用户名: 密码: 验证码:
艾利光束消逝场对米氏小球的操控与捕获
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术日新月异的发展,以激光为基础的光镊技术受到了国内外研究学者的广泛关注。自从Ashkin等首次从实验上证明了光对小球具有俘获作用,并将其应用于对小球的操控与捕获,光镊技术便蓬勃发展起来,并已成为纳米技术、生命科学技术等微粒操控领域的重要研究手段。光镊技术的优点是可以实现无机械损伤,无污染、无损伤的微粒操控,这对于活体生物粒子也是适用的。使用一个中等强度的聚焦光束,就可以对尺寸从几个纳米到几个微米的中性粒子实现加速、减速甚至是捕获。物理学家们已经分别从理论和实验上研究了平面波,紧聚焦高斯光束等传统光束对微观粒子的操控与捕获。最近发现的艾利光束,由于其无衍射传播,横向加速以及自我愈合的优良特性,可以很好地应用到传统的光镊技术中。可将微粒实现长距离的甚至弯曲路径的传输。
     在本文中,通过电磁场的矢势表示以及傅立叶变换的角谱方法,我们分析了一维和二维艾利光束透过平面界分面后的传播情况,以及当入射角大于临界角时,界面上方由于全反射产生的艾利光束消失场。理论结果表明,艾利光束消逝场随着透射距离的增加,很快地衰减。通过洛伦兹-米氏理论,我们分析了不同介质的小球对艾利光束消逝场的散射以及小球受到的光辐照力,并模拟了小球在艾利光束透射场中的运动轨迹。数值结果表明,随着艾利光束中心位置的变化,光辐照力曲线呈现出与消逝场分布相对应的振荡。随着小球半径的增加,不同介质的小球会产生不同的形态依赖共振(MDR)。并且其振荡形态与球内电磁场分布密切相关。
     同样,我们根据球内电磁场的分布分析了艾利光束光镊力的MDR共振峰的形态。我们发现当入射波为艾利光束的消逝波时,其光镊力的MDR曲线振荡峰的品质因子Q要远大于透射波对应的共振峰的Q值。并且共振时球内的电磁场的环状分布随着艾利光束消逝场的入射角以及透射距离的变化结构有很大的改变。大量的数值结果表明,球内电磁波的干涉影响着其相应的MDR共振峰的形态,具体为:环状分布的行波模式对应于高Q值,低背底的共振峰,而强干涉的驻波模式对应于低Q值,高背底的共振峰。并且,干涉越强,Q值越低,背底越高。
     我们分析了透射过分界面的消逝波在小球和界面之间的多重散射对光辐照力以及电磁场分布的影响。结果表明,多重反射在光束能量集中分布的地方影响较大。我们还分析了金属界面时,表面等离激元共振(SPP)对艾利光束消逝场的影响。数值结果表明,当产生SPP共振时,艾利光束消逝场场强约可增强一个数量级,消逝场的分布更加局域化,相应的光镊力可增加两个数量级。
With the never-ending changes and improvements of science and technology, more and more attention has been paid into the optical tweezers based on laser technology. Since Ashkin et al. proved that three-dimensional trapping of a dielectric particle is possible by use of a single, highly focused laser beam [1], optical tweezers have become an indispensable tool for manipulating small particles. Currently optical tweezers have found numerous applications in the fields of biology, chemistry, and physics. Optical tweezers are sub-contact, pollution-free and noninvasive, then can be used to manipulate live cells. That is to say using a tightly focused beam, we can accelerate, decelerate, even trap nanoparticles and microparticles. Physicists have studied optical trapping and manipulation of microscopic particles with traditional plane wave and focused Gaussian beam theoretically and experimentally. Recently, the experimental realization of Airy beam, can be well applied into the conventional optical tweezers, which can avoid divergence and diffraction within a certain propagating distance for its unique features:"non-diffracting", transverse acceleration and self-healing properties.
     In this article, using vector potential and Fourier transform spectrum representation, we investigate the one-and two-dimensional Airy beam propagating through an interface. And the Airy evanescent field in the upper medium formed by total internal reflection when the incident angle is larger than the critical angle. Numerical results show that the Airy evanescent wave dies away several wavelengths away from the interface. Utilizing the generalized Lorenz-Mie theory, we investigate the scattering of the Airy evanescent field by a spherical dielectric particle, the optical forces exerted on the Mie particle, and simulate the motion trajectory of the particle. Numerical results show that the optical forces exhibit strong oscillations which are corresponding to the distributions of the evanescent field. With the increasing the size of particle radius, Morphology Dependent Resonance (MDR) occurs for the particle with specific refractive index.
     Morphology-dependent resonance (MDR) of the optical forces for a particle illuminated by Airy beams is investigated with respect to its internal field distribution. We find the quality factor Q of the resonant peaks for a damped wave is much larger than that for a propagating wave. The ring structures arising from the resonance transform significantly with the parametric evolution of Airy evanescent wave, and the interference of the internal waves have a great impact on the Q factor and the background of the resonant peak, e.g., travelling wave patterns correspond to high Q peaks, while strong interference patterns for high background peaks. But the key structure of the internal field for the Airy transmitted wave won't change.
     The multiple reflections of the evanescent wave between the particle and the interface are also investigated, which show significant impacts on the region where the energy concentrate in. We also analyzed the enhancing of the Airy evanescent wave by the surface plasmon resonance (SPP) the metal film covered on the interface. Numerical results show that when SPP resonance occurs, the intensity of the Airy evanescent field is enhanced by one order of magnitude, the distribution of the evanescent field is localized, the corresponding optical force increases two orders of magnitude.
引文
[1]P. N. Lebedev, Ann. Der Physik. Experimental examination of light pressure. Phys Rev Lett,1901,6(433):1-25
    [2]E. F. Nichols, G. F.Hull. A preliminary communication on the pressure of heat and light radiation. Phys Rev Lett,1901, XIII(5):307-320
    [3]R. Frisch. Experimenteller Nachweis des Einsteinschen StrahlungsriickstoBes. Phys Rev Lett,1933,86,42-48
    [4]A. Ashkin. Acceleration and trapping of particles by radiation pressure. Phys Rev Lett, 1970,24(4):156-159
    [5]A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, et al. Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett,1986,11(5):288-290
    [6]Keir C. Neuman, Steven M. Block. Optical trapping. Review of Scientific Instrument.2004,75(9):2787-2809
    [7]Yasuhiro Harada, Toshimitsu Asakura. Radiation forces on a dielectric sphere in the Rayleigh scattering regime. Optics Communications,1996,124:529-541
    [8]G. Gouesbet, B. Maheu, G. Grehan. Light scattering from a sphere arbitrary located in a Gaussian beam,using a Bromwich formulation. J. Opt. Soc. Am. A,1988,5(9):1427-1442
    [9]Craig F. Bohren, Donald R. Huffman. Absorption and Scattering of Ligth by Small Particles. Wiley Professional Paperback Edition Published,1983
    [10]Yasuhiro Harada, Toshimitsu Asakura. Radiation forces on a dielectric sphere in the Rayleigh scattering regime. Optics Communications,1996,124:529-541
    [11]T. A. Nieminen, H. Rubinsztein-Dunlop, N. R. Heckenberg, et al. Numerical Modelling of Optical Trapping. Computer Physics Communications,2001,142:468-471
    [12]Michael I. Mishchenko, Larry D. Travis, Andrew A. Lacis. Scattering, Absorption, and Emission of Light by Small Particles. Cambridge University Press,2002
    [13]Timo A. Nieminen, Norman R. Heckenberg, Halina Rubinsztein-Dunlop. Computational modelling of optical tweezers. Proc. SPIE,2004,5514:514-523
    [14]Visscher K, Brakenhoof G. J. Theoretical study of optically induced forces on spherical particles in a single beam trap. I. Rayleigh sactterers. Optik,1992,89(4):174-180
    [15]Yasuhiro Harada, Toshimitsu Asakura. Radiation forces on a dielectric sphere in the Rayleigh scattering regime. Optics Communications,1996,124:529-541
    [16]Daniel A. White.Vector finite element modeling of optical tweezers.Computer Physics Communications,2000,128:558-564
    [17]Bruce T. Draine, Piotr J. Flatau.Discrete-dipole approximation for scattering calculation. J. Opt. Soc. Am. A,1994,11(4):1491-1499
    [18]Wen-Hui Yang, George C. Schatz, Richard P. Van Duyne, et al. Discrete fipole approximation for calculationg extinction and Raman intensities for small particles with arbitrary shapes. Chem. Phys,1995.103(3):869-875
    [19]T. A. Nieminen, H. Rubinsztein-Dunlop, N. R. Heckenberg. Trapping and alignment of a microfibre using the discrete dipole approximation. IEEE, Piscataway, NJ,2001,2: 1-3
    [20]Robert C.Gauthier. Computation of the optical trapping force using an FDTD based technique. Opt. Express,2005,13(10):3707-3718
    [21]J. S. Kim, S. S. Lee. Scattering of laser beams and the optical potential well for a homogeneous sphere. Opt. Soc. Am,1983,73(3):303-312
    [22]G. Gouesbet, B. Maheu, G. Grehan. Light scattering from a sphere arbitrary located in a Gaussian beam,using a Bromwich formulation. J. Opt. Soc. Am. A,1988,5(9):1427-1442
    [23]J. P. Barton, D. R. Alexander, S. A. Schaub. Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam. J. Apli. Phys, 1989,66(10):4594-4602
    [24]James A. Lock, Gerard Gouesbet. Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz-Mie theory. Ⅰ. On-axis beams. J. Opt. Soc. Am. A,1994,11(9):2503-1515
    [25]Gerard Gouesbet,, James A. Lock. Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz-Mie theory.Ⅱ. Off-axis beams. J. Opt. Soc. Am. A,1994,11(9):2516-2525
    [26]Zhen Sen Wu, Li Xin Guo, Kuan Fang Ren, et al. Improved algorithm for electromagnetic scattering of plane waves and shaped beams by multilayered spheres. Appl. Opt,1997, 36(21)
    [27]A. Ashkin. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys. J,1992,61:569-582
    [28]W. H. Wright, G. J. Sonek, M. W. Berms. Parametric study of the forces on microspheres held by optical tweezers. Appl. Opt,1994,33(9):1735-1748
    [29]Alexander Rohrbach, Ernst H. K. Stelzer. Trapping forces.force constants.and potential depths for dielectric spheres in the presence of spherical aberrations. Appl. Opt,2002, 41(13):2494-2507
    [30]Robert C. Gauthier. Laser-trapping properties of dual-component spheres. Appl. Opt,2002, 41(33):7135-7144
    [31]A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, et al. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett,1986,11(5):288-290'
    [32]Yasuhiro Harada, Toshimitsu Asakura. Radiation forces on a dielectric sphere in the Rayleigh scattering regime. Optics Communications,1996,124:529-541
    [33]T. A. Nieminen, H. Rubinsztein-Dunlop, N. R. Heckenberg, et al. Numerical Modelling of Optical Trapping. Computer Physics Communications,2001,142:468-471
    [34]T. A. Nieminen, V. L. Loke, A. B. Stilgoe, et al. Optical tweezers computational toobox. Journal of Optics A,2007,9:1-15
    [35]Ferdinando Borghese, Paolo Denti, Rosalba Saija, et al. Optical trapping of nonspherical particles in the T-matrix formalism. Opt. Express,2007,15(19):11984-11998
    [36]Djenan Ganic, Xiaosong Gan, Min Gu. Exact radiation trapping force calculation based on vectorial diffraction theory. Opt. Express,2004,12(12):2670-1675
    [37]A. A. R. Neves, Adriana Fontes, Carlos Lenz Cesar, et al. Axial optical trapping efficiency through a dielectric interface. Phys, Rev. E,2007,76(6):1-8
    [38]Anna T. O'Neil,Miles J. Padgett. Axial and lateral trapping efficiency of Laguerre-Gaussian modes in inverted optical tweezers.Optics Communiactions,2001,193:45-50
    [39]Yaoju Zhang, Bialfeng Ding, Taikei Suyama. Trapping two tyoes of particles using doubel-ring-shaped radially polarized beam. Phys. Rev. A,2010,81 (2):1-5
    [40]M. V. Berry, N. L. Balazs. Nonspreading wave packets. Am. J. Phys.,1979,47:264-267.
    [41]K. Unnikrishman, A. R. P. Rau. Uniqueness of the Airy packet in quantum mechanics. Am. J. Phys.,1996,64(8):1034.
    [42]J. Durnin. Exact solution for nondiffracting beams. I. The scalar theory. J. Opt. Soc. Am. A, 1987,4(4):651-654.
    [43]J. Durnin, J. J. Miceli, J. H. Eberly. Diffracting-free beams. Phys. Rev. Lett.,1987,58(15): 1499-1501.
    [44]J. C. Gutierrez-Vega, M. D. Iturbe-Castillo, S. Chavez-Cerda. Alternative formulation for invariant optical fields:Mathieu beams. Opt. Lett.,2000,25(20):1493-1495.
    [45]M. A. Bandres, J. C. Gutierrez-Vega, S. Chavez-Cerda. Parabolic nondiffracting optical wave fields. Opt. Lett.,2004,29(1):44-46.
    [46]R. Stutzle, M. C. Gobel, Th. Horner, et al. Observation of nonspreading wave packets in an imaginary potential. Phys. Rev. Lett.,2005,95:110405.
    [47]L. I. Schiff. Quantum Mechanics,3rd. New York:McGraw-Hill,1968.
    [48]P. L. Overfelt, C. S. Kenney. Comparison of the propagation characteristics of Bessel, Bessel-Gauss, and Gaussian beams diffracted by a circular aperture. J. Opt. Soc. Am. A, 1991,8(5):732-745.
    [49]T. Wulle, S. Herminghaus. Nonlinear optics of Bessel beams. Phys. Rev. Lett.,1993,70(10): 1401-1404.
    [50]Z. Bouchal, M. Olivik. Non-diffractive vector Bessel beams. J. Mod. Opt.,1995,42(8): 1555-1566.
    [51]P. Vahimma, V. Kettunen, M. Kuittinen, et al. Electromegnetic analysis of nonparaxial Bessel beams generated by diffractive axicons. J. Opt. Soc. Am. A,14(8):1817-1824.
    [52]J. Arlt, K. Dholakia. Generation of high-order Bessel beams by use of an axicon. Opt. Commun.,2000,177:297-601.
    [53]D. Mcgloin, K Dholakia. Bessel beams:diffraction in a new light. Contemporary Physics,2005,46(1):15-28.
    [54]W. Chen, Q. Zhan. Realization of an evanescent Bessel beam via surface plasmon interference excited by a radially polarized beam. Opt. Left.,2009,34(6):722-724.
    [55]Z. Li, K. B. Alid,H. Caglayan, et al. Generation of an axially asymmetric Bessel-like beam from a metallic subwavelength aperture. Phys. Rev. Lett.,2009,102: 143901.
    [56]G. A. Siviloglou, D. N. Christodoulides. Accelerating finite energy Airy beams. Opt. Lett. 32(8),979-981 (2007).
    [57]G. A. Siviloglou, J. Broky, A. Dogariu, et al. Observation of accelerating Airy beams. Phys. Rev. Lett.99(21),213901 (2007).
    [58]J. E. Morris, M. Mazilu, J. Baumgartl, et al. Propagation characteristics of Airy beams: dependence upon spatial coherence and wavelength. Opt. Express 17(15),13236-13245 (2009)
    [59]Q. He, J. Turunen, A. T. Friberg. Propagation and imaging experiments with Gaussian Schell-model beams. Opt. Commun.67,245-250 (1988).
    [60]J. Baumgartl, M. Mazilu, K. Dholakia. Optically mediated particle clearing using Airy wavepackets. Nature Photon.2(11),675-678 (2008).
    [61]J. Baumgartl, G. M. Hannappel, D. J. Stevenson, et al. Optical redistribution of microparticles and cells between microwells. Lab Chip 9(10),1334-1336 (2009).
    [62]H. Cheng, W. Zang, W. Zhou, et al. Analysis of optical trapping and propulsion of Rayleigh particles using Airy beam. Opt. Express 18(19),20384-20394 (2010).
    [63]Gerald Roosen. A theoretical and experimental study of the stable equilibrium positions of spheres levitated by two horizontal laser beams. Optics Comm.21,189-194 (1977)
    [64]J. S. Kim, S. S. Lee. Scattering of laser beams and the optical potential well for a homogeneous sphere. Opt. Soc. Am,1983,73(3):303-312
    [65]G. Gouesbet, B. Maheu, G. Grehan. Light scattering from a sphere arbitrary located in a Gaussian beam,using a Bromwich formulation. J. Opt. Soc. Am. A,1988,5(9):1427-1442
    [66]J. P. Barton, D. R. Alexander, S. A. Schaub. Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam. J. Appl. Phys.64,1632-1639 (1988).
    [67]J. P. Barton, D. R. Alexander, S. A. Schaub. Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam. J. Appl. Phys, 1989,66(10):4594-4602
    [68]James A. Lock, Gerard Gouesbet. Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz-Mie theory. I. On-axis beams. J. Opt. Soc. Am. A,1994,11(9):2503-1515
    [69]Gerard Gouesbet,, James A. Lock. Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz-Mie theory. Ⅱ. Off-axis beams. J. Opt. Soc. Am. A,1994,11(9):2516-2525
    [70]T. A. Nieminen, H. Rubinsztein-Dunlop, N. R. Heckenberg, et al. Numerical Modelling of Optical Trapping. Computer Physics Communications,2001,142:468-471
    [71]T. A. Nieminen, V. L. Loke, A. B. Stilgoe, et al. Optical tweezers computational toobox. Journal of Optics A,2007,9:1-15
    [72]Ferdinando Borghese, Paolo Denti. Rosalba Saija,et al. Optical trapping of nonspherical particles in the T-matrix formalism. Opt. Express,2007,15(19):11984-11998
    [73]A. A. R. Neves, Adriana Fontes, Carlos Lenz Cesar, et al. Axial optical trapping efficiency through a dielectric interface. Phys, Rev. E,2007,76(6):1-8
    [74]Johnson. B R. Theory of morphology-dependent resonances:shape resonances and width formulas. J. Opt. Soc. Am. A 10(2),343-352 (1993)
    [75]R. Quidant, D. Petrov, G. Badenes. Radiation forces on a Rayleigh dielectric sphere in a patterned optical near field. Opt. Lett.30(9),1009-1011 (2005)
    [76]J. U. Nockel, A. D. Stone. Ray and wave chaos in asymmetric resonant optical cavities Nature 385,45-47 (1997)
    [77]P. T. Korda, M. B. Taylor, D. G. Grier. Kinetically Locked-In Colloidal Transport in an Array of Optical Tweezers. Phys. Rev. Lett.89,128301 (2002)
    [78]P. Chylek, J. T. Kiehl, M. K. W. Ko. Optical levitation and partial-wave resonances. Phys Rev. A.18(5),2229-2233 (1978)
    [79]P. Chylek, J. D. Pendleton, R. G. Pinnick. Internal and near-surface scattered field of a spherical particle at resonant conditions. Appl. Opt.24(23),3940-3942 (1985).
    [80]Johnson. B. R. Theory of morphology-dependent resonances:shape resonances and width formulas. J. Opt. Soc. Am. A 10(2),343-352 (1993).
    [81]M. L. Gorodetsky, V. S. Ilchenko. Optical microsphere resonator:optimal coupling to high-Q whispering-gallery modes. J. Opt. Soc. Am. B 16,147-154 (1999).
    [82]P. T. Leung, S. W. Ng, K. M. Pang, et al. Morphology-dependent resonances in dielectric spheres with many tiny inclusions. Opt. Lett.27(20),1749-1751 (2002).
    [83]J. B. Snow, S. X. Qian, R. K. Chang. Stimulated Raman scattering from individual water and ethanol droplets at morphology-dependent resonances. Opt. Lett.10(1),37-39 (1985).
    [84]H. Miyazaki, Y. Jimba. Ab initio tight-binding description of morphology-dependent resonance in a bisphere. Phys. Rev. B.62(12),7976-7997 (2000).
    [85]J. Ng, C. T. Chan. Size-selective optical forces for microspheres using evanescent wave excitation of whispering gallery modes. Appl. Phys. Lett.92,251109 (2008).
    [86]A. Ashkin, J. M. Dziedzic. Phys. Rev, Lett.38,1851 (1977)
    [87]J. P. Barton, D. R. Alexander, S. A. Schaub. Internal fields of a spherical particle illuminated by a tightly focused laser beam:Focal point positioning effects at resonance. J. Appl. Phys. 65(8),2900-2906(1989).
    [88]C. Liu, T. Kaiser, S. Lange, et al. Structural resonances in a dielectric sphere illuminated by an evanescent wave. Optics Communications 117,521-531 (1995)
    [89]Yang Yang, Wei-Ping Zang, Zhi-Yu Zhao, et al. Optical forces on Mie particles in an Airy evanescent field. Opt. Express 20(23),25681-25692 (2012).
    [90]H. Y. Jaising, O.G. Helles(?). Radiation forces on a Mie particle in the evanescent field of an optical waveguide. Optics Comm.246,373-383 (2005)
    [91]E.Almass, I.Brevik. Radiation forces on a micrometer-sized sphere in an evanescent field. J. Opt. Soc. Am. B 12(12),2429-2438 (1995).
    [92]Soo Chang, Jae Heung Jo. Theoretical calculations of optical force exerted on a dielectric sphere in the evanescent field generated with a totally-reflected focused gaussian beam. Optics Comm.108,133-143 (1994).
    [93]S. Chang, J. T. Kim, J. H. Jo, et al. Optical force on a sphere caused by the evanescent field of a Gaussian beam; effects of multiple scattering. Optics Comm.139,252-261 (1997).
    [94]O. Bryngdahl. Evanescent waves in optical imaging, Progress in Optics Ⅺ, Ed. E. Wolf (North-Holland, Amsterdam,1973) pp.177-180.
    [95]M. J. Adams. An introduction to Optical Waveguides (Wiley, New York,1981) pp.10-81.
    [96]S. Kawata, T. Sugiura. Movement of micrometer-sized particles in the evanescent field of a laser beam. Opt. Lett.17(11),772-774 (1992).
    [97]J. N. Hodgson. Optical and Dispersion in Solids, Chapman & Hall, London,1970, p.92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700