景.中国能源网,http://www.china5e.com/dissertation/gasturbines/20030731132939.html.
    [6]Treager I E,General Electric CF6.In Aircraft Gas Turbine Engine Technology,2nd ed,McGraw-Hill,New York,1979,Chap.25:469-525.
    [7]Han J C,Park J S and Lie C K,Heat Transfer and Pressure Drop in Blade Cooling Channels with Turbulence Promoters.Texas A&M University,1984(prepared for NASA CR-3837).
    [8]葛绍岩,刘登瀛,徐靖中,李静,气膜冷却.北京:科学出版社,1985.
    [9]Han J C,Dutta S and Ekkad S,Gas Turbine Heat Transfer and Cooling Technology.Taylor & Francis,USA,2000.
    [10]Du H,Han J C and Ekkad S V,Effect of Unsteady Wake on Detailed Heat Transfer Coefficient and Film Effectiveness Distributions for a Gas Turbine Blade.ASME Journal of Turbomachinery,1998,120:808-817.
    [11]凌善康等,温度测量基础.北京:中国标准出版社,1998.
    [12]游伯坤等,温度测量与仪表:热电偶和热电阻.北京:科学技术文献出版社,1990.
    [13]Dorignac E and Vullierme J J,Wall Heat Transfer Modelisation on a Heated Plate in Subsonic Flow with Injection.Proc,Eurotherm,1993,32:22-24.
    [14]Gruber T C and Page R H,Infrared Technique:Heat Transfer Measurement.SPIE,1993,2005:228-236.
    [15]周书铨,红外辐射测量基础.上海:上海交通大学出版社,1991.
    [16]刘迎春等,现代新型传感器原理与应用.北京:国防工业出版社,1999.
    [17]Fergason J L,Liquid Crystals.Scientific American,1964,211:77-85.
    [18]周其凤,王新久,液晶高分子.北京:科学出版社,1994.
    [19]Dino J F,Introduction to Liquid Crystal Thermography.Image Therm Engineering,Inc,2002.
    [20]Ireland P T and Jones T V.The Response Time of a Surface Thermometer Employing Encapsulated Thermochronic Liquid Crystals.Journal of Physics E:Instruments,1987,20:1195-1199.
    [21]程定海,山桂云,高分子液晶及其应用.四川师范学院学报(自然科学版),2001.6:151-154.
    [22]俞书宏,张康林,钱逸泰,热变色胆甾相液晶的制备及微囊化技术的研究.高分子材料科学与工程,1999,9:151-153.
    [23]Stasiek J A and Kowalewski T A,Thermochromic Liquid Crystals Applied for Heat Transfer Research,Opto-Electronics Review,2002(10):1-10.
    [24]封文娟,张素杰,窦臻,周爱娟,液晶热性能的研究.辽宁化工,2000(9):261-263。
    [25]Goldstein R J and Eckert E R G,Heat Transfer and Film Cooling Following Injection through Inclined Circular Tubes.ASME Journal of Heat Transfer,1974,122:239-245.
    [26]Afejuku W O,Hay I and Lampard,D,Film Cooling Effectiveness of Double Rows of Holes.ASME Paper,1979-GT-OISR-10.
    [27]Andrews G E,Asere A A,Gupta M L and Mkpadi M C,Full Coverage Discrete Hole Film Cooling:The Influence of Hole Size.ASME Paper,1985-GT-47.
    [28]Ligrani P M and Williams W,Effects of Embedded Vortex on Injectant from a Single Film-Cooling Hole in a Turbulent Boundary Layer,ASME Paper,1989-GT-189.
    [29]Honami S,Shizawa T and Uchiyama A,Behaviors of the Laterally Injected Jet in Film Cooling:Measurements of Surface Temperature and Velocity/Temperature Fields within the Jet.ASME Paper,1992-GT-180.
    [30]Kaszeta R W and Simon T W,Measurement of Eddy Diffusivity of Momentum in Film Cooling Flows with Streamwise Injection.ASME Journal of Turbomachinery,2000,122:178-183.
    [31]Goebel S G,Abuaf N,Lovett J A and Lee C P,Measurements of Combustor Velocity and Turbulence Profiles.ASME Paper,1993-GT-228.
    [32]Burd S W and Simon T W,Turbulence Spectra and Length Scales Measured in Film Coolant Flow Emerging from Discrete Holes.ASME Paper 1998-GT-190.
    [33]Schmidt D L and Bogard D G,Effects of Free-Stream Turbulence and Surface Roughness on Film Cooling.ASME paper,1996-GT-462.
    [34]徐红洲,刘松龄,许都纯,扇形和圆形气膜冷却孔的流动和传热实验比较.航空动力学报,1997,12(1):42-47.
    [35]Maiteh B Y and Jubran B A.Influence of Mainstream Flow History on Film Cooling and Heat Transfer from Two Rows of Simple and Compound Angle and Compound Angle Holes in Combination.Internal Journal of Heat and Fluid Flow,1999,20:158-165.
    [36]Yu Y,Yen C H,Shih T I P and Chyu M K,Film Cooling Effectiveness and Heat Transfer Coefficient Distributions around Diffusion Shaped Holes.ASME Paper,1999-GT-34.
    [37]Martinez-Botas R F and Yuen C H N,Measurement of Local Heat Transfer Coefficient and Film Cooling Effectiveness through Discrete Holes.ASME Paper,2000-GT-243.
    [38]Harrington M K,McWaters M A,Bogard D G,Lemmon C A and Thole K A,Full-Coverage Film Cooling with Short Normal Injection Holes.ASME Paper,2001-GT-130.
    [39]Rhee D H,Lee Y S and Cho H H,Film Cooling Effectiveness and Heat Transfer of Rectangular-Shaped Film Cooling Holes.ASME Paper,2002-GT-30168.
    [40]Sargison J E,Guo S M,Oldfield M L G,Lock G D and Rawlinson A J, Performance Prediction of a Converging Slot-Hole Film-Cooling Geometry.ASME Paper,GT-2003-38144.
    [41]Brauckmann D and Van Wolfersdorf J,Infrared Thermography With In-Situ Calibration Using Thermochromic Liquid Crystals Applied to Film Cooling.ASME Paper,GT-2004-53855.
    [42]Mayhew J E,Baughn J W and Byerley A R,The Effect of Freestream Turbulence on Film Cooling Heat Transfer Coefficient and Adiabatic Effectiveness Using Compound Angle Holes.ASME Paper,GT-2004-53230.
    [43]Brauckmann D and Van Wolfersdorf J,Application of Steady State and Transient Ir-thermography Measurements to Film Cooling Experiments for a Row of Shaped Holes.ASME Paper,GT-2005-68035.
    [44]Ogata T and Yamamoto M,Biaxial Thermo Mechanical Fatigue Life Property of a Ni Base Ds Super Alloy.ASME Paper,GT-2006-90758.
    [45]Kim K.and Mylaraswamy D,Fault Diagnosis and Prognosis of Gas Turbine Engines Based on Qualitative Modeling.ASME Paper,GT-2006-91210.
    [46]Vedula R J and Metzger D E,A Method for the Simultaneous Determination of Local Effectiveness and Heat Transfer Distributions in Three-Temperature Convection Situations.ASME Paper,1991-GT-345.
    [47]Ekkad S V and Han J C,Flat Plate Film Cooling and Heat Transfer Using a Transient Liquid Crystal Technique.ASME/JSME Thermal Engineering Conference,1995,3:445-452.
    [48]Baughn J W,Liquid Crystal Methods for Studying Turbulent Heat Transfer.International Journal of Heat and Fluid Flow,1995,16(5):365-375.
    [49]Van Treuren K W,Wang Z,Ireland P T and Jones T V.Application of the Transient Liquid Crystal Technique to Measure Heat Transfer and Adiabatic Wall Temperature Beneath and Array of Impinging Jets.1993,32:82-86.
    [50]Babinsky H and Edwards J A,Automatic Liquid Crystal Thermography for Transient Heat Transfer Measurements in Hypersonic Flow.Experiments in Fluids,1996,21:227-236.
    [51]Baughn J W,Ireland P T,Jones T V and Saniei N,A Comparison of the Transient and Heated-Coating Methods for the Measurement of Local Heat Transfer Coefficients on a Pin Fin.Journal of Heat Transfer,1989,111:877-881.
    [52]Kasagi N,Hirata M and Kumada M,Studies of Full Coverage Film Cooling:Part Ⅰ:Cooling Effectiveness of Thermally Conductive Wall.ASME Paper,1981-GT-37.
    [53]Bunker R S,Metzger D E and Witting S,Local Heat Transfer in Turbine Disk-Cavities.Part I:Rotor and Stator Cooling with Hub Injection of Coolant.ASME Paper,1990-GT-25.
    [54]Wang Z,Ireland P T and Jones T V,A Technique for Measruring Convective Heat Transfer at Rough Surfaces.ASME Paper,1990-GT-300.
    [55]Wang Z,Ireland P T,Jones T V and Davenport R A,A Color Image Processing System for Transient Liquid Crystal Heat Transfer Experiments.Journal of.Turbomachinery,1994,118:421-427.
    [56]Millerson G,The Technique of Lighting for Television and Film.Third ed.,Focal Press,UK,1991:283-294.
    [57]Ireland P T and Jones T V,Liquid Crystal Measurements of Heat Transfer and Surface Shear Stress.Measurement Science and Technology,2000,11:969-986.
    [58]Jones T V,Wang Z and Ireland P T,The Use of Liquid Crystal in Aerodynamic and Heat Transfer Experiments.Optical Methods and Data Processing in Heat and Fluid Flow,1992,4:51-65.
    [59]Chan T L,Jambunathan K,Leung T P and Ashforth-frost A,A Surface Temperature Calibration Method for Thermochromic Liquid Crystals Using True Color Image Processing.Proceedings of the 10l International Heat Transfer Conference,Brighton,UK,1994,2:201-206.
    [60]Hollingsworth D K,Boehman A L,Smith E G and Moffat R J,Measurement of Temperature and Heat Transfer Coefficient Distributions in a Complex Flow Using Liquid Crystal Thermography and True Color Image Processing.ASME Paper,1989-HTD-123.
    [61]Wang Z,Ireland P T,Jones T V and Davenport R,A Color Image Processing System for Transient Heat Transfer Experiments.Journal of Turbomachinery,1996,118:421-427.
    [62]Camic C,Kim K and Hippensteele S A,A New Hue Capturing Technique for Quantitative Interpretation of Liquid Crystal Images Used in Convective Heat Transfer Studies.Journal of Turbomachinery,1992,114:765-775.
    [63]Fergason J L,Liquid Crystals in Nondestructive Testing.Applied Optics,1968,7:1729-1737.
    [64]Herold W and Wiegel D,Problems of the Photographic Documentation of Liquid Crystalline Thermographs.Advances in Liquid Crystal Research and Applications,Pergamon Press,Oxford,1980.
    [65]Farina D J,Hacker J M,Moffat R J and EatonJ K,Illuminant Invariant Calibration of Thermochromic Liquid Crystals.Journal of Experimental Thermal Fluid Science,1994,9:1-12.
    [66]Kim D S and Yoon S H,Consideration of Oberservation Angles in Thermochromic Liquid Crystal Calibration for the Researches of Heat Transfer.37th Heat Transfer and Fluid Mechanics Institute,California State University,Sacramento,May 31-June 1,2001.
    [67]Chan T L,Ashforth-Frost S and Jambunathan K,Calibrating for viewing angle effect during heat transfer measurements on a curved surface.International Journal of Heat & Mass Transfer,2001,44:2209-2223.
    [68]Mizell L,Liquid Crystals:a New Technique for Thermal Mapping of Electronic Components.Microelectrics 4:Fourth International Congress,Munich,1970:450-475.
    [69]Ireland P T and Jones T V,The Response Time of a Surface Thermometer Employing Encapsulated Thermochromic Liquid Crystals.Journal of Physics E:Instruments,1987,20:1195-1199.
    [70]Akino N,Kunugi T,Ichimiya K,Mitsushiro K and Ueda M,Improved Liquid Crystal Thermometry Excluding Human Color Sensation.Journal of Heat Transfer,1989,111:558-565.
    [71]朱双东,摄影视角对热敏液晶粒子光学特性测量的影响.抚顺石油学院学报,1996,16:55-58.
    [72]赵世红,丁水汀,一种利用色度标定热色液晶的方法.中国工程热物理学会学术会议论文,传热传质学,2003:918-921。
    [73]Hay J L and Hollingsworth D K,Calibration of Micro-encapsulated Liquid Crystals Using Hue Angle and a Dimensionless Temperature.Experimental Thermal and Fluid Science,1998,18:251-257.
    [74]Baughn J W,Anderson M R,Mayhew J E and Wolf J D,Hysteresis of Thermochromic Liquid Crystal Temperature Measurement Based on Hue.Journal of Heat Transfer,1999,121(11):1067-1072.
    [75]Vennemann D and Butefisch K A,The Electron Beam Technique in Hypersonic Rarefied Gas Dynamics.European Space Agency,ESRO-RR-77.
    [76]Den O C and Hoogendorn C J,Heat Transfer in Flooded Shell and Tube Evaporators.Proceedings of 5th International Heat Transfer Conference,1997,5:242-248.
    [77]Ekkad S V and Han J C,Detailed Heat Transfer Distributions in Two-Pass Square Channels with Rib Turbulators.International Journal of.Heat Mass Transfer,1997,40(25):25-37.
    [78]Huang Y,Ekkad S V and Han J C,Impingement Heat Transfer on a Target Plate with Film Holes.AIAA Journal of Thermophysics and Heat Transfer,1998,12:73-78.
    [79]Goldstein R J,Eckert E R G and Ramsey J W,Film Cooling with Injection through Holes:Adiabatic Wall Temperatures Downstream of a Circular Hole.ASME Journal of Energy for Power,1968,90:384-393.
    [80]Goldstein R J and Eckert E R G,Heat Transfer and Film Cooling Following Injection through Inclined Circular Tubes.ASME Journal of Heat Transfer,1974,122:239-245.
    [81]Goldstein R J,Eckert E R G,Eriksen V L and Ramsey J W,Film Cooling Following Injection through Inclined Circular Tubes.Israel Journal of Technology,1970,8:145-154.
    [82]Pedersen D R,Eckert E R G and Goldstein R J,Film Cooling with Large Density Differences between the Mainstream and the Secondary Fluid Measured by the Heat-Mass Transfer Analogy.ASME Journal of Heat Transfer,1977,99:620-627.
    [83]Cho H H,Kim B G and Rhee D H,Effect of Hole Geometry on Heat(Mass)Transfer and Film Cooling Effectiveness.Proceedings of 11~(th)IHTC,1998,6:499-504.
    [84]Ekkad S V and Han J C,A Transient Liquid Crystal Thermography Technique for Gas Turbine Heat Transfer Measurements.Measurement Science and Technology,2000,11:957-968.
    [85]Engels G and Peck R E,Investigation of a Quasi-Steady Liquid Crystal Technique for Film Cooling Heat Transfer Measurements.Experimental Heat Transfer,2001,14:181-198.
    [86]Lieu D N,Findlay M J,Gartshore S and Salcudean M,Measurements of Heat Transfer Characteristics from Film Cooling Applications.ASME Paper,1999-GT-167.
    [87]Harrington M K and Mcwaters M A,Full-Coverage Film Cooling with Short Normal Injections.ASME Paper,2001-GT-0130.
    [88]Guile A W,Garwood R and Ward J,The Application of a Hue-based Liquid Crystal Technique to Determine Convective Heat Transfer Downstream of Non-Axisymmetric Circular-to-Square Expansions.Proceedings of the ASME Heat Transfer Division,1999,HTD-364-1:101-107.
    [89]Martinez-Botas R F and Yuen C H N,Measurement of Local Heat Transfer Coefficient and Film Cooling Effectiveness Through Discrete Holes.ASME Paper,2000-GT-243.
    [90]Chen P H,Huang M S and Ding P P,A Transient Method Using Liquid Crystal for Film Cooling Over a Convex Surface.International Journal of Rotating Machinery,2001,7:153-164.
    [91]Camci C and Glezer B,Liquid Crystal Thermography on the Fluid Solid Interface of Rotating Systems.Journal of Heat Transfer,1997,119:20-29.
    [92]张曦,翁文国,张嘉锋,何世平,液晶测温测速技术在流体实验中的应用,中国科学技术大学学报,2000,30:51-55。
    [93]鞠向阳,伍小平,何世平,用胶囊式液晶粒子同时测量流场的温度和速度.力学学报,1996,28:503-506。
    [94]张曦,周鹏,何世平,廖光煊,应用热色液晶测量撞击壁面温度分布,实验力学,1996,11(3):245-250。
    [95]Mayle R E and Camarata F J,Multihole Cooling Film Effectiveness and Heat Transfer.Journal of Heat Transfer,ASME,97c(4).
    [96]Liess C,Experimental Investigation of Film Cooling with Ejection From a Row of Holes for the Application to Gas Turbine Blades.Journal of Engineering for Power,ASME,97a(1).
    [97]Brown A and Saluja C L,Film Cooling from a Single Hole and a Row of Holes of Variable Pitch to Diameter Ratio.International Journal of Heat and Mass Transfer,1979,22(4).
    [98]Tafti D K and Yavuzkurt S,Prediction of Heat Transfer Characteristics for Discrete Hole Film Cooling for Turbine Blade Applications.Journal of Turbomachinery,1990,112:504-511.
    [99]朱惠人,刘松龄,余志红,涡轮叶片气膜冷却的数值模拟.航空学报,1999,20(5).
    [100]Leylek J H and Zerkle R D,Discrete-Jet Film Cooling:A Comparison of Computational Result with Experiments.ASME Journal of Turbomachinery,1994,116:358-363.
    [101]Neelakantan S and Crawford M E,Prediction of Film Cooling-Effectiveness and Heat Transfer Due to Streamwise and Compound Angle Injection on Flat Surfaces.International Gas Turbine & Aeroengine Congress & Exposition,Houston,Tex.,June 5-8,1995,ASME Paper 95-GT-151.
    [102]Lin Y L,Stephens M A and Shih T I-P,Computation of Leading-Edge Film Cooling with Injecyion through Rows of Compound-Angle Holes.ASME International Gas Turbine & Aeroengine Congress & Exhibition,Orlando,Fla.,June 2-5,1997,ASME Paper 95-GT-298.
    [103]Grag V K and Gaugler R E,Effect of Coolant Temperature and Mass Flow on Film Cooling of Turbine Blades.International Journal of Heat and Mass Transfer,1997,40(2):435-444,ASME Paper 95-WA/HT-1.
    [104]Grag V K and Gaugler R E,Effect of Velocity and Temperature Distribution at the Hole Exit on Film Cooling of Turbine Blades.ASME Journal of Turbomachinery,1997,119:343-349.
    [105]Grag V K and Ameri A A,Comparison of Two-Equation Turbulence Models for Prediction of Heat Transfer on Film-Cooled Turbine Blades.Numerical Heat Transfer,Part A,1998,32:347-355,ASME Paper 97-GT-24.
    [106]Heidmann J D,Rigby D L and Ameri A A,A Three-Dimensional Coupled Internal/External Simulation of a Film-Cooled Turbine Vane.ASME Paper,1999-GT-186.
    [107]Chernobrovkin A A and Lakshminarayana B,Numerical Simulation and Aerothermal Physics of Leading Edge Film Cooling.ASME Paper,1998-GT-504.
    [108]Cruse M W,Yuki U M and Bogard D G,Investigation of Various Parametric Influences on Leading Edge Film Cooling.ASME Paper,1997-GT-296.
    [109]Lin Y L and Shih T I-P,Film-Cooling of a Cylindrical Leading Edge with Injection through Rows of Compound-Angle Holes.Journal of Heat Transfer,2001,123(4):645-654.
    [110]Lakehal D,Theodoridis G S and Rodi W,Three-Dimensional Flow and Heat Transfer Calculations of Film Cooling at the Leading Edge of a Symmetrical Turbine Blade Model.International Journal of Heat and Fluid Flow,2001,22(2):113-122.
    [111]York W D and Leylek J H,Leading-Edge Film-Cooling Physics:Part Ⅰ-Adiabatic Effectiveness.ASME Paper,GT-2002-30166.
    [112]Bonn D,Becker V,Kusterer K,et al,Three-Dimensional Flow Analysis of Turbine Blade Cascade with Leading-Edge Ejection.Journal of Propulsion and Power,2000,16(1):49-56.
    [113]Theodoridis G S,Lakehal D and Rodi W,Three-Dimensional Calculations of the Flow field around a Turbine Blade with Film Cooling Injection near the Leading Edge.Flow,Turbulence and Combustion,2001,66(1):57-83.
    [114]Adami P,Chana K S,Martelli F and Montomoli F,Numerical Predictions of Film Cooled NGV Blades.ASME Paper,GT-2003-38861.
    [115]Yand H-T,Chen H-C,Han J-C and Moon H-K,Numerical Prediction of Film Cooling and Heat Transfer on the Leading Edge of a Rotating Blade with Two Rows Holes in a 1-1/2 Turbine Stage At Design and Off Design Conditions.ASME Paper,GT-2005-68335.
    [116]Kusterer K,Hagedorn T,Bohn D,et al,Improvement of a Film-Cooled Blade by Application of the Conjugate Calculation Technique.ASME Paper,GT-2005-68555.
    [117]An B-T,Liu J-J and Jiang H-D,Three-Dimensional Flow Analysis and Design Improvement of Leading-Edge Film-Cooling in an Inlet Guide Vane.ASME Paper,GT-2006-90234.
    [118]Sargison J E,Guo S M,Oldfield M L G and Rawlinson A J,The Variation of Heat Transfer Coefficient,Adiabatic Effectiveness and Aerodynamic Loss with Film Cooling Hole Shape.Annals New York Academy of Sciences,2001,934:361-368.
    [119]Martinez-Botas R F and Yuen C H N,Measurement of Local Heat Transfer Coefficient and Film Cooling Effectiveness Through Discrete Holes.ASME Paper,2000-GT-243.
    [120]Maiteh B Y and Jubran B A,Influence of Mainstream Flow History on Film Cooling and Heat Transfer from Two Rows of Simple and Compound Angle Holes in Combination.International Journal of Heat and Fluid Flow,1999,20:158-165.
    [121]Gonzalez R C and Woods R E,阮秋琦,阮宇智等译,数字图像处理,第二版.北京:电子工业出版社,2003:220-256.
    [122]DXC-390P 型 3CCD 相机说明书.日本索尼公司,2000.
    [123]Matrox Meteor-Ⅱ/Multi Channel:Installation and Hardware Reference.Matrox Electronics Systems Ltd.,2003.
    [124]Mil-Lite:User Guide and Command Reference.Matrox Electronics Systems Ltd,2003.
    [125]Schultz D L and Jones T V,Heat Transfer Measurement in Short-Duration Hypersonic Facilities.NATO Advisory Group Aeronautical RD AGARDOGRAPH,1973,165.
    [126]韩振兴,周嗣京,刘捷,刘石,刘建军,不同光源条件下热敏液晶色温特性的实验研究.中国工程热物理学会2004年学术会议,传热传质学,No.043059.
    [127]Hay J L and Hollingsworth D K,A Comparison of Trichromic Systems for Use in the Calibration of Polymer-dispersed Thermochromic Liquid Crystals.Experimental Thermal Fluid Science,1996,12:1-12.
    [128]Goldstein R J,Eckert E R G and Burgraff F,Effects of Hole Geometry and Density on Three Dimensional Film Cooling.International Journal of Heat and Mass Transfer,1974,17:595-605.
    [129]Gritsch M,Schulz A and Wittigs S,Adiabatic Wall Effectiveness Measurements of Film Cooling Holes with Expanded Exits.ASME Journal of Turbomachinery,1998,120:549-556.
    [130]Ammari H D,Hay N and Lampard D,The Effect of Density Ratio on the Heat Transfer Coefficient from a Film Cooled Flat Plate.ASME Journal of Turbomachinery,1990,112:444-450.
    [131]Hay N,Lampard D and Saluja C L,Effect of Cooling Films on the Heat Transfer Coefficient on a Flat Plate with Zero Pressure Gradient.ASME Journal of Engineering for Gas Turbines and Power,1985,107:105-110.
    [132]Sinha A K,Bogard D G and Crawford M E,Film Cooling Effectiveness Downstream of a Single Row of Holes with Variable Density Ratio.ASME Journal of Turbomachinery,1991,113:442-449.
    [133]Fric T F and Roshko A,Vortical Structure in the Wake of a Transverse Jet.Journal of Fluid Mechanics,1994,279:1-47.
    [134]Crabb D,Durao D F G and Whitelaw J H,A Round Jet Normal to a Cross-Flow.Journal of Fluids Engineering,1981,103:142-155.
    [135]Sinha A K,Bogard D G and Crawford M E,Film Cooling Effectiveness of a Single Row of Holes with Variable Density Ratio.Journal of Turbomachinery,1991,113:442-449.
    [136]Steven W B,Richard W K and Terrence W S,Measurements in Film Cooling Flows:Hole L/D and Turbulence Intensity Effects.ASME Paper,96-WAHT-7.
    [137]Hale C A,Plesniak M W and Ramadhyari S,Film Cooling Effectiveness for Short Film Cooling Holes Fed by a Narrow Plenum.Journal of Turbomachinery,2000,122:553-557.
    [138]Ramsey J W and Goldstein R J,Interaction of a Heated Jet with a Deflecting Stream.ASME Journal of Heat Transfer,1971,93:365-372.
    [139]Foster N W and Lampard D,The Flow and Film Cooling Effectiveness Following Injection Through a Row of Holes.ASME Journal of Engineering for Power,1980,102:584-588.
    [140]Kruse H,Effects of Hole Geometry,Wall Curvature and Pressure Gradient on Film Cooling Downstream of a Single Row.Heat Transfer and Cooling in Gas Turbines,AGARD-CP-390.
    [141]Kohli A and Bogard D,Adiabatic Effectiveness thermal Fields and Velocity Fields for Film Cooling with Large Angle Injection.ASME Journal of Turbomachinery,1997,119:352-358.
    [142]Sargison J E,Guo S M,Oldfield M L G,Lock G D and Rawlinson A J,A Converging Slot-Hole Film-Cooling Geometry Part 1:Low-Speed Flat-Plate Heat Transfer And Loss.ASME Paper,GT-2001-0126.
    [143]Mehendale A B and Han J C,Influence of High Mainstream Turbulence on Leading Edge Film Cooling Heat Transfer:Effect of Film Hole Spacing.International Journal of Heat and Mass Transfer,1992,35(10):2593-2604.
    [144]Wang Z,Ireland P T and Jones T V,A Technique for Measuring Convective Heat Transfer at Rough Surfaces.ASME Paper,90-GT-300.
    [145]Wang Z,Ireland P T and Jones T V,An Advanced Method of Processing Liquid Crystal Video Signals from Transient Heat Transfer Experiments.ASME Paper,93-GT-282.
    [146]Wang Z,Ireland P T,Jones T V and Davenport R,A Color Image Processing System for Transient Heat Transfer Experiments.ASME Paper,94-GT-290.
    [147]Ekkad S V,Zapata D and Han J C,Film Effectiveness Over a Flat Surface with Air and CO_2 Through Compound Angle Holes Using a Transient Liquid Crystal Image Method.ASME Journal of Turbomachinery,1997,41:3781-3791.
    [148]Ekkad S V,Du H and Han J C,Detailed Film Cooling Measurements on a Cylindrical Leading Edge Model:Effect of Free-Stream Turbulence and Density Ratio.ASME Journal of Turbomachinery,1998,120:799-807.
    [149]Du H,Han J C and Ekkad S V,Effect of Unstandy Wake on Detailed Heat Transfer Coefficient and Film Effectiveness Distributions for a Gas Turbine Blade.ASME Journal of Turbomachinery,1998,120:808-817.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700