用户名: 密码: 验证码:
基于图像的城市建筑物三维自动重建参数化建模方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
计算机视觉既是工程领域,也是科学领域中的一个富有挑战性的重要研究课题。基于计算机视觉的三维信息获取技术已成为当今的研究热点。本论文主要研究基于图像的三维自动重建的参数化建模方法,试图从数码相机拍摄的建筑物图像中以参数化建模的方法恢复建筑物的三维几何结构,从而为各种应用环境提供有效的建模方法和三维模型,便于浏览,可移植性强。在分析了目前国内外已有的研究成果基础上,进行了多方面的深入研究和实验,取得了一些有意义的成果。
     图像分割是计算机视觉应用中非常重要的预处理步骤。本文在总结彩色图像分割算法的基础上,根据建筑物彩色图像分割的要求和特点,针对分水岭变换存在的过分割问题,提出了基于分水岭变换和区域融合的彩色建筑物图像分割算法,该方法结合区域面积控制预处理,利用建筑物的轴对称特点设计融合代价函数,并设计了根据代价函数值的直方图分布,自动确定区域合并停止阈值的方法。另外,还提出了一种基于尺度空间图像分析的彩色图像分割算法,该算法采用形态学分层图像分析的方法,由体积灭值构建图像尺度空间的树状表达。通过对尺度空间的生存时间属性和其它特征的分析,实现建筑物图像分割。
     形态学尺度空间(形态筛)是一种近年来广泛应用于图像处理、分析中的动态分析框架,可以更容易获得图像的本质特征。在图像分割预处理之后,本文着重讨论了形态筛在彩色图像中的扩展应用,在对比分析两种现有彩色形态筛的基础上,提出了一种新的基于模糊模型的彩色形态筛,并验证了模糊彩色形态筛各方面的性能。另外,本文将灰度形态筛引入到基于图像的建筑物参数化建模的各个过程中,发挥不同尺度形态筛的作用,取得了较好的效果。
     本文为城市建筑物建立了面向对象参数化数据模型,提出了面向对象的CSG点、面、体分层建筑物建模方法,并根据模型的特征研究了自动实现建筑物类型判断的算法,该方法首先应用形态筛保留建筑物的主要轮廓区域,然后从图像的点、线特征入手,利用Hough变换提取轮廓线,并提出了一种线段优化算法,这种优化算法可有效排除Hough变换和线段整合过程中产生的错误线段,并用于剔除错误的轮廓线交点和建立角点邻接图。最后,根据提取的各类角点的数目进行建筑物类型的判断。算法可自动对单幅图像中的规则建筑物进行平顶或非平顶的判断。
     城市建筑物的主体以平行六面体居多,而获得建筑物的轮廓是实现单幅图像重建的关键,本文设计了一种城市建筑物贝叶斯概率统计模型来模拟城市建筑物世界,在假设相机内参已知的情况下,利用边缘像素通过最大化后验概率(MAP)估计消隐点的投影,而后用大尺度形态筛结合估计到的消隐点对边界像素进行分类并自动提取建筑物主体轮廓。在全面而深入地研究平行六面体的几何特征与相机参数之间的关系后,根据获得的角点实现平顶建筑物的三维参数自动提取。现有的大部分单幅图像的重建方法都不是根本的参数化建模,也没有对建筑物类型判断的过程。本文针对未知场景的情况,研究了仅由交互输入的六个角点,实现非平顶建筑物屋顶角点的自动提取,进行两种常见非平顶建筑物模型的判断,并实现三维参数化建模的方法,参数化重建省去了平面纠正的步骤,不必重建大量的点或直线,也不需要用户指定平行性、共面性等约束,且同时完成相机的标定和模型参数的确定,与那些多视图的自动重建方法相比,更加可靠和简单。
     论文中将提出的各种方法和算法分别应用于模拟和真实图像进行实验。最后实现了Web页面中连同VRML技术的建筑物场景的三维建模和漫游及建筑物相关属性的显示。
With the development of information science, computer vision technology has been widely applied to many areas. The issue of 3-D information acquisition techniques based on computer vision has been one of the research hotspots in this field. The main idea of this thesis contains monocular vision techniques for estimating geometric properties of 3-D world from a series of 2-D digital images. Based on previous researches, significant progresses have been achieved after deeply study and analysis of former methods.
     Image segmentation is a necessary pretreatment step in many computer vision applications. In this thesis, a segmentation method especially for color images contain buildings is proposed. This approach makes use of area control pretreatment and the watershed algorithm to produce the original regions. The axial symmetry combined with other properties is estimated as region dissimilarity features. The final segmentation is derived by merging process. And the termination criterion determined through the distribution of the merging costs is an adaptive threshold. In addition, another segmentation algorithm based on scale-space image analysis is proposed. It analyzes hierarchical, geometric properties and the hue uniformity measure of the tree of scale-space in order to segment the objects. The results show that the approaches proposed can obtain effective regions of buildings in original images.
     The morphological sieve is a pervasive dynamic analysis frame since it can easily obtain the substantive characteristics of images. In this thesis, a new color morphological sieve with better synthetic performance proved by the experiments based on fuzzy theory is proposed. Besides, the morphological sieve is introduced into the monocular vision reconstruction process which results in a sufficient use of characteristics of the different scale sieves and good modeling results.
     After constructing the object-oriented parametric data model for the city building, the corners’properties are analyzed and the automatic building model estimation is realized. In the whole process, an effective segment optimization method is combined to improve the accuracy of the line and corner extraction.
     Automatic modeling of 3D object from images is a challenging problem in areas of computer vision especially from a single image. In this paper, a“City Building World”Bayesian model is constructed and a new automatically parameterized reconstruction method is presented which can recover the 3D cuboid architecture structure from a single terrestrial image. With the assumption that the interior parameters of the camera are known, the projection of the vanishing points is determined by exploiting the MAP. And from a few boundary pixels, the main parallelepiped contour is estimated. The cuboid model is reconstructed from the relationship between the parallelepiped geometry and the camera parameters.
     A parametric modeling method for the non-flat roof building is also presented. By using only six interactive input points, the roof corners can be detected automatically as well as the model geometry parameters. The proposed approaches and algorithms in this thesis are applied to synthetic data and real images respectively. At last, the rendering and virtual roaming dynamic web page is designed.
引文
[1]孙小兵.基于图像的简单形状物体三维模型重建[硕士学位论文].天津大学, 2006.
    [2]李二宝.基于图像的建筑物三维建模算法的研究与实现[硕士学位论文].沈阳工业大学, 2006.
    [3]段学军.虚拟城市技术方案与应用[J].测绘通报, 2001, 12: 1~3.
    [4] Brday J P, Nandhakumar N, Aggarwal J K. Recent Progress in the Recognition of objects from Range Data [A].The ninth International Conference on Patten Recognition [C]. Rome: 1955. 85~92.
    [5] Horn B K P, Brooks M J. Shape from Shading [M]. Cambridge,Massachusetts: The MIT Press, 1989.
    [6] Horn B K P. Understanding image intensities [J]. Artificial Intelligence, 1977, 8: 201~231.
    [7] Horn B K P, Sjoberg R W. Calculating the reflectance map [J]. Applied Optics, 1979, 18: 1770~1779.
    [8]陈鑫连,魏成阶,谢广林.地震灾害的航空遥感信息快速评估与救灾决策[M].北京:科学出版社, 1995.
    [9]宋晓宇,单新建.高分辨率卫星影像在城市建筑物识别中的初步应用[J].遥感信息, 2002, (1): 26~30.
    [10] Chaumette F, Boukir S, Bouthemy P, et al. Structure from Controlled Motion [J]. IEEE Trans. PAMI, 1996, 18(5): 492~504.
    [11] Lowe D G, Binford T O. The Recovery of Three-Dimensional from Image Curves [J]. IEEE Trans. PAMI, 1985, 7(3): 320~326.
    [12] Weng J, Ahuja N, Huang T S. Motion and structure from point correspondences: planar surfaces [J]. IEEE Trans. Signal Processing, 1991, 39(12): 2691~2717.
    [13] Adiv G. Determing Three-Dimensional Motion and Structure from Optical Flow Generated by Several Moving Objects [J]. IEEE Trans. PAMI, 1985, 7(4): 384~401.
    [14] Richard H. Multiple View Geometry in Computer Vision [M]. (Second edition) ed. Cambridge University Press, 2004.
    [15] Koch R, Pollefeys M, van Gool L. Multi Viewpoint Stereo from Uncalibrated Video Sequences [A].Proc. European Conference on Computer Vision [C]. 1998. 55~71.
    [16]刘国栋.数字城市建筑物CSG建模研究[硕士学位论文].太原:太原理工大学, 2003.
    [17] Lafarge F, Descombes X, Zerubia J, et al. Building reconstruction from a single DEM [A].IEEE Conference on Computer Vision and Pattern Recognition, CVPR [C]. 2008. 1~8.
    [18] Mohan R, Nevatia R. Using Perceptual Organization to Extract 3D Structures [J]. IEEE Trans. PRMI, 1989, 11(11): 1121~1139.
    [19] Mckeown D M. Fusion of Monocular Cues to Detect Man-Made Structure in Aerial Imagery [J]. CVG&IP: Image Understanding, 1993, 57(3): 307~330.
    [20] Huertas A, Nevatia R. Detecting Building in Aerial Images [J]. CVG&IP, 1988, 41: 131~152.
    [21] Huertas A, Bejamin M, Nevatia R. Model Registration and Validation [A].Automated Extraction of Man-made Objects from Aerial and Space Images [C]. Switzerland: Birkhauser Verlag, 1995. 33~42.
    [22] Nicolin B, Gabler R. A Knowledge Based System for the Analysis of Aerial Images [J]. IEEE Trans. Geo-science and RS, 1987, 25(3): 317~329.
    [23] Heuvel F A. 3D Reconstruction from a Single Image Using Geometric Constraints [J]. ISPRS J of Photogrammetry&RS, 1998, 53: 354~368.
    [24] Wehr A, Lohr U. Airbone Laser Scanning an Introduction and Overview [J]. ISPRS J of Photogrammetry&RS, 1999, 54: 68~82.
    [25] AckerMann F. Airbone Laser Scanning Present Status and Future Expectations [J]. ISPRS J of Photogrammetry&RS, 1999, 54: 64~67.
    [26] Haala N, Bernner C. Virtual City Models from Laser Altimeter and 2D Map Data [J]. PE&RS, 1999, 65(79): 787~795.
    [27] Maas H G, Vosselman G. Two Algorithms for Extracting Building Models from Raw Laser Altimetry Data [J]. ISPRS J of Photogrammetry&RS, 1999, 54(2): 153~163.
    [28] Milde J, Zhang Y, Brenner C, et al. Building Reconstruction Using a Stuctural Description Based on a Formal Grammar [A].The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences [C]. Beijing: 2008. 227~232.
    [29] Thiele A, Cadario E, Schulz K, et al. Building Reconstruction from Insar Data by DetailAanalysis of Phase Profiles [A].The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences [C]. Beijing: 2008. 191~196.
    [30] Katsianis M, Tsipidis S, Kotsakis K, et al. A 3D digital workflow for archaeological intra-site research using GIS [J]. Journal of Archaeological Science, 2008, 35(3): 655~667.
    [31] Dai C G, Dong D C. Aerial Photograph Based Technology for Generation of Urban 3D Landscape [J]. Bulletin of Surveying and Mapping, 2000, 10: 28~31.
    [32] M P, R K, Vergauwen M, et al. Automated reconstruction of 3D scenes from sequences of images [J]. ISPRS J of Photogrammetry&RS, 2000, 55(4): 251~267.
    [33] Suveg I, Vosselman G. Automatic 3D building reconstruction [A].Proc. SPIE [C]. 2002. 59~69.
    [34] Taylor C, Debevec P, Malik J. Reconstructing polyhedral models of architectural scenes from photographs [A].In Proc. 4th European Conference on Computer Vision [C]. Cambridge: Springer-Verlag, 1996.
    [35] Dick A R, Torr P, Cipolla R. Combining Single View Recognition and Multiple View Stereo For Architectural Scenes [A].Eighth IEEE International Conference on Computer Vision(ICCV'01) [C]. Canada: 2001. 268~274.
    [36] Taillandier F. Automatic Building Reconstruction from Cadastral Maps and Aerial Images [J]. IAPRS, 2005, 36: 105~110.
    [37] Halla N. Acquisition of 3D urban models by analysis of aerial images, digital surface models and existing 2D building information [A].Integrating Photogrammetric Techniques with Scene Analyis and Machine Vision III [C]. Orlando: SPIE, 1997. 212~222.
    [38] Halla N, Brenner C, Statter C. An integrated system for urban model generation [J]. Int. Arch. Photogram Remote Sensing, 1998, 32: 96~103.
    [39] Lang F, Forstner W. Surface reconstruction of man-made objects using polymorphic mid-level features and generic scene knowledge [J]. Int. Archives of Photogrammetry and Remote Sensing, 1996, 31: 415~420.
    [40] Weidner U, An approach to building extraction from digital surface models. In Proc. 18th ISPRS Congress, Vienna, Austria, 1996.
    [41] Takaichi Y, Yudai K, Yoshinori O, Three-Dimensional Object Modeling in a Three-Dimensional Urban Map. In Proc. UM3’98 International Workshop on UrbanMultimedia/3D Mapping, 1998.
    [42]王莉莉,刘嵘.一种用于建筑物场景重建的方法[J].计算机工程, 2004, 30(6): 179~181.
    [43]祝国瑞,高山.虚拟城市的3维建模[J].测绘通报, 2004, (6): 46~48.
    [44]王继周,李成名,林宗坚.城市景观的三维抽象描述与表达方法[J].武汉大学学报·信息科学版, 2004, 29(8): 674~678.
    [45]马东洋,蓝朝桢,周杨,郭建星.一种面向对象的数字城市三维空间数据模型[J].地理空间信息, 2005, 3(1): 4~6.
    [46]崔世昌.现代建筑与民族文化[M].天津:天津大学出版社, 2000.
    [47]王继周,李成名.城市景观三维模型库的原理、构建及应用[J].测绘科学, 2007, 32(4): 20~22.
    [48]邵振峰,李德仁,程起敏.基于拓扑的建筑物三维数据模型[J].测绘信息工程, 2003, 28(3): 12~13.
    [49]李德仁,朱庆,李霞飞.数码城市_概念_技术支撑和典型应用[J].武汉测绘科技大学学报, 2000, 25(4): 283~288.
    [50]蒋炯辉.虚拟人图像分割与三维重建技术研究[硕士学位论文].浙江工业大学软件学院, 2007.
    [51] Tsai C, Manujunath B S, Jagadeesan G. Automated segmentation of brain MR images [J]. Pattern Recognition, 1995, 28(12): 1825~1837.
    [52] Kirbas C, Francis K H. Vessel extraction techniques and algorithims:a Survey [A].Proc. 3rd IEEE SymPosium on Bioinformatics and BioEngineering [C]. Washington D.C.US: 2003. 238~254.
    [53] Tian B, Shaika M A, Azimi S. A study of cloud classification with neural networks using spectral and textural features [J]. IEEE Trans. Neural Networks, 1999, 10(1): 138~151.
    [54]陈哲,冯天谨.基于小波分形特征提取的图像分割方法[J].中国图像图形学报, 1999, 4A(12): 1072~1077.
    [55] Jolly M P D, Lakshmanan S, Jain A K. Vehicle segmentation and classification using deformable templates [J]. IEEE Trans. RAMI, 1996, 18(3): 293~308.
    [56]陈寅鹏,丁晓青.复杂车辆图像中的车牌定位与字符分割方法[J].红外与激光工程, 2004, 33(1): 29~33.
    [57]薛景浩,章毓晋,林行刚. SAR图像基于Rayleigh分布假设的最小误差阈值化分割[J].电子科学学刊, 1999, 2(21): 219~225.
    [58]李国宽,彭嘉雄.基于小波变换的红外成像弱小目标检测方法[J].华中理工大学学报, 2000, 5(28): 69~71.
    [59] Koenen R. MPEG-4 multimedia for our time [J]. Spectrum, IEEE, 1999, 36(2): 26~33.
    [60]张祖平.交互式分割及目标定位在视频场景与虚拟图像融合中的研究[硕士学位论文].南京理工大学, 2008.
    [61]王宇宙.计算机视觉三维重建理论与应用[硕士学位论文].西北大学, 2004.
    [62]张春森.序列立体图象三维运动物体定位与跟踪[硕士学位论文].武汉:武汉大学, 2004.
    [63]路兴昌,张艳红.基于三维激光扫描的空间地物建模[J].吉林大学学报, 2008, 38(1): 167~171.
    [64]徐会敏.遥感图像分割算法研究及应用[硕士学位论文].成都理工大学, 2008.
    [65] Romeny, Lindeberg T, Bart M, et al. Linear scale space [M]. Netherlands: Kluwer Academic Publishers, 1994.
    [66] Witkin A P. Scale Space Filtering [A].In Intl. Joint Conf. Artificial Intelligence [C]. 1983. 1019~1021.
    [67] Koenderink J J. The Structure of Image [J]. Biological Cybernetics, 1984, 50: 363~370.
    [68] Alvarez L, Guichard F, Lions P, et al. Axioms and Fundamental Equations of Image Processing [J]. Archive for Rational Mechanics and Analysis, 1993, 123(3): 199~257.
    [69] Perona P, Malik J. Scale-space and edge detection using anisotropic difusion [J]. IEEE trans. Pattern Analysis and Machine Intelligence, 1990, 12(7): 629~639.
    [70] Guichard F, Morel J. Image iterative smoothing and PDE's[R]. Beijing: 1999.
    [71] Sapiro G. Geometric Partial Diferential Equations and Image Analysis [M]. Cambridge: Cambridge University Press, 2001.
    [72] Mumford D, Shah J. Optimal Approximation by Piecewise Smooth Functions and Associated Variational Problems [J]. Communications on Pure and Applied Mathematics, 1989, 42(5): 577~685.
    [73] Tony C, Luminita V, Peter H. Active Contour Without Edges [J]. IEEE Trans. Image Processing, 2001, 10(2): 266~277.
    [74] Morel J M, Solimini S. Variational methods in image segmentation [M]. Birkhauser: 1994.
    [75] Vincent L, Soille P. Watersheds in digital spaces: An efficient algorithm based on immersion simulations [J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 1991, 13(6): 583~598.
    [76] Meyer F. Color Image Segmentation [A].In Proc. 4th IEEE Conf. Image Processing and Applications [C]. 1992. 303~306.
    [77] Crespo J, Schafer R. The flat-zone Approach and Color Images [A].In Proc. ISMM’94 [C]. 1994. 85~92.
    [78] Beucher S. Watershed Hierarchical Segmentation and Waterfall Algorithm [A].In Proc. ISMM’94 [C]. 1994. 69~76.
    [79] Haris K, Efstratiadis S N, Maglaveras N, et al. Hybrid Image Segmentation Using Watersheds and Fast Region Merging [J]. IEEE Trans. Image Processing, 1998, 7(12): 1684~1699.
    [80] Lim C W, Kim N C, Jun S C, et al. Rate-Distortion Based Image Segmentation Using Recursive Merging [J]. IEEE Trans. Circuits and Systems for Video Technology, 2000, 10(7): 1121~1134.
    [81] Makrogiannis S, Economou G, Fotopoulos S. A Color Preserving Image Segmentation Method [A].In Proc. European Conference on Circuit Theory and Design (ECCTD) [C]. Stresa, Italy: 1999. 928~931.
    [82] Makrogiannis S, Economou G, Fotopoulos S. A Fuzzy Dissimilarity Function for Region Based Segmentation of Color Images [J]. Intl. Journal of Pattern Recognition and Artificial Intelligence, 2001, 15(2): 255~267.
    [83] van de Weijer J, Gevers T. Tensor Based Feature Detection for Color Images [A].Twelfth Color Imaging Conference: Color Science and Engineering Systems, Technologies, Applications [C]. 2004. 100~105.
    [84] Haris K, Serafim N E, Nicos M, et al. Hybrid image segmentation using watersheds and fast region merging [J]. IEEE Trans. Image Processing, 1998, 7(12): 1684~1699.
    [85] Wang D. Unsupervised video segmentation based on watersheds and temporal tracking [J]. IEEE Trans. Circuits System and VideoTechnology, 1998, 8(9): 539~554.
    [86] Cheng H D, Jiang X H, Wang J. Color image segmentation based on homogramthresholding and region merging [J]. Pattern Recognition, 2002, 35(2): 373~393.
    [87]褚东升,李庆忠,石巍.一种融合聚类与区域生长的彩色图像分割方法[J].计算机工程与应用, 2006, 14: 76~78.
    [88]崔明,孙守迁,潘云鹤.基于改进快速分水岭变换的图像区域融合[J].计算机辅助设计与图形学学报, 2005, 17(3): 546~552.
    [89] Metzler V, Aach T, Thies C. Object-oriented image analysis by evaluating the causal object hierarchy of a partitioned reconstructive scale-space [A].In Proc. the ISMM2002 [C]. Australia: 2002. 265~276.
    [90] Zanoguera F. Segmentation interactive d’images fixes et de sequences de video base sur des hierarchies de partitions[PhD]. France: Ecole de Mines de Paris, 2001.
    [91] Vachier C, Meyer F. Extinction value: a new measurement of persistence [A].In Proc. of 1995 IEEE Workshop on Nonlinear Signal and Image Processing [C]. 1995. 254~257.
    [92] Salembier P, Serra J. Flat zones filtering, connected operators, and filters by reconstruction [J]. IEEE Trans. Image Processing, 1995, 4(8): 1153~1160.
    [93] Acton S T, Mukherjee D P. Scale-space classification using area morphology [J]. IEEE Trans. Image Processing, 2000, 9(4): 623~635.
    [94] Jackway P T, Deriche M. Scale-space properties of the multiscale morphological dilation-erosion [J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 1996, 18(1): 38~51.
    [95] Park K R, Lee C N. Scale-space using mathematical morphology [J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 1996, 18(11): 1121~1126.
    [96] Bangham J A, Harvey R, Ling P D, et al. Morphological scale-space preserving transforms in many dimensions [J]. Journal of Electronic Imaging, 1996, 5(3): 283~299.
    [97] Young N, Evans A N. Image noise reduction using attribute morphology filters [A].In Proc. 6th IEEEEURASIP Workshop on Nonlinear Signal and Image Processing [C]. 2003.
    [98] Young N, Evans A N. Psycho visually tuned attribute operators for pre-processing digital video [J]. IEE Proc. Vision, Image and Signal Processing, 2003, 150(4): 277~286.
    [99] Gatica-Perez D, Gu C, Sun M T, et al. Extensive partition operators, gray-level connected operators, and region merging/classification segmentation algorithms: theoretical links [J]. IEEE Trans. Image Processing, 2001, 10(9): 1332~1345.
    [100] Bangham J A, Harvey R, Ling P D, et al. Morphological scalespace preserving transformsin many dimensions [J]. Journal of Electronic Imaging, 1996, 5(3): 283~299.
    [101] Comer M L, Delp E J. Morphological operations for color image processing [J]. Journal of Electronic Imaging, 1999, 8(3): 279~289.
    [102] Evans A N, Extending area morphology to multivariate images. In Proc. 6th IEEEEURASIP Workshop on Nonlinear Signal and Image Processing, 2003.
    [103] Evans A N. Vector area morphology for motion field smoothing and interpretation [J]. IEEE Proc. Vision, Image and Signal Processing, 2003, 150(4): 219~226.
    [104] Gibson S, Harvey R, Finlayson D G. Convex colour sieves [A]. LNCS. In Proc. 4th International Conference on Scale Space Methods in Computer Vision [C]. 2003. 550~563.
    [105] Gibson S, Harvey R, Finlayson D G, Evaluating a colour scale-space. In Proc. British Machine Vision Conference, 2003.
    [106] Gimenez D, Evans A N. Colour morphological scale-spaces for image segmentation [A].In Proc. British MachineVision Conference [C]. 2005. 909~918.
    [107] Gimenez D, Evans A N. Colour Morphological Scale-spaces from the Positional Colour Sieve [A].DICTA’05 [C]. 2005. 415~422.
    [108] Zadeh L A. Fuzzy sets [M]. Inf. Control, 1965.
    [109] Dubois D, Prade H. Fuzzy sets and systems: theory and applications [M]. New York: Academic Press, 1980.
    [110] Klir G J, Yuan B. Fuzzy sets and fuzzy logic: theory and applications [M]. New Jersey: Prentice-Hall, 1995.
    [111] Salembier P, Garrido L. Binary partition tree as an efficient representation for image processing, segmentation and information retrieval [J]. IEEE Trans. Image Processing, 2000, 9(4): 561~576.
    [112]周欣,顾静军,陈刚,董金祥.城市建筑风景照片的自动识别和分类[J].计算机应用研究, 2002, (5): 35~37.
    [113]冯炜.图像场景分类的关键技术研究[硕士学位论文].北京:北京交通大学, 2008.
    [114]汪荣贵,张佑生,高隽,彭青松.基于Bayes网络的航空图象理解模型[J].中国科学技术大学学报, 2004, 34(6): 745~756.
    [115]朱俊杰,范湘涛,邵芸.高分辨率SAR与光学图像融合用于建筑物屋顶提取[J].中国科学院研究生院学报, 2006, 23(2): 178~185.
    [116]张祖勋,张剑清,胡翔云.基于物方空间几何约束最小二乘匹配的建筑物半自动提取方法[J].武汉大学学报·信息科学版, 2001, 26(4): 290~295.
    [117]阎平,江万寿. DSM数据中多层次、多直角房屋的三维重建[J].武汉大学学报·信息科学版, 2006, 31(6): 492~495.
    [118] Coughlan J, Yuille A. Manhattan World: Compass Direction from a Single Image by Bayesian Inference [A].In Intl. Conf. Computer Vision (ICCV) [C]. Corfu, Greece: 1999. 941~947.
    [119] Criminisi A, Reid I, Zisserman A. Single view metrology [J]. Intl. J. of Computer Vision, 2000, 40(2): 123~148.
    [120] Deutscher J, Isard M, MacCormick J. Automatic camera calibration from a single Manhattan image [A].Eur. Conf. on Computer Vision (ECCV) [C]. 2002. 175~205.
    [121] Hartley R, Zisserman A. Multiple View Geometry in Computer Vision [M]. Cambridge: Cambridge University Press, 2000.
    [122] Mehrotra R, Nichani S. Corner detection [J]. Pattern Recognition, 1990, 23(11): 1223~1233.
    [123] Wang H, Brady M. Realtime corner detection algorithm for motion estimation [J]. Image and Vision Computing, 1995, 13(9): 695~703.
    [124] Sheu H T, Hu W C. A rotationally invariant two phase scheme for corner detection [J]. Pattern Recognion, 1996, 29(5): 819~828.
    [125] Smith S M, Brady J M. SUSAN—a new approach to low level image processing [J]. Intl. J. of Computer Vision, 1997, 23(1): 45~78.
    [126] Laganiere R. A morphological operator for corner detection [J]. Pattern Recognition, 1998, 31(11): 1643~1652.
    [127] Hough P V C, Machine analysis of bubble chamber pictures. In Intl. Conf. High Energy Accelerators and Instrumentation, Geneva, Switzerland, 1959.
    [128]王静,彭望琭,郭平.基于形状轮廓的多源遥感图像数据库检索探索[J].北京师范大学学报, 2004, 40(4): 493~499.
    [129]施法中,吴凤和,张晓峰.基于单幅图像数据的三维重构方法研究[J].中国机械工程, 2007, 18(17): 2071~2074.
    [130]张世强,尤红建,胡岩峰.自动识别航空CCD图像上建筑物的方法[J].光电工程,2005, 32(9): 8~11.
    [131]唐亮,谢维信等.从航空影像中自动提取高层建筑物[J].计算机学报, 2005, 28(7): 1199~1204.
    [132]尹东,尤晓建,侯蕾.一种遥感图像中建筑物的自动提取方法[J].计算机仿真, 2006, 23(4): 184~188.
    [133]罗丁,慈林林等.利用消失点信息的建筑物检测[J].计算机工程, 2004, 30(15): 155~157.
    [134] Faugeras O. Three-Dimensional Computer Vision [M]. MIT Press, 1993.
    [135] Faugeras O. What Can Be Seen in Three Dimensions with an Uncalibrated Stereo Rig? [A].Proceedings of the Second European Conference on Computer Vision [C]. Springer Berlin / Heidelberg, 1992. 563~578.
    [136] Wilczkowiak M, Sturm P, Boyer E. Using Geometric Constraints through Parallelepipeds for Calibration and 3D Modeling [J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2005, 27(2): 194~207.
    [137] Chen C, Yu C, Hung Y, New Calibration-Free Approach for Augmented Reality Based on Parameterized Cuboid Structure. In Proc. Intl. Conf. Computer Vision, 1999; p 30~37.
    [138] Jelinek D, Taylor C. Reconstruction of Linearly Parameterized Models from Single Images with a Camera of Unknown Focal Length [J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2000, 23(7): 767~774.
    [139] Baillard C, Schmid C, Zisserman A, et al. Automatic line matching and 3D reconstruction of buildings from multiple views [A].In ISPRS Conference on Automatic Extraction of GIS Objects from Digital Imagery [C]. IAPRS, 1999. 69~80.
    [140] Bignone F, Henricsson O, Fua P, et al. Automatic extraction of generic house roofs from high resolution aerial imagery [A].In Proc. 4th European Conference on Computer Vision [C]. Cambridge: 1996. 85~96.
    [141] Collins R T, Jaynes C O, Cheng Y, et al. The ascender system: Automated site modeling from multiple images [J]. ComputerVision and Image Understanding, 1998, 72(2): 143~162.
    [142] Fradkin M, Roux M, Ma??tre H, Building detection from multiple views. In ISPRS Conference on Automatic Extraction of GIS Objects from Digital Imagery, 1999.
    [143] Moons T, Fr`ere D, Vandekerckhove J, et al. Automatic modelling and 3D reconstructionof urban house roofs from high resolution aerial imagery [A].In Proc. 5th European Conference on Computer Vision [C]. Freiburg,Germany: 1998. 410~425.
    [144] Dick A R, Torr P H S, Ruffle S J, et al. Combining single view recognition and multiple view stereo for architectural scenes [A].In Int. Conf. Computer Vision [C]. IEEE Computer Society, 2001. 268~280.
    [145] Werner T, Zisserman A. New techniques for automated architecture reconstruction from photographs [A].In Proc. ECCV [C]. Springer-Verlag, 2002. 541~555.
    [146] Mathews J, Walker R L. Mathematical Methods of Physics [M]. The Benjamin/Cummings Publishing Co., 1970.
    [147] Schindler G, Dellaert F. Atlanta World: An expectation-maximization framework for simultaneous low-level edge grouping and camera calibration in complex man-made environments [A].In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) [C]. 2004.
    [148] Tsai R. An Efficient and Accurate Camera Calibration Technique for 3D Machine Vision [A].Proc. Conf. Computer Vision and Pattern Recognition [C]. 1986. 364~374.
    [149]黄桂平,李小勇,钦桂勤.数码相机内参数的实验场法标定[J].测绘学报, 2005, 22(3): 163~165.
    [150]吴福朝,于洪川.摄像机内参数自标定——理论与算法[J].自动化学报, 1999, 25(6): 769~776.
    [151] Horry Y, Anjyo K, Arai K. Tour Into the Picture: Using a Spidery Mesh Interface to Make Animation from a Single Image [A].In Proc. the SIGGRAPH'97 [C]. New York: ACM Press/Addison-Wesley Publishing Company, 1997. 225~232.
    [152] Sturm P, Maybank S. A method for interactive 3D reconstruction of piecewise planar objects from single image [A].Proc. British Machine Vision Conference [C]. Nottingham: BMVC, 1999. 265~274.
    [153] Liebowitz D, Criminisi A, Zisserman A. Creating architectural models from images [J]. Computer Graphics Forum, 1999, 18(3): 39~50.
    [154] Pla F, Sanchiz J M, Marchant J A, et al. Building perspective models to guide a row crop navigation vehicle [J]. Image &Vision Computing, 1997, 15(6): 465~473.
    [155] Liou, Jain R. Road following using vanishing points of lines on horizontal planes [A].Proc IEEE Int. conf. Comput Vision and Pattern Recognition [C]. 1986. 41~46.
    [156]张祖勋,张剑清,张世兴.单像房屋三维重建[A].海峡两岸自动化工程测量研讨会论文集[C].台北: 2001.
    [157] Aprille B C, Torre V. Using Vanishing Points for Camera Calibration [J]. International Jounral of Computer Vision, 1990, 14(2): 127~140.
    [158]张祖勋,吴军,张剑清.建筑物场景三维重建中影像方位元素的获取方法[J].武汉大学学报·信息科学版, 2003, 28(3): 265~271.
    [159]谢文寒,张祖勋,张剑清.基于灭点标定相机的理论与实践[A].第一届(中国)数字近景摄影测量研讨会[C].武汉: 2004.
    [160]张正中.利用透视原理测定摄影(像)机内方位元素和物镜畸变差的方法[A].第一届(中国)数字近景摄影测量研讨会[C].武汉: 2004.
    [161] Criminisi A. Accurate Visual Metrology from Single and Multiple Uncalibrated Images[Ph.D].Oxford University, 1999.
    [162]胡钊政,谈正.一种基于二消失点的摄像机自标定新算法[J].空间电子技术, 2005, (1): 42~47.
    [163]段成钢,李秀智.一种基于三消隐点的摄像机自标定算法[J].计测技术, 2007, 27(4): 20~22.
    [164]舒远,谈正.一种新的消隐点自动测量算法[J].红外与激光工程, 2003, 32(5): 479~483.
    [165]刘征海.基于单幅图像的虚拟实景漫游技术研究[硕士学位论文].长沙:湖南大学, 2005.
    [166]张海鹏,玉毳,王毅刚,等.基于VRML场景的网上虚拟配画环境设计[J].系统仿真学报, 2006, 18(增刊1): 164~166.
    [167]孟维亮.基于图像的多视图重建和纹理恢复[硕士学位论文].天津大学, 2005.
    [168] Clarke T A, Fryer J G. The Development of Camera Calibration Methods and Models [J]. Photogrammetric Record, 1998, 16(91): 51~66.
    [169] [美]Ames Andrea L, Nadeau David R, Moreland John L. VRML2.0资源手册[M].北京:电子工业出版社, 1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700