用户名: 密码: 验证码:
手性双氨基酸五配位氢膦烷的立体化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
五配位磷化合物作为中间体或过渡态在生物学过程中被广泛的提出。本论文以氨基酸为原料合成并分离出16个单一绝对构型的双氨基酸五配位氢膦烷,通过高效液相色谱(HPLC)、核磁共振波谱(MR)、X-射线单晶衍射技术、圆二色光谱(CD)、电喷雾质谱(ESI-MS)以及量子化学理论计算等分析手段对它们的立体结构进行了系统的研究。
     本论文通过L-型氨基酸与PCl_3反应可以获得一对双氨基酸五配位氢膦烷的非对映异构体,与之类似,D-型氨基酸与PCl_3反应可以获得另外一对双氨基酸五配位氢膦烷的非对映异构体。这些非对映异构体都可以利用非手性HPLC进行有效的分离(纯度大于99.5%)。固体CD光谱证明它们双双成对映异构体的关系,在非手性HPLC中有相同的保留时间及相似的波谱数据。
     ~1H-~1H COSY实验发现其中一类双氨基酸五配位氢膦烷中氨基酸侧链α-CH与PH之间具有远程相关作用,~4J_(H-C-N-P-H)为2.4 Hz。量子化学理论计算表明在双氨基酸五配位氢膦烷的非对映异构体之间,P-H键与氨基酸侧链α-位碳原子的C-H键空间伸展方向不同,进而造成了~1H-~1H COSY信号的差异,~4J_(H-C-N-P-H)分别为2.5或0.5 Hz。
     ~(31)P NMR和~1H NMR跟踪测试表明该系列化合物各单一绝对构型在中性有机溶剂DMSO-d_6或CDCl_3中,室温条件下,40天内可以稳定不变。高纯度和较好的稳定性为绝对构型研究结论的可靠性和有效性奠定了很好的基础。
     X-射线单晶衍射技术对获得晶体结构的8个双氨基酸五配位氢膦烷的结构进行解析,确定该系列化合物中心磷原子属于三角双锥构型,H原子和两个N原子在平伏键上,两个O原子在直立键上。在此基础上,借鉴配位化合物的命名规则,对其绝对构型进行命名,并通过固体CD光谱以及~1H NMR对所有化合物的绝对构型进行关联。
     本论文还系统的对~1J_(P-X)(X=H,N)进行了研究,实验测试表明:~1J_(P-H)耦合常数的数值在四配位磷化合物中约为700 Hz小于在双氨基酸五配位氢膦烷中约为800 Hz的数值,而~1J_(P-N)耦合常数的数值在四配位磷化合物中约为41 Hz却大于在双氨基酸五配位氢膦烷中约为32 Hz的数值。利用量子化学理论计算,通过DFT/B3LYP/6-3 1+G(d,p)对化合物的几何结构进行优化,再用DFT/B3LYP/IGLOⅢ对其进行耦合常数的计算获得了与实验测试相同的结论,研究表明在双氨基酸五配位氢膦烷中,P-N键具有双键的性质,从而降低了化学键中s轨道的比例,进而降低了相应的~1J_(P-N)耦合常数数值。
     对双氨基酸五配位氢膦烷固体CD和溶液CD的测试,以及对双缬(亮)氨酸五配位氢膦烷的CD光谱进行理论计算研究,确定了氨基酸侧链为饱和脂肪链的双氨基酸五配位氢膦烷的CD信号受到中心手性磷原子与氨基酸侧链α-位手性碳原子的共同影响。由于在不同构型中两类手性原子对CD光谱的贡献不同,所以在非对映异构体之间CD光谱的最大吸收峰位置和吸收强度都有明显的差异。
     最后,对双氨基酸五配位氢膦烷进行电喷雾多级质谱裂解规律研究发现,单纯的通过多级质谱裂解无法区分化合物的手性。在正离子模式下([M+H]~+或[M+Na]~+),氨基酸侧链对相应的亚胺离子具有明显的稳定作用,伴随着氨基酸侧链变大(特别是苯环基团存在时),亚胺离子的稳定性明显增强并影响多级质谱的裂解规律。在负离子模式下([M-H]~-),对于双苯甘氨酸五配位氢膦烷因为苯环直接连接在化合物的螺环上,从而使得苯环在稳定该类化合物的负离子碎片上具有重要的作用,并表现出不同的裂解方式。
     本论文充分发挥各种立体化学研究方法的优势,从多角度对手性双氨基酸五配位氢膦烷的结构进行探讨,并运用量子化学理论计算的方法对实验测试获得的数据进行合理的解释。
Pentacoordinate phosphorus compounds as intermediates or transition state speciesare proposed in numerous biological processes.In this thesis,sixteen isomers of chiralbisamino acyl pentacoordinate spirophosphoranes derived from L-or D-amino acidswere synthesized and separated,respectively.To investigate the stereochemistry ofchiral bisamino acyl pentacoordinate spirophosphoranes systematically,these isomerswere characterised by high performance liquid chromatography (HPLC),nuclearmagnetic resonance (NMR),single crystal X-ray diffraction,circular dichroism (CD),electrospray ionization mass spectrometry (ESI-MS) and the theoretical calculation ofquantum chemistry.
     First of all,two sets of diastereoisomers of chiral bisamino acyl pentacoordinatespirophosphoranes derived from the reactions of L-or D-amino acids and PCl_3.Thesediastereoisomers could be separated by achiral HPLC with the purity of 99.5%.Thesolid-state CD spectra of enantiomers displayed virtually mirror images of each other,and showed the same retention times of achiral HPLC and similar NMR spectra,respectively.
     The ~1H-~1H COSY spectra of these compounds identified an interaction between theP-H proton and theα-hydrogen of amino acids,thus establishing unusual couplingthrough four bonds for these species with ~4J_(H-C-N-P-H) 2.4 Hz.This phenomenon wasconfirmed by the theoretical calculation of quantum chemistry.For diastereoisomers,the difference of the extensional orientation of P-H and C-H bond,which result in thedifference of the ~1H-~1H COSY and the coupling of ~4J_(H-C-N-P-H) was 2.5 or 0.5 Hz
     Potential epimerization of these isomers were monitored by ~(31)p and ~1H NMR at rtusing DMSO-d_6 or CDCl_3 as solvents to investigated the stability of these bisamino acylpentacoordinate spirophosphoranes.No epimerization was observed over a period offorty days.The high enantiopurity and good configurational stability of these isomers isessential for the following stereochemistry study.
     The absolute configurations of these chiral bisamino acyl pentacoordinatespirophosphoranes were proven when eight crystal structures were characterized bysingle crystal X-ray diffraction analysis.These compounds arranged in a distorted TBPgeometry.Two nitrogen atoms and a hydrogen atom form an equator plane and twooxygen atoms are in apical positions.Base on these data,we adopted the nomenclature system for coordination compound [MX(AB)_2] (AB=hetero-bidentate ligand) with aTBP geometry to determine the absolute configuration of the phosphorus center.Andthen the absolute configurations of all compounds were correlated with solid-state CDand ~1H NMR spectroscopy.
     The difference of ~1J_(P-H) and ~1J_(P-N) between the bisamino acyl pentacoordinatespirophosphoranes P(Ⅴ) and tetracoordinate phosphorus compounds P(Ⅳ) were alsodiscussed.The experimental results showed that ~1J_(P(Ⅳ)-H) (~700 Hz)<~1J_(P(Ⅴ)-H) (~800 Hz);but ~1J_(P(Ⅳ)-N) (~41 Hz)>~1J_(P(Ⅴ)-N) (~32 Hz).After the geometry was optimized byDFT/B3LYP/6-31+G(d,p),DFT/B3LYP/IGLOⅢwas used to calculate the ~1J_(P-X),it isshowed that the P-N bond displayed a nature of double bond which decreased thepercent of s orbit,which resulted in the decrease of the ~1J_(P-N) value.
     Meanwhile,the solid-state and solution CD of bisamino acyl pentacoordinatespirophosphoranes were measured,combined with the theoretical calculations of CDspectra of bisvalinyl or bisleucinyl pentacoordinate spirophosphoranes.We propsed thatfor the bisamino acyl pentacoordinate spirophosphoranes,when the side-chain of aminoacid was a saturated fatty chain,the signs of CD was controlled by both the chirality ofphsophours atom andα-carbons of the amino acids.In addition,the electronic transitionof these compounds were also discussed.
     Finally,the bisamino acyl pentacoordinate spirophosphoranes were investigated byESI-MS.It was found that the MS/MS can not distinguish the chirality of compoundseffectively.In tandem mass of positive ion ([M+H]~+ or [M+Na]~+),the side-chain ofamino acid could stabilize the imine ion and influence the fragmentation patterns,especially the existence of phenyl ring side-chain.In tandem mass of negative ion([M-H]~-) for bisphenylglycinyl pentacoordinate spirophosphoranes,the phenyl ring wasconjugated to the spiro ring,which could stabilize the fragment ions and displayeddifferent fragmentation pathways.
     In conclusion,the stereochemistry of chiral bisamino acyl pentacoordinatespirophosphoranes were discussed by several methods.By the theoretical calculation ofquantum chemistry,the spectra of ~1H NMR and CD was explained reasonably.
引文
[1]赵玉芬,赵国辉,麻远.磷与生命化学[M]清华大学出版社,2005.
    [2]尹应武,磷的生命化学研究—磷酰化酶模型化合物的合成、自活化反应及其机理[D]清华大学博士论文,1994.
    [3]Hengge, A.C.Isotope Effects in the Study of Phosphoryl and Sulfuryl Transfer Reactions [J]Acc.Chem.Res.2002, 35, 105-112.
    [4]Cleland, W.W.; Hengge, A.C.Enzymatic Mechanisms of Phosphate and Sulfate Transfer [J]Chem Rev.2006, 106,3252-3278.
    [5]Blackburn, G.M.Phosphate-The Cornerstone of Life [J]17~(TH) International conference on phosphorus chemistry, Abstract Book, 2007, 2-3.
    [6]Allen, K.N.; Dunaway-Mariano, D.Phosphoryl group transfer: evolution of a catalytic scaffold [J]Trends Biochem.Sci.2004, 29, 495-503.
    [7]Kumamoto, J.; Cox Jr., J.R.; Westheimer, F.H.Barium Ethylene Phosphate [J]J Am.Chem.Soc., 1956, 78, 4858-4860.
    [8]Haake, P.C.; Westheimer, F.H.Hydrolysis and Exchange in Esters of Phosphoric Acid [J]J.Am.Chem.Soc.1961, 83, 1102-1109.
    [9]Covitz, F.; Westheimer, F.H.The Hydrolysis of Methyl Ethylene Phosphate: Steric Hindrance in General Base Catalysis [J]J.Am.Chem.Soc.1963, 85, 1773-1777.
    [10]Dennis, E.A.; Westheimer, F.H.The Geometry of the Transition State in the Hydrolysis of Phosphate Esters [J]J.Am.Chem.Soc.1966, 88, 3432-3433.
    [11]Corcoran, R.; LaBelle, M.; Czarnik, A.W.; et al.Anasay to Determine the Kinetics of RNA cleavage.[J]Anal.Biochem.1985, 144, 563-568.
    [12]Markham, R.; Smith, J.D.The Structure of Ribonucleic Acids.1.Cyclic Nucleotides Produced by Ribonuclease and by Alkaline Hydrolysis [J]Biochem.J.1952, 52, 552-557.
    [13]Dejaegere, A.; Lim, C.; Karplus, M.Dianionic Pentacoordinate Species in the Base-Catalyzed Hydrolysis of Ethylene and Dimethyl Phosphate [J]J Am.Chem.Soc.1991, 113, 4353-4355.
    [14]Taira, K.; Uchimaru, T.; Storer, J.W.; Yliniemela, A.; Uebayashi, M.; Tanabe, K.[J]J.Org.Chem.1993, 58, 3009-3017.
    [15]Perreault, D.M.; Anslyn, E.V.Unifying the Current Data on the Mechanism of Cleavage—Transesterification of RNA [J]Angew.Chem., Int.Ed.1997, 36, 432-450.
    [16]Westheimer, F.H.Pseudo-Rotation in the Hydrolysis of Phosphate Esters [J]Acc.Chem.Res.1968, 1, 70-78.
    [17]Roberts, G.C.K.; Dennis, E.A.; Meadows, D.H.; Cohen, J.S.; Jardetzky, O.The Mechanism of Action of Ribonuclease [J] Proc. Natl. Acad. Sci. 1969, 62, 1151-1158.
    [18] Usher, D. A.; Richardson Jun, D. I.; Eckstein F. Absolute Stereochemistry of the Second Step of Ribonuclease Action [J] Nature 1970, 228, 663-665.
    [19] Raines, R. T. Ribonuclease A [J] Chem. Rev. 1998,98, 1045-1065.
    [20] Breslow, R.; Labelle, M. Sequential General Base-Acid Catalysis in the Hydrolysis of RNA by Imidazole [J] J. Am. Chem. Soc. 1986,108, 2655-2659.
    [21] Taira, K. Stereoelectronic Control in the Hydrolysis of RNA by Imidazole [J] Bull. Chem. Soc. Jpn. 1987, 60, 1903-1909.
    [22] Anslyn, E.; Breslow, R. On the Mechanism of Catalysis by Ribonuclease: Cleavage and Isomerization of the Dinucleotide UpU Catalyzed by Imidazole Buffers [J] J. Am. Chem. Soc. 1989, 111, 4473-4482.
    [23] Deakyne, C. A.; Allen, L. C. Role of Active-Site Residues in the Catalytic Mechanism of Ribonuclease A [J] J. Am. Chem. Soc. 1979,101, 3951-3959.
    [24] Matta, M. S.; Vo, D. T. Proton Inventory of the Second Step of Ribonuclease Catalysis [J] J. Am. Chem. Soc. 1986,108, 5316-5318.
    [25] Uchimaru, T.; Uebayashi, M.; Hirose, T.; Tsuzuki, S.; Yliniemela, A.; Tanabe, K.; Taira, K. Electrostatic Interactions That Determine the Rate of Pseudorotation Processes in Oxyphosphorane Intermediates: Implications with Respect to the Roles of Metal Ions in the Enzymatic Cleavage of RNA [J] J. Org. Chem. 1996, 61, 1599-1608.
    [26] Takagi, Y.; Warashina, M.; Stec, W. J.; Yoshinari, K; Taira, K. Recent Advances in the Elucidation of the Mechanisms of Action of Ribozymes [J] Nucleic Acids Res. 2001, 29, 1815-1834.
    [27] Burgers, P. M. J.; Eckstein, F.; Hunneman, D. H.; Baraniak, J.; Kinas, R. W.; Lesiak, K.; Stec, W. J. Stereochemistry of Hydrolysis of Adenosine 3':5'-Cyclic Phosphorothioate by the Cyclic Phosphodiesterase from Beef Heart [J] J. Biol. Chem. 1979, 254, 9959-9961.
    [28] Landt, M.; Butler, L. G. 5'-Nucleotide Phosphodiesterase: Isolation of Covalently Bound 5'-Adenosine Monophosphate, an Intermediate in the Catalytic Mechanism [J] Biochemistry, 1978,17, 4130-4135.
    [29] Burgers, P. M. J.; Eckstein, F.; Hunneman, D. H. Stereochemistry of Hydrolysis by Snake Venom Phosphodiesterase [J] J. Biol. Chem. 1979, 254, 7476-7478.
    [30] Yu, J. H.; Sopchik, A. E.; Arif, A. M.; Bentrude, W. G. Apical-Equatorial Orientation of the Six-Membered Ring in Phosphorus(Ⅴ) Models of Enzymically Formed cAMP-Nucleophile Adducts. Relationship to the Basic Hydrolysis of cAMP [J] J. Org. Chem. 1990, 55, 3444-3446.
    [31] Holmes, R. R.; Kumara Swamy, K. C.; Holmes, J. M.; Day, R. O. Pentacoordinated Molecules. 84. Conformational Effects of Ring Fusion and Heteroatom Substitution in Six-Membered Rings of Spirocyclic Oxyphosphoranes [J] Inorg. Chem. 1991, 30, 1052-1062.
    [32] Yu, J. H.; Arif, A. M.; Bentrude, W. G. Pentacovalent Phosphorus-Containing Models of P(Ⅴ) H_2O- or Enzyme cAMP Adducts. Nonchair Conformations of the Phosphorus-Containing Rings as Determined by ~1H NMR Spectroscopy and X-Ray Crystallography [J] J. Am. Chem. Soc. 1990,112, 7451-7461.
    [33]Huang,Y.; Arif, A.M.; Bentrude, W.G.Chair-Form Six-Membered Ring Attached Diequatorially to Five-Coordinate Phosphorus.~1H NMR and X-Ray Crystallographic Study [J]J.Am.Chem.Soc.1991, 113, 7800-7802.
    [34]Alessi, D.R.; Zeqiraj, E.The Governor: Protein Phsophorylation [J]Biochemist 2007, 29,20-23.
    [35]李武,赵玉芬.软件著作权:含磷蛋白及核酸数据库知识挖掘系统[Z]登记号2002SR2943.
    [36]李武,赵玉芬.软件著作权:含磷蛋白数据库系统[Z]登记号2004SRBJ0022.
    [37]李武,麻远,赵玉芬.蛋白激酶的五配位磷化学结构分析[J]中国科学B辑,2004,34, 252-258.
    [38]李武,五配位磷化学结构分析方法对含磷蛋白的研究[D]清华大学博士论文,2004.
    [39]Turk, B.E.Understanding and Exploiting Substrate Recognition by Protein Kinases [J]Curr.Opinion Chem.Biol.2008,12,4-10.
    [40]Zheng, J.H.; Knighton, D.R.; Ten Eyck, L.F.; Karlsson, R.; Xuong, N.; Taylor, S.S.;Sowadski, J.M.Crystal Structure of the Catalytic Subunit of cAMP-Dependent Protein Kinase Complexed with Magnesium-ATP and Peptide Inhibitor [J]Biochemistry 1993,32, 2154-2161.
    [41]Johnson, D.A.; Akamine, P.; Madhusudan, E.R.; Taylor, S.S.Dynamics of cAMP-Dependent Protein Kinase [J]Chem.Rev.2001, 101, 2243-2270.
    [42]Adams, J.A.Kinetic and Catalytic Mechanisms of Protein Kinases [J]Chem.Rev.2001,101, 2271-2290.
    [43]Shabb, J.B.Physiological Substrates of cAMP-Dependent Protein Kinase [J]Chem.Rev.2001, 101, 2381-2412.
    [44]Bridges, A.J.Chemical Inhibitors of Protein Kinases [J]Chem.Rev.2001, 101,2541-2572.
    [45]Daz, N.;Field.M.J.Insightsinto thePhosphoryl-Transfer Mechanismof cAMP-Dependent Protein Kinase from Quantum Chemical Calculations and Molecular Dynamics Simulations [J]J.Am.Chem.Soc.2004, 126, 529-542.
    [46]Gibbs, C.S.; Zoller, M.J.Rational Scanning Mutagenesis of a Protein Kinase Identifies Functional Regions Involved in Catalysis and Substrate Interactions [J]J.Biol.Chem.1991, 266, 8923-8931.
    [47]Valiev, M.; Kawai, R.; Adams, J.A.; Weare, J.H.The Role of the Putative Catalytic Base in the Phosphoryl Transfer Reaction in a Protein Kinase: First-Principles Calculations [J]J.Am.Chem.Soc.2003, 125, 9926-9927.
    [48]Cheng, Y.H.; Zhang, Y.K.; McCammon, J.A.How Does the cAMP-Dependent Protein Kinase Catalyze the Phosphorylation Reaction: An ab Initio QM/MM Study [J]J.Am.Chem.Soc.2005,127, 1553-1562.
    [49]Ni, F.; Li, W.; Li, Y.M.; Zhao, Y.F.Analysis of the Phosphoryl Transfer Mechanism of c-AMP Dependent Protein Kinase (PKA) by Penta-Coodinate Phosphoric Transition State Theory [J]Curr.Protein.Pept.Sci.2005, 6, 437-442.
    [50]Zhang, Z.Y.Protein Tyrosine Phosphatases: Prospects for Therapeutics.[J]Curr.Opin Chem. Biol. 2001, 5, 416-423.
    [51] Guan, K. L.; Dixon, J. E. Evidence for Protein-tyrosine Phosphatase Catalysis Proceeding via a Cysteine-phosphate Intermediate. [J] J. Biol. Chem. 1991,266, 17026-17030.
    [52] Cho, H.; Krishnaraj, R.; Kitas, E.; Bannwarth, W.; Walsh, C. T.; Anderson, K. S. Isolation and Structural Elucidation of a Novel Phosphocysteine Intermediate in the LAR Protein Tyrosine Phosphatase Enzymatic Pathway. [J] J. Am. Chem. Soc. 1992,114, 7296-7298.
    [53] Zhang, Z. Y.; Wang, Y.; Wu, L.; Fauman, E. B.; Stuckey, J. A.; Schubert, H. L.; Saper, M. A.; Dixon, J. E. The Cys(X)_5Arg Catalytic Motif in Phosphoester Hydrolysis. [J] Biochemistry 1994, 33, 15266-15270.
    [54] Keng, Y. F.; Wu, L.; Zhang, Z. Y. Probing the Function of the Invariant Tryptophan in the Flexible Loop of the Yersinia Protein-tyrosine Phosphatase. [J] Eur. J. Biochem. 1999, 259,809-814.
    [55] Zhang, Z. Y.; Wang, Y.; Dixon, J. E. Dissecting the Catalytic Mechanism of Protein-tyrosine Phosphatases. [J] Proc. Natl. Acad. Sci. 1994,91, 1624-1627.
    [56] Hengge, A. C.; Sowa, G.; Wu, L.; Zhang, Z. Y. Nature of the Transition State of the Protein-tyrosine Phosphatase-catalyzed Reaction. [J] Biochemistry 1995, 34, 13982-13987.
    [57] Zhang, Z. Y.; Palfey, B. A.; Wu, L.; Zhao, Y. Catalytic Function of the Conserved Hydroxyl Group in the Protein-tyrosine Phosphatase Signature Motif. [J] Biochemistry 1995,34, 16389-16396.
    [58] Zhao, Y.; Wu, L.; Noh, S. J.; Guan, K. L.; Zhang, Z. Y. Altering the Nucleophile Specificity of a Protein-tyrosine Phosphatase-catalyzed Reaction: Probing the Function of the Invariant Glutamine Residues. [J] J. Biol. Chem. 1998, 273, 5484-5492.
    [59] Zhang, Z. Y. Chemical and Mechanistic Approaches to the Study of Protein Tyrosine Phosphatases [J] Acc. Chem. Res. 2003, 36, 385-392.
    [60] Lahiri, S. D.; Zhang, G. F.; Dunaway-Mariano, D.; Allen, K. N. The Pentacovalent Phosphorus Intermediate of a Phosphoryl Transfer Reaction [J] Science 2003, 299, 2067-2071.
    [61] Blackburn, G. M.; Williams, N. H.; Gamblin, S. J.; Smerdon, S. J. Comment on "The Pentacovalent Phosphorus Intermediate of a Phosphoryl Transfer Reaction" [J] Science 2003, 301, 1184c.
    [62] Baxter, N. J.; Olguin, L. F.; Golicnik, M.; Feng, G. Q.; Hounslow, A. M.; Bermel, W.; Blackburn, G. M.; Hollfelder, F.; Waltho, J. P.; Williams, N. H. A Trojan Horse Transition State Analogue Generated by MgF~3" Formation in an Enzyme Active Site [J] Proc. Natl. Acad. Sci. 2006,103, 14732-14737.
    [63] Baxter, N. J.; Blackburn, G. M.; Marston, J. P.; Hounslow, A. M.; Cliff, M.J.; Bermel, W.; Williams, N. H.; Hollfelder, F.; Wemmer, D. E.; Waltho, J. P. Anionic Charge Is Prioritized over Geometry in Aluminum and Magnesium Fluoride Transition State Analogs of Phosphoryl Transfer Enzymes [J] J. Am. Chem. Soc. 2008,130, 3952-3958.
    [64] Webster, C. E. High-Energy Intermediate or Stable Transition State Analogue: Theoretical Perspective of the Active Site and Mechanism of β-Phosphoglucomutase [J] J. Am. Chem. Soc. 2004,126, 6840-6841.
    [65]Tremblay, L.W.; Zhang, G.F.; Dai, J.Y.; Dunaway-Mariano, D.; Allen, K.N.Chemical Confirmation of a Pentavalent Phosphorane in Complex withβ-Phosphoglucomutase [J]J.Am.Chem.Soc.2005,127,5298-5299.
    [66]Graham, D.L.; Lowe, P.N.; Grime, G.W.; Marsh, M.; Rittinger, K.; Smerdon, S.J.;Gamblin, S.J.; Eccleston, J.F.MgF~(3-) as a Transition State Analog of Phosphoryl Transfer[J]Chem.Biol.2002, 9, 375-381.
    [67]Rupert, P.B.; Massey, A.P.; Sigurdsson, S.Th.; Ferre'-D'Amare, A.R.Transition State Stabilization by a Catalytic RNA[J]Science 2002, 298, 1421-1424.
    [68]Comilescu, G.; Lee, B.R.; Cornilescu, C.C.; Wang, G.S.; Peterkofsky, A.; Clore, G.M.Solution Structure of the Phosphoryl Transfer Complex between the Cytoplasmic A Domain of the Mannitol Transporter Ⅱ~(Mannitol)and HPr of the Escherichia coli Phosphotransferase System [J]J.Biol.Chem.2002, 277, 42289-42298.
    [69]Cai, M.L.; Williams, Jr.D.C.; Wang, G.S.; Lee, B.R.; Peterkofsky, A.; Clore, G.M.Solution Structure of the Phosphoryl Transfer Complex between the Signal-transducing Protein IIA~(Glucose) and the Cytoplasmic Domain of the Glucose Transporter ⅡCB~(Glucose) of the Escherichia coli Glucose Phosphotransferase System [J]J.Biol.Chem.2003, 278,25191-25206.
    [70]Williams, Jr.D.C.; Cai, M.L.; Suh, J.Y.; Peterkofsky, A.; Clore, G.M.Solution NMR Structure of the 48-kDa IIA~(Mannose)-HPr Complex of the Escherichia coli Mannose Phosphotransferase System [J]J.Biol.Chem.2005, 280, 20775-20784.
    [71]Ji, C.J.; Xue, C.B.; Zeng, J.N.; Li, L.P.; Chai, W.G.; Zhao, Y.F.Synthesis of N-(Diisopropyloxyphosphoryl) Amino Acids and Peptides[J]Synthesis, 1988, 444-448.
    [72]Sun, X.B.; Feng, Y.P.; Guo, X.F.; Zhao, Y.F.A Green Synthesis of Diisopropyl Phosphoryl Amino Acid [J]Chin.Chem.Lett.2003, 14, 121-124.
    [73]孙笑宾,抗病毒核苷氢亚磷酸酯及磷酰胺类衍生物合成方法学研究[D]清华大学博士论文,2003.
    [74]Zhao, Y.F.; Zhang, J.C.; Cao, S.X.; Xu, J.; Rong, C.L.; Qu, L.B.Synthesis of N-(Diisopropyloxyphosphoryl) Amino Acids [J]Chin.J.Org.Chem.2004, 24.609-615.
    [75]Zhang, J.C.; Cao, S.X.; Yang, X.L.; Zhao, Y.F.; A Facile Synthesis of N-Phosphoryl Amino Acids Containing Hydroxy Group [J]Chin.Chem.Lett.2004, 15.646-648.
    [76]Li, Y.M; Yin, Y.W.; Zhao, Y.F.Phosphoryl Group Participation Leads to Peptide Formation from N-phosphoryl Amino Acids [J]Int.J.Pept.& Protein Res.1992, 39,375-381.
    [77]Zhao, Y.F.; Ju, Y.; Li, Y.M.; Wang, Q.; Yin, Y.W.; Tan, B.Self-activating of N-phosphoamino Acids and N-phosphodipeptides to the Oligopeptide Formation [J]Int.J.Pept.& Protein Res.1995, 45, 514-518.
    [78]王倩,赵玉芬,安逢龙,毛应群,王芹珠通过O,O-亚苯基磷酰氯与α-氨基酸三甲基硅基衍生物的反应观察五配位磷[J]中国科学B辑1995, 25, 683-688.
    [79]Fu, H.; Li, Z.L.; Zhao, Y.F.; Tu, G.Z.Oligomerization ofN,O-Bis(trimethylsilyl)-α-amino Acids into Peptides Mediated by o-Phenylene Phosphorochloridate [J]J.Am.Chem.Soc.1999,121,291-295.
    [80]Lin, C.X.; Li, Y.M.; Cheng, C.M.; Han, B.; Wan, R.; Feng, Y.B.; Zhao, Y.F. Penta-coordinate Phosphorous Compounds and Biochemistry [J]Science in China (Series B) 2002, 45, 337-348.
    [81]Li, Y.M.; Zhao, Y.F.The Bioorganic Chemical Reactions of N-Phosphoamino Acids Without Side Chain Functional Group Participated by Phosphoryl Group [J]Phosphorus,Sulfur 1993, 78, 15-21.
    [82]Tan, B.; Zhao, Y.F.Ester Exchange Reaction of Phosphoamino acids [J]Chin.Org.Chem.1995,15,30-34.
    [83]Li, Y.C.; Tan, B.; Zhao, Y.F.Phosphoryl Transfer Reaction of Phospho-histidine [J]Heteroatom Chem.1993, 4, 415-419.
    [84]Yan, Q.J.; Yin, Y.W.; Wang, Q.; Mao, Q.Q.; Zhao, Y.F.Reactions of N-Phosphoryl Serine and Threonine and Their Esters Catalyzed by Imidazole.[J]Chem.J.Chin.Univ.1995, 16, 1563-1566.
    [85]Tan, B.; Zhong, R.G.; Zhao, Y.F.; Dai, Q.H.A Theoretical Study on the Hexa-coordinate Phosphorus Intermediate of N-Phosphorylhistidine [J]Acta Chim.Sin.2000, 58, 235-239.
    [86]Xue, C.B.; Yin, Y.W.; Zhao, Y.F.Studies on Phsophoserine and Phosphothreonine Dericatives: N-Diisopropyloxyphosphoryl-serine and-threonine in Alcoholic Media [J]Tetrahedron Lett.1988, 29, 1145-1148.
    [87]尹应武,张保忠,陈益,薛楚标,赵玉芬N-磷酞氨基酸的分子内磷酞基迁移与结构的关系[J]科学通报 1994,39,333-336.
    [88]Zhao,Y.F.; Yin, Y.W.; Li, Y.M.; Tan, B.Hexa-Coordinate Phosphorus Chemistry and Life Chemistry [J]Chin.J.Org.Chem.1993, 13, 158-161.
    [89]Zhong, R.G.; Zhao, L.J.; Zhao, Y.F.N-phosphorylamino Acids and Penta-coordinate Phosphorous Compounds in the Chemical Process of Life [J]Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27~(th) Annual Conference, Shanghai, China,2005, 6108-6111.
    [90]Tan, B.; Zhong, R.G.; Wan, R.; Zhao, Y.F.; Dai, Q.H.A Theoretical Study on the Formation of Hexa-coordinate Phosphorus Intermediate for Phosphoserine's Bio-mimic Reaction[J]Chem.J.Chin.Univ.2000,21,407-411.
    [91]Tan, B.; Zhong, R.G.; Wan, R.; Zhao, Y.F.; Dai, Q.H.The Structures and Reactivities of Hexa-coordinate Phosphorus Intermediate for the Phosphoserine [J]Chem.J.Chin.Univ.2000, 21, 547-551.
    [92]Ramirez, F.; Desai, N.B.Crystalline 1:1 Adducts From the Reaction of Tertiary Phosphite EsterswithOrtho-Quinonesandwithalpha-Di ketones.NewRoutesto Ouinol-monophosphates and to Ketol-monophosphates [J]J.Am.Chem.Soc.1960, 82,2652-2653.
    [93]Hamilton, W.C.; LaPlaca, S.J.; Ramirez, F.The Structure of a Pentaoxyphosphorane by X-Ray Analysis [J]J.Am.Chem.Soc.1965, 87, 127-128.
    [94]Hamilton, W.C.; LaPlaca, S.J.; Ramirez, F.; Simth, C.P.Crystal and Molecular Structures of Pentacoordinated Group V Compounds.Ⅰ.2,2,2-Triisopropoxy-4,5-(2',2”-biphenyleno)-1,3,2-dioxaphospholene.Orthorhombic [J]J.Am.Chem.Soc.1967, 89, 2268-2272.
    [95]Spratley, R.D.; Hamilton, W.C.; Ladell, J.Crystal and Molecular Structures of Pentacoordinated Group V Compounds.Ⅱ.2,2,2-Triisopropoxy-4,5-(2',2”-biphenyleno) -1,3,2-dioxaphospholene.Monoclinic [J]J.Am.Chem.Soc.1967, 89, 2272-2278.
    [96]Ramirez, F.Oxyphosphorane [J]Acc.Chem.Res.1968,1,168-174.
    [97]Holmes, R.R.Pentacoordinated Phosphorus (Vol.Ⅱ)-Reaction Mechanisms, ACS Monograph Series 176, [M]American Chemical Society: Washington, DC, 1980.
    [98]Holmes, R.R.Pentacoordinated Phosphorus (Vol.Ⅰ)-Structure and Spectroscopy, ACS Monograph Series 175, [M]American Chemical Society: Washington, DC, 1980.
    [99]Gillespie, R.J.Molecular Geometry [M]New York: Nostrand Reinhold, 1972.
    [100]Hellwinkel, D.Das Tris-biphenylen-phosphat-anion und Bis-biphenylen-biphenyl-(2)-phosphorane.[J]Chem.Ber.1966, 99, 3628-3641.
    [101]Sheldrick, W.S.Topics in Current Chemistry-Organic Chemistry [M]Springer-Verlay,New York, 1978, 1-48.
    [102]Kumara Swamy, K.C.; Satish Kumar, N.New Features in Pentacoordinate Phosphorus Chemistry [J]Acc.Chem.Res.2006, 39, 324-333.
    [103]Corbridge, D.E.C.Phosphorus 2000: Chemistry, Biochemistry & Technology [M]4~(th) ed.; Elsevier: Amsterdam, 2000; Chapter 13, 1137-1139.
    [104]Nakamoto, M.; Kojima, S.; Matsukawa, S.; Yamamoto, Y.; Akiba, K.Y.Stereomutation and Apicophilicity of Diastereomeric Spirophosphoranes [J]J.Organomet.Chem.2002,643-644, 441-452.
    [105]Matsukawa, S.; Kajiyama, K.; Kojima, S.; Furuta, S.-Y.; Yamamoto, Y.; Akiba, K.-Y.A Method for Determining the Difference in Relative Apicophilicity of Carbon-Containing Substituents of 10-P-5 Phosphoranes [J]Angew.Chem., Int.Ed.2002, 41, 4718-4722.
    [106]Wladkowski, B.D.; Krauss, M.; Stevens, W.J.Apicophilicities of Substituted Oxyphosphoranes: [P(OH)_4X, PO-(OH)_3X][J]J.Phys.Chem.1995, 99, 4490-4500.
    [107]Timosheva, N.V.; Chandrasekaran, A.; Prakasha, T.K.; Day, R.O.; Holmes, R.R.Axial Site Occupancy by the Least Electronegative Ligands in Trigonal Bipyramidal Tetraoxyphosphoranes [J]Inorg.Chem.1996, 35, 6552-6560.
    [108]Muthiah, C.; Said, M.A.; Pulm, M.; Herbst-Irmer, R.; Kumara Swamy, K.C.New Phosphoranes with Five-and Seven-membered Rings: Influence of the Nature of the Substituents on Hydrogen Bonding [J]Polyhedron 2000, 19, 63-68.
    [109]Kumaraswamy, S.; Muthiah, C.; Kumara Swamy, K.C.Characterization of Stereoisomers of Spirophosphoranes Bearing an Eight-Membered Ring: Implications on Apicophilicity in Trigonal Bipyramidal Phosphorus [J]J.Am.Chem.Soc.2000, 122, 964-965.
    [110]Kommana, P.; Kumaraswamy, S.; Vittal, J.J.; Kumara Swamy, K.C.Apical versus EquatorialDispositionofSubstituentsinTetraoxyphosphoranesBearinga 1,3,2-Dioxaphosphocin Ring: Implications on Apicophilicity in Trigonal Bipyramidal Phosphorus [J]Inorg.Chem.2002, 41, 2356-2363.
    [111]Kumaraswamy, S.; Kumara Swamy, K.C.A Spirocyclic Tetraoxyphosphorane with an Apically Located Chlorine in a Trigonal Bipyramid and its Hydrolysis Product [J]Polyhedron 2002, 21, 1155-1161.
    [112]Kommana, P.; Satish Kumar, N.; Vittal, J.J.; Jayasree, E.G.; Jemmis, E.D.; Kumara Swamy, K.C.Does a Sterically Bulky Group Occupy the Equatorial Site in Trigonal Bipyramidal Phosphorus?[J]Org.Lett.2004, 6, 145-148.
    [113]Kojima, S.; Kajiyama, K.; Nakamoto, M.; Akiba, K.-Y First Characterization of a 10-P-5 Spirophosphorane with an Apical Carbon-Equatorial Oxygen Ring.Kinetic Studies on Pseudorotation of Stereoisomers [J]J.Am.Chem.Soc.1996, 118, 12866-12867.
    [114]Matsukawa, S.; Kojima, S.; Kaj iyama, K.; Yamamoto, Y.; Akiba, K.-Y.; Re, S.; Nagase,S.CharacteristicReactionsandPropertiesof C-ApicalO-Equatorial(O-cis) Spirophosphoranes: Effect of the σ~*_(P-O) Orbital in the Equatorial Plane and Isolation of a Hexacoordinate Oxaphosphetane as an Intermediate of the Wittig Type Reaction of 10-P-5 Phosphoranes [J]J.Am.Chem.Soc.2002, 124, 13154-13170.
    [115]Kajiyama, K.; Yoshimune, M.; Kojima, S.; Akiba, K.-Y.A New Method for the Formation of Anti-apicophilic (O-cis) Spirophosphoranes-Kinetic Studies on the Stereomutation of O-cis Arylspirophosphoranes to Their O-trans Isomers [J]Eur.J.Org.Chem.2006, 2739-2746.
    [116]Jiang, X.-D.; Matsukawa, S.; Yamamichi, H.; Kakuda, K.-I.; Kojima, S.; Yamamoto, Y.StereomutationandExperimentalDeterminationof the RelativeStabilityof Diastereomeric O-Equatorial Anti-Apicophilic Spirophosphoranes [J]Eur.J.Org.Chem.2008, 1392-1405.
    [117]Kumara Swamy, K.C.; Holmes, J.M.; Day, R.O.; Holmes, R.R.First Structural Study of a ThiophosphoraneContainingaSix-memberedRing.Phosphorus-Sulfur vs Phosphorus-Oxygen Ligand Preferences [J]J.Am.Chem.Soc.1990, 112, 6092-6094.
    [118]Burton, S.D.; Kumara Swamy, K.C.; Holmes, J.M.; Day, R.O.; Holmes, R.R.Conformational Preferences of Monocyclic Pentaoxyphosphoranes Varying in Ring Size [J]J.Am.Chem.Soc.1990, 112, 6104-6115.
    [119]Holmes, R.R.; Kumara Swamy, K.C.; Holmes, J.M.; Day, R.O.Pentacoordinated molecules.84.Conformational Effects of Ring Fusion and Heteroatom Substitution in Six-membered Rings of Spirocyclic Oxyphosphoranes [J]Inorg.Chem.1991, 30,1052-1062.
    [120]Kawashima, T.; Takami, H.; Okazaki, R.Synthesis, Structure, and Thermolysis of a 1,5-Dioxa-4.lambda.5-phosphaspiro [3.3]heptane: A Novel Pentacoordinate 1,2-Oxa-phosphetane [J]J.Am.Chem.Soc.1994, 116, 4509-4510.
    [121]Kobayashi, J.; Goto, K.; Kawashima, T.; Schmidt, M.W.; Nagase, S.Synthesis, Structure, and Bonding Properties of 5-Carbaphosphatranes: A New Class of Main Group Atrane [J]J.Am.Chem.Soc.2002, 124, 3703-3712.
    [122]Huang, Y.; Arif, A.M.; Bentrude, W.G.Chair-form Six-membered Ring Attached Diequatorially to Five-coordinate Phosphorus.~1H NMR and X-ray Crystallographic Study [J]J.Am.Chem.Soc.1991, 113, 7800-7802.
    [123]Day, R.O.; Kumara Swamy, K.C.; Fairchild, L.; Holmes, J.M.; Holmes, R.R.Pentacoordinated molecules.85.Influence of Hydrogen Bonding on the Formation of Boat and Chair Conformations of Six-membered Rings in Spirocyclic Tetraphosphoranes [J]J.Am.Chem.Soc.1991, 113, 1627-1635.
    [124]Said, M.A.; Pulm, M.; Herbst-Irmer, R.; Kumara Swamy, K.C.Cyclic Aminophosphites and-phosphoranes Possessing Six-and Higher-membered Rings: A Comparative Study of Structure and Reactivity [J]Inorg.Chem.1997, 36, 2044-2051.
    [125]Berry, R.S.Correlation of Rates of Intramolecular Tunneling Processes, with Application to Some Group V Compounds [J]J Chem.Phys.1960, 32, 933-938.
    [126]Whitesides, G.M.; Mitchell, H.L.Pseudoration in Tetrafluorodimethylaminophosphorane [J]J.Am.Chem.Soc.1969, 91, 5384-5386.
    [127]Ramirez, F.; Ugi, I.Turnstile Rearrangement and Pseudoration in the Permutational Isomerization of Pentavalent Phosphorus [J]Adv.Phys.Org.Chem.1971, 9, 25-126.
    [128]Ramirez, F.; Pfohl, S.; Tsolis, E.A.; Pilot, J.F.; Smith, C.P.; Ugi, I.; Marquarding, D.;Gillespie,P.;Hoffmann,R.PermutationalIsomerization of CagedPolycyclic Oxyphosphorane, Turnstile Related and Pseudoration [J]Phosphorus, 1971, 1, 1-16.
    [129]刘纶祖,刘钊杰有机磷化学导论[M]华中师范大学出版社,1991.
    [130]Matsukawa,S.;Yamamichi, H.;Yamamoto,Y.;Ando,K.Pentacoordinate Organoantimony Compounds That Isomerize by Turnstile Rotation [J]J.Am.Chem.Soc.2009, 131, 3418-3419.
    [131]Denney, D.B.; Denney, D.Z.; Hammond, P.J.; Lun Tsu Liu, L.T.; Wang, Y.P.Preparation and Nuclear Magnetic Resonance Studies of Pentacoordinated Phosphorus Compounds Containing Hexafluoroisopropoxy Groups [J]J.Org.Chem.1983, 48,2159-2164.
    [132]Garrigues, B.; Munoz, A.; Koenig, M.; Sanchez, M.; Wolf, R.Spirophosphroanylation D'a-Amino Acides-Ⅰ Preparation Et Tautomerie [J]Tetrahedron 1977, 33, 635-643.
    [133]Garrigues, B.; Klaebe, A.; Munoz, A.Epimerisation De L'Atome De Phosphore Dans Des Phosphoranes A' a-Amino Acides Naturels [J]Phosphorus and sulrur 1980, 8.153-156.
    [134]Garrigues, B.; Koenig, M.; Munoz, A.Un Exemple D'Equilibre Tautomere Phosphite (?)Phosphoranure [J]Tetrahedron Lett.1979, 43, 4205-4208.
    [135]Garrigues, B.; Munoz, A.Proprietes Nucleophiles des Phosphoranures [J]Can.J.Chem.1984,62,2179-2185.
    [136]Dillon, K.B.Phosphoranides [J]Chem.Rev.1994, 94, 1441-1456.
    [137]Savignac, P.; Richard, B.; Leroux, Y.; Burgada.R.Reactions de Metallation dans la serie des Spirophosphoranes a Liaison P---H.Formation de la Liaison Pv---C [J]J.Organomet.Chem.1975, 93, 331-337.
    [138]Klaebe, A.; Sanchez, M.; Caruana, G.; Wolf, R.Optically Active Five-coordinated Phosphoranes.Apicophilicity of the Amino-group Compared with Hydrogen: a Comparative Kinetic Study.Influence of the Activation Entropy [J]J.Chem.Soc., Perkin Ⅱ, 1997, 976-980.
    [139]Kajiyama, K.; Nakamoto, A.; Miyazawa, S.; Miyamoto, T.K.Diastereoselective Formationof MetallaphosphacycloIridium(Ⅲ)ComplexesfromPhosphoranido Iridium(III) Complex [J]Chem.Lett.2003, 32, 332-333.
    [140]Laurenco, C.; Burgada, R.Mecanisme De Fromation Et De Transformation Des Spirophosphoranes-Ⅷ Reactions Des Spirophosphoranes A Liaison P-H Avec Les Reactifs Electrophiles [J]Tetrahedron 1976, 32, 2089-2098.
    [141]Laurenco, C.; Burgada, R.Mecanisme De Fromation Et De Transformation Des Spirophosphoranes-Ⅸ Reactions Des Spirophosphoranes A Liaison P-H Avec Les Ethers Vinyliques Et Les Enamines [J]Tetrahedron 1976, 32, 2253-2255.
    [142]Munoz, A.; Lamande, L.Reaction Des Bases Conjuguees De Phosphoranes A Liaison P-H Surles α-Cetoacides.Stabilisation Des Intermediaires Reactionnels [J]Phosphorus, Sulfur 1992, 70, 263-272.
    [143]Liu, L.Z.; Cao, R.Z.; Shi, X.D.; Qian, D.Q.Synthesis and Reactions of Hydridophosphoranes [J]Chem.J.Chin.Univ.1998, 19, 748-753.
    [144]Houalla, D.; Bounja, Z.; Skouta, S.; Wolf, R.; Jaud, J.Macrocycles Containing Bicyclopho-sphorane Moieties [J]Heteroatom Chem.1994, 5, 175-191.
    [145]Liu, L.Z.; Li, G.W.; Zeng, X.Z.; Fu, L.B.; Cao, R.Z.The Atherton-Todd Reaction of Hydridophosphoranes [J]Heteroatom Chem.1996, 7, 131-136.
    [146]Buxton, S.R.; Roberts, S.M.Guide to Organic Stereochemistry [M]Edinburgh: Addition Wesley Longman Limited, 1996.
    [147]Keinan, E.; Schechter, I.Chemistry for the 21~(st) Century [M]Weinheim: Wiley-VCH Gmbh, 2001.
    [148]Aboul Enein, H.Y.; Wainer, I.W.The Impact of Stereochemistry on Drug Development and Use [M].Wiley, New York, 1997.
    [149]刘厚淳,奇云.开创手性催化反应研究的新领域—2001年诺贝尔化学奖评介[J]生物化学与生物物理进展, 2001, 28, 778-780.
    [150]马玉国.烯烃复分解反应—2005诺贝尔化学奖简介[J]大 学化学, 2006, 21, 1-7.
    [151]尤田耙,林国强.不对称合成[M]科学出版社,2006.
    [152]尤启东,林国强.手性药物—研究与应用[M]化学工业出版社,2004.
    [153]Garrigues, B.; Klaebe, A.; Munoz, A.Epimerisation De L'atome De Phosphore Dans Des Phosphoranes D'α-Aminoacides naturels [J]Phosphorus and sulfur 1980, 8, 153-156.
    [154]Klaebe, A.; Brazier, J.F.; Garrigues, B.; Wolf, R.Optically Avtive Spirophosphoranes.Absolute Configuration and Separation of the Contributions of the Helix and the Ligands to the Optical Rotation [J]Phosphorus and sulfur 1981, 10, 53-59.
    [155]Fu, H,; Xu, J.H.; Wang, R.J.; Chen, Z.Z.; Tu, G.Z.; Wang, Q.Z.; Zhao, Y.F.Synthesis, Crystal Structure, and Diastereomeric Transfer of Pentacoordinated Phosphoranes Containing Valine or Iso-Leucine Residue [J]Phosphorus Sulfur 2003, 178, 1963-1971.
    [156]Kojima, S.; Kajayama, K.; Akiba, K.-Y.Characterization of an Optically Active Pentacoordinate Phosphorane with Asymmetry Only at Phosphorus [J]Tetrahedron Lett.1994, 35, 7037-7040.
    [157]Kojima, S.; Kajiyama, K.; Akiba, K.-Y.Characterization of Enantiomeric Pairs of Optically Active 10-P-5 Phosphoranes with Asymmetry Only at Phosphorus [J]Bull.Chem.Soc.Jpn.1995, 68, 1785-1797.
    [158]Kojima, S.; Kawaguchi, K.; Matsukawa, S.; Akiba, K.-Y.Stereospecific Stilbene Formation from β-hydroxy-α,β-diphenylethylphosphoranes.Mechanistic Proposals Based upon Stereochemistry [J]Tetrahedron 2003, 59, 255-265.
    [1]Levy, G.C.; Lichter, R.L.Nitrogen-l5 Nuclear Magnetic Resonance Spectroscopy [M]John Wiley & Sons, Inc.1979.
    [2]Yu, L.; Liu, Z.; Fang, H.; Zeng, Q.L.; Zhao, Y.F.Synthesis, Characteristics and Biological Activity of Pentacoordinated Spirophosphoranes Derived From Amino Acids [J]Amino Acid 2005, 28, 369-372.
    [3]喻琳.氨基酸五配位磷化合物的合成,反应机理及其性质研究[D]厦门大学硕士论文,2005.
    [4]李在国,汪清民,黄军珉.有机中间体制备第二版[M]化学工业出版社,2001.
    [5]陈伟珠.手性起源模型化合物—核苷-5'-N-磷酰化氨基酸甲酯化合物的合成及其分子模拟[D]厦门大学硕士论文,2006.
    [6]李艳梅.N-磷酰氨基酸的自身活化及对红细胞膜磷脂流动性的影响,[D]清华大学博士论文,1992.
    [1]林炳承,邹雄,韩培桢.高效液相色谱在生命科学中的应用[M]山东科学技术出版社,1996.
    [2]卢佩章,戴朝政,张祥民.色谱理论基础(分析化学丛书,第三卷,第一册)[M]科学出版社,2001.
    [3]Yamamoto, C.; Okamoto, Y.HPLC Resolution using Polysaccharide Derivatives as CSP.In Busch, K.W.; Busch, M.A.Chiral Analysis [M]Elsevier, Amsternam, 2006.
    [4]Loukotkova,L.;Rambouskova,M.;Bosakova,Z.;Tesarova,E.Cellulose tris(3,5-dimethylphenylcarbamate)-Based Chiral Stationary Phases as Effective Tools for Enantioselective HPLC Separation of Structurally Different Disubstituted Binaphthyls [J]Chirality, 2008, 20, 900-909.
    [5]Maddi, S.; Keshetty, S.; Ega, C.M.; Yamasani, M.R.; Scriba, G.K.E.Development and Validation of a Stereoselective HPLC Method for the Determination of the in vitro Transport of Nateglinide Enantiomers in Rat Intestine [J]J.Sep.Sci.2007, 30, 1875-1880.
    [6]Guan, J.; Yang, J.; Bi, Y.J.; Shi, S.; Yan, F.; Li, F.M.Determination of the Enantiomeric Impurity in S-(-)pantoprazole using High Performance Liquid Chromatography with Sulfobutylether-beta-cyclodextrin as Chiral Additive[J]J.Sep.Sci.2008, 31, 288-293.
    [7]陈小明,蔡继文.单晶结构分析[M]科学出版社,2003.
    [8]Martin, J.C.; Balthazor, T.M.Sulfuranes.22.Stereochemical Course of an Associative Displacement at Tetracoordinate Sulfur (Ⅳ) in a Sulfurane of Known Absolute Configuration.A Proposed System of Nomenclature for Optically Active Pentacoordinate Species.[J]J.Am.Chem.Soc.1977, 99, 152-162.
    [9]von Zelewsky, A.Stereochemistry of Coordination Compounds [M]Chichester, John Wiley & Sons.Ltd., 1996, pp.100-101.
    [10]Mamula, O.; von Zelewsky, A.; Bark, T.; Stoeckli-Evans, H.; Neels, A.; Bernardinelli, G.Predermined Chirality at Metal Centers of Various Coordination Geometries: A Chiral Cleft Ligand for Tetrahedral (T-4), Square-Planar (SP-4), Trigonal-Bipyramidal (TB-5),Square-Pyramidal (SPY-5), and Octahedral (OC-6) Complexes [J]Chem.Eur.J.2000, 6, 3575-3585.
    [11]Sheldrick, G.M.Phase Annealing in SHELX-90: Direct Methods for Larger Structures [J]Acta Crystallogr.1990, A46, 467-473.
    [12]Sheldrick, G.M.SHELXL-97, Program for Crystal Structure Refinement from Diffraction Data [Z]University of G(o|¨)ttingen: Germany, 1997.
    [13]金斗满,朱文祥.配位化学研究方法[M]北京:科学出版社,1996.
    [14]章慧.配位化学—原理与应用(Coordination Chemistry Principles and Applications) [M]化学工业出版社,2008.
    [15]Azumaya, I.; Okamoto, I.; Nakayama, S.; Tanatam, A.; Yamaguchi, K.; Shudo, K.;Kagechika, H.A Chiral N-methylbenzamide: Spontaneous Generation of Optical Activity [J]Tetrahedron 1999, 55, 11237-11246.
    [16]Kuroda, R.Solid-State CD: Application to Inorganic and Organic Chemistry.In Berova, N.; Nakanishi, N.; Woody, R.W.Circular Dichroism: Principles and Applications [M]Wiley-VCH, 2000.
    [17]李润卿,范国梁,渠荣遴.有机结构波谱分析(Spectral Analysis of Organic Structures) [M]天津大学出版社,2002.
    [18]高汉宾,张振芳.核磁共振原理与实验方法[M]武汉大学出版社,2008.
    [1]宁永成.有机化合物结构鉴定与有机波谱学(第二版)[M]北京科学出版社,2000.
    [2]Karplus, M.Vicinal Proton Coupling in Nuclear Magnetic Resonance [J]J.Am.Chem.Soc.1963, 85, 2870-2871.
    [3]Schaefer, M.; Bartels, C.; Karplus, M.Solution Conformations and Thermodynamics of Structured Peptides: Molecular Dynamics Simulation with an Implicit Solvation Model [J]J.Mol.Biol.1998, 284, 835-848.
    [4]Bartels, C.; Stote, R.H.; Karplus, M.Characterization of Flexible Molecules in Solution:the RGDW Peptide [J]J.Mol.Biol.1998, 284, 1641-1660.
    [5]Stote, R.H.; Dejaegere, A.P.; Lefvre, J.-F.; Karplus, M.Multiple Conformations of RGDW and dRGDW: A Theoretical Study and Comparison with NMR Results [J]J.Phys.Chem.B 2000, 104, 1624-1636.
    [6]徐昕,王南钦,吕鑫,张乾二.量子化学的研究现状、发展趋势与展望[J]化学进展1996, 8, 30-42.
    [7]廖沐真,吴国是,刘洪霖.量子化学从头计算方法[M]清华大学出版社,1984.
    [8]Dewar, M.J.S.; Mckee, M.L.; Rzepa, H.S.MNDO Parameters for Third Period Elements [J]J.Am.Chem.Soc.1977, 100, 3607-3607.
    [9]Dewar, M.J.S.; Zoebisch, E.G.; Healy, E.F.; Stewart, J.J.P.AM1:A New General Purpose Quantum Mechanical Molecular Model [J]J.Am.Chem.Soc.1985, 107,3902-3909.
    [10]Stewart, J.J.P.Optimization of Parameters for Semi-empirical Methods I-Method [J]J.Comp.Chem.1989,10,209-220.
    [11]Thiel, W.; Voityuk, A.A.Extension of MNDO to d-orbitals: Parameters and Results for the Second-row Elements and for the Zinc Group [J]J.Phys.Chem.1996, 100, 616-626.
    [12]Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.et al.Gaussian 03, [Z]Gaussian Inc.:Wallingford, CT, 2004.
    [13]Becke, A.D.Density Functional Thermochemistry.Ⅲ.The Role of Exact Exchange [J]J.Chem.Phys.1993, 93, 5648-5652.
    [14]Wu, Y.D.; Lai, D.K.W.A Density Functional Study on the Stereocontrol of the Sharpless Epoxidation [J]J.Am.Chem.Soc.1995,117, 11327-11336.
    [15]Barfield, M.; Dean, A.M.; Fallick, C.J.; Spear, R.J.; Sternhell, S.; Westerman, P.W.Conformational Dependence and Mechanisms for Long-Range Hydrogen-hydrogen Coupling Constants Over Four Bonds [J]J.Am.Chem.Soc.1975, 97, 1482-1492.
    [16]Barfield, M.DFT/FPT Studies of the Structural Dependencies of Long-Range ~1H,~1H Coupling Over Four Bonds ~4J(H,H') in Propanic and Allylic Systems [J]Magn.Reson.Chem.2003, 41, 344-358.
    [17]Parella, T, Sanchez-Ferrando, F.; Virgili, A.Experimental Evidence for the Breakdown of the Karplus Relationship for ~3J(~(13)C, ~1H) in ~1H-C-C= ~(13)C Systems [J]Magn.Reson.Chem.1997, 35, 30-34.
    [18]Rittner, R.; Braibante, M.E.F.; de Kowalewski, D.G.; Pla, J.C.; Mazzola, E.P.~1H NMR Chemical Shifts and Coupling Constants of Some 3-Monosubstituted 2-Methylpropenes [J]Magn.Reson.Chem.1997, 35, 147-152.
    [19]Sproviero, E.M.; Burton, G.Stereoelectronic Contributions to Long-Range ~1H-~1H Coupling Constants [J]J.Phys.Chem.A, 2002, 106, 7834-7843.
    [20]Liu, D.C.; Lash, T.D.Conjugated Macrocycles Related to the Porphyrins.25.Proton NMRSpectroscopicEvidenceforaPreferred[18]AnnuleneSubstructurein Carbaporphyrins from the Magnitude of Selected ~4J_(H,H) CH=C-CH_3 Coupling Constants [J]J.Org.Chem., 2003, 68, 1755-1761.
    [21]Gao, H.; Zhang, Q.H.; Jiang, M.M.;Tang, J.S.; Miao, C.D.; Hong.K.; Namikoshi, M.; Wang, N.L.; Yao, X.S.Polyketides From a Marine Sponge-Derived Fungus Mycelia sterilia and Proton-Proton Long-Range Coupling [J]Magn.Reson.Chem.2008, 46,1148-1152.
    [22]Gorenstein, D.G.Phosphorus-31 NMR Principles and Applications [M]Academic Press.Inc.1984.
    [1]Kuroda, R.; Honma, T.CD Spectra of Solid-State Samples [J]Chirality, 2000, 12,269-277.
    [2]Bilotti, I.; Biscarini, P.; Castiglioni, E.; Ferranti, F.; Kuroda, R.Reflectance Circular Dichroism of Solid-State Chiral Coordination Compounds [J]Chirality 2002, 14, 750-756.
    [3]Grimme, S.; Mennicke, W.; V(o|¨)gtle, F.; Nieger, M.Experimental and Theoretical Studies of a Chiral Azulenophane: Synthesis, Structure and Circular Dichroism Spectra of 14,17-Dimethyl[2](1,3)azuleno[2]paracyclophane [J] J. Chem. Soc., Perkin Trans. 2, 1999,521-527.
    [4] Wang, Y.; Raabe, G.; Repges, C.; Fleischhauer, J. Time-Dependent Density Functional Theory Calculations on the Chiroptical Properties of Rubroflavin: Determination of Its Absolute Configuration by Comparison of Measured and Calculated CD Spectra [J] Int. J. Quantum Chem. 2003, 93, 265-270.
    [5] Watanabe, M.; Suzuki, H.; Tanaka, Y.; Ishida, T.; Oshikawa, T.; Tori-i, A. One-Pot Synthesis of Helical Aromatics: Stereoselectivity, Stability against Racemization, and Assignment of Absolute Configuration Assisted by Experimental and Theoretical Circular Dichroism [J] J. Org. Chem. 2004, 69, 7794-7801.
    [6] Giorgio, E.; Tanaka, K.; Verotta, L.; Nakanishi, K.; Berova, N.; Rosini, C. Determination of the Absolute Configurations of Flexible Molecules: Synthesis and Theoretical Simulation of Electronic Circular Dichroism/Optical Rotation of Some Pyrrolo[2,3-b]Indoline Alkaloids-A Case Study [J] Chirality 2007,19, 434-445.
    [7] Grkovic, T.; Ding, Y.; Li, X. C.; Webb, V. L.; Ferreira, D.; Copp, B. R. Enantiomeric Discorhabdin Alkaloids and Establishment of Their Absolute Configurations Using Theoretical Calculations of Electronic Circular Dichroism Spectra [J] J. Org. Chem. 2008, 73,9133-9136.
    [8] Pescitelli, G.; Gabriel, S.; Wang, Y.; Fleischhauer, J.; Woody, R. D.; Berova, N. Theoretical Analysis of the Porphyrin-Porphyrin Exciton Interaction in Circular Dichroism Spectra of Dimeric Tetraarylporphyrins [J] J. Am. Chem. Soc. 2003,125, 7613-7628.
    [9] Fan, J.; Seth, M.; Autschbach, J.; Ziegler, T. Circular Dichroism of Trigonal Dihedral Chromium(Ⅲ) Complexes: A Theoretical Study based on Open-Shell Time-Dependent Density Functional Theory [J] Inorg. Chem. 2008, 47, 11656-11668.
    [10] Graule, S.; Rudolph, M.; Vanthuyne, N.; Autschbach, J.; Rousse, C.; Crassous, J.; Reau. R, Metal-Bis(helicene) Assemblies Incorporating π-Conjugated Phosphole-Azahelicene Ligands: Impacting Chiroptical Properties by Metal Variation [J] J. Am. Chem. Soc. 2009, 757,3183-3185.
    [11] Marques, M. A. L.; Gross, E. K. U. Time-Dependent Density Functional Theory [J] Annu. Rev. Phys. Chem. 2004, 55, 427-455.
    [12] G. Ricciardi, G.; Rosa, A.; Baerends, E. J. Ground and Excited States of Zinc Phthalocyanine Studied by Density Functional Methods [J] J. Phys. Chem. A 2001, 105, 5242-5254.
    [13] Dreuw, A.; Head-Gordon, M. Single-Reference ab Initio Methods for the Calculation of Excited States of Large Molecules [J] Chem. Rev 2005,105, 4009-4037.
    [14] Wang, Y.; Fleischhauer, J.; Bausch, S.; Sebestian, M.; Laur, P. H. Conformational Analysis and TDDFT Calculations of the Chiroptical Properties of tris [1,2-propanediolato(2-)-kappaO,kappaO'] selenium/tellurium and Related Compounds [J] Enantiomer 2002, 7, 343-374.
    [15] Wang, Y.; Wang, Y. K.; Wang, J.; Liu, Y.; Yang, Y. Theoretical Analysis of the Individual Contributions of Chiral Arrays to the Chiroptical Properties of Tris-diamine Ruthenium Chelates [J] J. Am. Chem. Soc. 10.1021/ja9004738.
    [16] Autschbach, J.; Ziegler, T.; Jorge, F. E. Density Functional Calculations on Electronic Circular Dichroism Spectra of Chiral Transition Metal Complexes [J] Inorg. Chem. 2003, 42, 2867-2877.
    [17] Jorge, F. E.; Autschbach, J.; Ziegler, T. On the Origin of the Optical Activity in the d-d Transition Region of Tris-Bidentate Co(Ⅲ) and Rh(Ⅲ) Complexes [J] Inorg. Chem. 2003, 42, 8902-8910.
    [18] Jorge, F. E.; Autschbach, J.; Ziegler, T. On the Origin of Optical Activity in Tris-diamine Complexes of Co(Ⅲ) and Rh(Ⅲ): A Simple Model Based on Time-Dependent Density Function Theory [J] J. Am. Chem. Soc. 2005,127, 975-985.
    [19] Fan, J.; Ziegler, T. On the Origin of Circular Dichroism in Trigonal Dihedral d~6 Complexes of Bidentate Ligands Containing Only σ-Orbitals.A Qualitative Model Based on a Density Functional Theory Study of A-[Co(en)_3]~(3+) [J] Chirality 2008, 20, 938-950.
    [1]唐恢同.有机化合物光谱鉴定[M]北京大学出版社,1994.
    [2]Pramanik, B.N.; Ganguly, A.K.; Gross, M.L.主编,蒋宏键,俞克佳(美)译.电喷雾质谱应用技术[M]化学工业出版社,2005.
    [3]Gu, C.G.; Somogyi, A.; Wysocki, V.H.; Medzihradszky, K.F., Fragmentation of Protonated Oligopeptides XLDVLQ (X=L, H, K or R) by Surface Induced Dissociation:Additional Evidence for the 'Mobile Proton' Model [J].Anal.Chim.Acta.1999, 397,247-256.
    [4]Dikler, S.; Kelly, J.W.; Russell, D.H., Improving Mass Spectrometric Sequencing of Arginine-Containing Peptides by Derivatization with Acetylacetone [J]J.Mass Spectrom.1997, 32, 1337-1349.
    [5]Cai, W.G.; Yan, L.; Wang, G.H.; Liang, X.Y.; Zhao Y.F., Improvement in Sensitivity of FAB-MS of Amino Acids by Diisopopropylphosphorylation [J]Biomed.Environ.Mass Spectrom.1987, 14, 331-333.
    [6]Yin, Y.W.; Zhao, Y.F.; Chen, Y.; Ma, Y.; Wang, G.H., Positive and Negative Ion FAB-MS Application in Identification of Amino Acids, Oligopeptides and Their Mixtures [J].Sci.China, Ser.B 1994, 24, 904-913.
    [7]Chen, Y.; Zhang, J.C.; Chen, J.; Cao, X.Y.; Wang, J.; Zhao, Y.F., Sensitivity Improvement of Amino Acidsby N-terminalDiisopropyloxyphosphorylationin Electrospray Ionization Mass Spectrometry [J]Rapid Commum.Mass Spectrom.2004, 18,469-473.
    [8]刘艳,基于ESI-MS及NMR技术的蛋白质一级结构及其小分子相互作用机理研究[D]厦门大学博士论文,2005.
    [9]赵玉芬,生物有机质谱(Bioorganic Mass Spectrometry) [M]郑州大学出版社,2005.
    [10]陶慰孙,孙惟,江涌明主编.蛋白质分子基础(第二版)[M]高等教育出版社,1995.
    [11]Huang, Z.H.; Wu, J.; Roth, K.D.W.; Yang, Y.; Gage, D.A.; Watson, J.T.A Picomole-Scale Method for Charge Derivatization of Peptides for Sequence Analysis by Mass Spectrometry [J]Anal.Chem.1997, 69, 137-144.
    [12]Yates, J.R.Mass Spectrometry and the Age of the Proteome[J]J.Mass Spectrom.1998,33, 1-19.
    [13]Keough, T.; Youngquist, R.S.; Lacey, M.P., A Method for High-Sensitivity Peptide Sequencing Using Postsource Decay Matrix-Assisted Laser Desorption Ionization Mass Spectrometry [J]Proc.Natl.Acad.Sci.1999, 96, 7131-7136.
    [14]陈晶,付华,陈益,赵玉芬.质谱在肽和蛋白质序列分析中的应用[J]有机化学2002, 22, 81-90.
    [15]沈漪,方文仅.蛋白质一级结构测定的新进展[J]中国医药工业杂志 2002,33,514-518.
    [16]Vath, J.E.; Biemann, K.Microderivatization of Peptides by Placing a Fixed Positive Charge at the N-terminus to Modify High Energy Collision Fragmentation [J]Int.J.Mass Spectrom.Ion Processes 1990, 100, 287-299.
    [17]Jiang, Y.; Fu, H.; Xu, L.; Lu, Q.; Wang, J.Z.; Zhao, Y.F., Identification of Self-Assembly Products From N-phosphoamino Acids by Electrospray Ionization Mass Spectrometry [J]Rapid Commun.Mass Spectrom.2000, 14, 1491-1493.
    [18]Liu, Z.; Yu, L.; Chen, Y.; Zhou, N.; Chen, J.; Zhu, C.J.; Xin, B.; Zhao, Y.F., Interesting DifferencesBetween the Protonatedand Sodium Adducts of Pentacoordinated Bisaminoacylspirophosphoranes in Electrospray Ionization Mass Spectrometry [J]J.Mass Spectrom.2003, 38, 231-233.
    [19]刘钊,五配位双氨基酸氢膦烷合成,性质及其对酪氨酸激酶的抑制活性研究[D]厦门大学硕士论文,2004.
    [20]曹书霞,磷试剂辅助下氨基酸成肽反应及电喷雾质谱研究[D]郑州大学博士论文,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700