用户名: 密码: 验证码:
线性菲涅耳反射太阳能聚光器的理论分析与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,人类赖以生存发展的化石能源面临着严重的需要解决的问题:首先是全球已探明的化石能源储存量有限,不可再生能源很快将会消耗殆尽;其次,化石能源的消耗带来了严重的环境问题,如温室效应、大气污染等。因此,开发和利用可再生能源十分必要和紧迫。太阳能作为一种取之不尽、用之不竭的清洁可再生能源,近年来受到了越来越多的重视。但太阳能辐射能流密度较低,制约了其应用。开发具有实用价值的低成本、高效率、高稳定性的太阳能聚光器,是提高太阳能辐射能流密度最有效的途径,能够进一步促进太阳能的广泛应用。而传统聚光器,如槽式、碟式和塔式太阳能聚光器,在加工、安装维护,或聚光能流密度均匀性等方面均存在一定的缺点。因此,本文在传统聚光器的基础上,提出了一种新型线性菲涅耳反射太阳能聚光器,一种分频聚光光伏光热综合利用系统,以及一种分段槽式太阳能聚光系统,并依托国家重点基础研究发展计划(973)计划(NO:2010CB227305),中科院太阳能行动计划(No.CX2090130012),开展了相关理论和实验研究。
     首先,提出了新型线性菲涅耳玻璃镜面反射聚光器的结构设计原理。该系统主要包括三个部分,反射玻璃镜面、平板框架以及聚光接收体。条形玻璃镜面的宽度和倾斜角度随自身所处位置、聚光接受体形状尺寸和安放角度以及是否考虑太阳入射光立体角影响等因素确定,并给出了无量纲理论公式。数值分析表明系统理论聚光比、面积利用率主要与聚光接收体的安装高度和镶嵌玻璃镜面的平板框架尺寸有关;聚光接收器为平板型时,其安装角度对理论聚光比和面积利用率的影响不大;为圆柱体时,理论聚光比与反射镜面数基本成线性规律,面积利用率与无量纲跨度与接收器高度的比值μ/ξ有关。因玻璃镜面安装彼此之间存有间隙,可大大降低风阻;由于采用平面玻璃镜反射太阳辐射,在焦平面位置可以得到均匀分布的能流密度,提高光伏电池效率。
     其次,建立了线性菲涅耳玻璃镜面反射聚光器实验系统。用CCD法对聚光光强分布进行了测试,结果表明其分布均匀,与理论分析计算结果一致。采用单晶硅电池进行了聚光光伏发电实验,效率可以达到15.9%,具有较高的发电效率。过对单管集热器、双管集热器以及双管加扭转叶片集热器进行了聚光集热实验,分析了东西向线聚焦系统端头效应对集热的影响。结果表明集热温度在120℃以下时,该聚光系统的总体集热效率可以达到0.74左右,并且由于辐射热损的影响集热效率随集热温度的上升而减小。
     再次,在线性菲涅耳聚光反射太阳能聚光器的基础上,提出了一种聚光分频光伏光热综合利用系统。其中分频器选用Si02和Nb203作为高低折射率材料,使用Needle法针对单晶硅电池特性对其膜系结构进行了优化设计,结果显示,约80%的有利于单晶硅电池发电的光谱辐射(波长范围0.35μrn<λ≤1.1μm)可以透过涂层照射到电池表面,约71%不利于单晶硅电池发电的光谱辐射(1.1μm<λ≤3μm)被反射到了集热管上。从而大大降低了太阳电池的废热负荷。理论分析结果显示,对于单晶硅光伏电池宽度100mm,安放高度2000mm,角度360,聚光器理论聚光比56.8的聚光分频系统,单晶硅光伏电池发电效率可达11.99%,同时集热部分可以独立获得1511.4W/m的中高温热能。
     最后,提出了一种新型的分段式槽式太阳能聚光器,通过在平面框架上放置同焦线的多块抛物面反射镜面,将光线聚集于焦线处,使用平板型集热器或圆柱型集热器作为接收体,用于太阳能聚光光热利用。该聚光器由于采用分段式的抛物反射镜,因此相比传统槽式聚光器具有较小的风阻,较低的镜面高度,并同时能够达到较高的聚光倍数。根据几何光学原理给出了确定每块抛物镜面尺寸及位置的曲线方程,并根据各器件实测的光学性质对聚光器进行了理论分析计算,分析结果当聚光器跨度在4m以内时,接收器安装高度值应取1.2m以上,跨度在6m以内时,接收器安装高度值应取1.8m以上。理论集热效率可以达到0.75以上。
At present, fossil energy source which is necessary for human's survival and development is facing serious problems:the first is the limitation of fossil fuel reserves and non-renewable; the second are the serious environmental problems caused by fossil fuels such as greenhouse effect, air pollution and etc. Therefore, the development and utilization of renewable energy resources is very important and emergency. Solar energy is inexhaustible, clean and renewable, has captured more and more attention in recent years. However, the density of solar radiation is very low, which is the main disadvantage for its application. Developing a solar concentrator with low cost, high efficiency and stability is the most promising approach to improve the density of solar radiation and can promote the utilization of solar energy. Traditional solar concentrators in the form of trough, dish or tower exist certain defects in manufacture, installation and maintain, or the uniformity of the concentrated solar energy. On the basis of the traditional one, this thesis proposed a new linear fresnel reflector solar concentrator, a hybrid solar concentrating Photovoltaic/Thermal (CPV/T) system with beam splitting technique, and a segmented parabolic trough solar concentrator. The related theoretical and experimental works were carried out by the support of the National Basic Research Program of China ("973" Program)(Grant No.2010CB227305) and the CAS Solar Energy Action Program (Grant No. CX2090130012).
     Firstly, the construction and the design principle of the new linear fresnel reflector solar concentrator were proposed. This concentrator contains three parts: reflective glass mirrors, flat frame and concentrated solar receiver. The specified width and slope angle of each mirror are determined by its position, the width and the slope angle of solar receiver, and the solar cone. A dimensionless model was developed for the performance analysis of the concentrating system. According to the results of numerical analysis, it is found that the theoretical concentration ratio and the area utilization ratio are mainly related with the installation height of the receiver and the size of the flat frame. For a flat-panel receiver, its installation angle has a neglectable effect on the theoretical concentration ratio and the area utilization ratio. For a cylinder receiver, the theoretical concentration ratio is linear with the number of the mirrors, and the area utilization ratio is related with the ratio of the dimensionless frame size and receiver height μ/ξ Because of the gaps between the glass mirrors, the wind drag is greatly reduced. Due to using flat glass mirrors, uniform energy flux density can be generated on the focal plane, which can improve the efficiency of photovoltaic generation.
     Secondly, an experimental system of the proposed linear fresnel reflector solar concentrator was developed. The distribution of concentrated solar radiation of the focal plane was measured by using CCD method, and the results show a high uniformity of the flux distribution and agree well with the theoretical simulation results. The CPV experiments were carried out, and the results show that the monocrystalline silicon cell can achieve a high PV generation efficiency of15.9%. The concentrating solar thermal experiments were also investigated for single-tube receiver, double-tube receiver and double-tube receiver with twisted blades. The end effect of the east-west linear concentrating system was analyzed. The experimental thermal efficiency of the system can achieve about0.73~0.74when the operation temperature is under120℃, and decreases with the increasing of the operation temperature because of the radiation loss of the receiver.
     Thirdly, a hybrid solar concentrating PV/thermal (CPV/T) system with beam splitting technique was proposed based on the linear fresnel reflector solar concentrator. SiO2and Nb2O3were employed as the high and the low refractive index materials for the beam splitter, and the selectivity transmission coating was designed and optimized for monocrystalline silicon cell by Needle method. The results show that nearly80%of the desired radiation for monocrystalline silicon solar cell (0.35μm<λ≤1.1μm) is transmitted to the solar cells, and about71%of the undesired radiation (1.1μm<λ≤3μm) is reflected to the thermal receiver for thermal utilization. Thus, the waste heat load of solar cells would be much reduced. For a CPV/T system with concentration ratio of56.8, cells width of10cm, cells height of200cm, and cells slope angle of36°, the theoretical PV generation efficiency is11.99%, and and thermal energy of1511.4W per meter length can be simultaneously harvested with high temperature.
     Finally, a novel segmented parabolic trough solar concentrator was presented, in which several segmented parabolic mirror reflectors with the same focal line were fixed to a flat frame. It can generate a concentrated radiation on a flat panel solar thermal collector or a tube solar thermal collector, which covert solar energy into thermal energy. Compared to the traditional parabolic trough concentrator, the proposed concentrator has a lower wind resistance and a lower mirror height because of the segmented parabolic mirrors, and also can reach a similar high concentration ratio. The parabola formulas of mirror reflectors were derived to determine their sizes and positions based on the principle of geometrical optics. According to the experimental results of every components of the concentrator, the theoretical performance of the segmented parabolic trough solar concentrator was investigated and analyzed. The results showed that the receiver height should be over1.2m for concentrator aperture within4m, and over1.8m for concentrator aperture within6m. The theoretical thermal efficiency is over0.75.
引文
[1]BP. A Year of Disruption and Growth Proved Open Energy Markets to Stability [EB]. http://www.bp.com/BP_global/Reports_and_publications/Statistical_review_of_world_energ y_2012. June,2012.
    [2]李菊根,雷定演,邴凤山等.我国水电科技创新与进步综述[J].水力发电,2013,39(1):1-4.
    [3]李春曦,王佳,叶学民等.我国新能源发展现状及前景[J]。电力科学与工程,2012,4(4):3-4
    [4]韩芳.我国可再生能源发展现状和前景展望[J].可再生能源,2010,28(4):137-140.
    [5]陈颖健,孟浩.太阳能利用技术研究的最新进展[J].高技术通讯,2008,18(12):1321-1325.
    [6]王炳忠.中国太阳能资源利用区划[J].太阳能学报,1983,4(3):221-228.
    [7]中国国家标准化管理委员会.GB/T 26972-2011聚光型太阳能热发电术语[S].北京:中国标准出版社,2011.
    [8]张耀明.太阳能热发电技术[J].高科技与产业化.2009(7):28-30.
    [9]Martinez P J, Velazquez A, Viedma A. Performance Analysis of a Solar Energy Driven Heating System [J]. Energy and Buildings,2005,37:1028-1034.
    [10]陈德明,徐刚.太阳能热利用技术概况[J].物理,2007,36(11):840-847.
    [11]Srinivasan J. Solar Pond Technology [J]. Sadhana,18(1):39-55.
    [12]管振忠,薛一冰,张蓓.传统火炕的太阳能改造——太阳炕系统[J].太阳能建筑,2008(6):20-21.
    [13]吴福保,王湘艳.太阳能光伏发电技术的特点及其发展[J].电力与能源,2011,1(1):74-79.
    [14]赵春江.太阳能光伏发电系统的技术发展[J].阳光能源,2011(2):56-63.
    [15]罗运俊,何梓年,王长贵.太阳能利用技术[M].北京:化学工业出版社,2005.
    [16]Luque A, Sala Q Luque-Heredia I. Photovoltaic Concentration at the Onset of its Commercial Deployment [J]. Progress in Photovoltaics,2006,14 (5):413-428.
    [17]Swanson R M. The Promise of Concentrators [J]. Progress in Photovoltaics,2000, 8(1):93-111.
    [18]熊亚选,吴玉庭,马重芳,等.槽式太阳能聚光器性能数值研究[J].工程热物理学报,2010,31(3):495-498.
    [19]Price H. Advance in Parabolic Trough Solar Power Technology [J]. Journal of Solar Energy Engineering,2002,124(2):109-125.
    [20]江守利,陈则韶,胡芃,等.半抛物槽式聚光分频光伏系统的性能分析[J].工程热物理学报,2009,30(3):365-369.
    [21]王刚,陈则韶,胡芃,等.折平板等光强反射聚光光伏系统的实验研究[J].太阳能学报,2012,33(1):2002-2005.
    [22]Duffie J A, Beckman W A. Solar Engineering of Thermal Processes (2nd edition) [M]. USA: John Wiley & Sons Inc,1991,345-3581.
    [23]谢果,郑宏飞,王海江,等.新型槽式太阳能聚光集热器的研究与试验[J].可再生能源,2010,28(6):1-5.
    [24]宁铎.折面形抛物柱太阳能聚光器[J].西北轻工业学院学报,2002,20(4):72-74.
    [25]Schramek P, Mills D. Multi-tower Solar Array [J]. Solar Energy,2003,75(3):249-260.
    [26]Solucar.10 MW Solar Thermal Power Plant for Southern Spain[R]. NNE5-1999-356, Spain: Solucar,2006.
    [27]张耀明,刘德有,张文进,等.70kW塔式太阳能热发电系统研究与开发[J].太阳能,2007(10):19-23.
    [28]Yao Z, Wang Z, Lu Z, et al. Modeling and Simulation of the Pioneer 1 MW Solar Thermal Central Receiver System in China [J]. Renewable Energy,2009,34:2437-2446.
    [29]王军,刘德有,张文进.碟式太阳能热发电[J].太阳能,2006(31):31-32.
    [30]张晓霞,侯竞伟,殷攀攀,等.太阳能发电系统现状及发展趋势[J].机电产品开发与创新,2007,20(5):14-16.
    [31]Sandia National Laboratories, National Renewable Energy Laboratory, DOE National Laboratories. The Boeing/SES DECC Project[R]. SAND2001-2530P, Washington DC, US: August 2001.
    [32]胡连印,胡胜勇,张慧琴.对菲涅耳透镜的工艺改进一塑料透射式太阳能聚光器[J].太阳能,2005,1:36-37.
    [33]田玮,王一平,韩立君,等.聚光光伏系统的技术进展[J].太阳能学报,2005,26(4):597-604.
    [34]王刚,陈则韶,胡芃,等.太阳能等照度带聚焦菲涅耳透镜研究[J].太阳能学报,2012,33(1):81-85.
    [35]Alvarez J, Hernandez M, Benitez P, et al. TIR-R Concentrator:A New Compact High-Gain SMS Design[J]. Proceedings of SPIE,2002,4446:32-42.
    [36]曾飞,李洪涛,郝智彪,等.具有均匀照度的高倍太阳能聚光器[J].太阳能学报,2012,33(2):338-342.
    [37]Jing L, Liu H, Lu Z, et al. Design of Compound Fresnel-Rlenses for New High-Efficient Photovoltaic Concentrator [A]. Proc. SPIE[C],2010,7785:77850K.
    [38]何开岩,郑宏飞,陶涛,等.光漏斗聚光定向传光中央接收太阳能集热系统[J].工程热 物理学报,2010,31(1):28-31.
    [39]王云峰,季杰,何伟,等.抛物碟式太阳能聚光器的聚光特性分析与设计[J].光学学报,2012,32(1):1-8.
    [40]Francia G Pilot Plants of Solar Steam Generation Systems [J]. Solar Energy,1968,12:51-64.
    [41]Riaz M. A theory of Concentrators of Solar Energy on a Central Receiver for Electric Power Generation [J]. J. Eng. Power ASME,1976,98(3):375-385.
    [42]Miura, Masahiro, Tsuboi, et al. Development of the Segment Mirror Collector[C]. Proceedings ISES Solar World Congress,1989, Kobe, Japan.
    [43]Feuermann D, Gordon J. Analysis of a Two-Stage Linear Fresnel Reflector Solar Concentrator [J]. Journal of Solar Energy Engineering,1991,113(11):272-279.
    [44]Sootha G, Negi B. A Comparative Study of Optical Designs and Solar Flux Concentrating Characteristics of a Linear Fresnel Reflector Solar Concentrator with Tubular Absorber [J]. Solar Energy Materials and Solar Cells,1994,32(2):169-186.
    [45]Mills D. Advances in Solar Thermal Electricity Technology [J]. Solar Energy,2004,76(1): 19-31.
    [46]Bernhard R, Laabs H, Eck M., et al.2008. Linear Fresnel collector demonstration on the PSA[R].14th International Solar PACES Symposium,2008, Las Vegas, USA.
    [47]杜春旭,王普,马重芳,等.线性菲涅耳太阳能聚光系统[J].能源研究与管理,2010(3):7-9.
    [48]杜春旭,王普,马重芳等.线性菲涅耳聚光系统无遮挡镜场布置的光学几何方法[J].光学学报,2010,30(11):3276-3282.
    [49]王建平,杨金付,徐晓冰.一种聚光型太阳能光伏系统的研究[J].能源研究与利用,2007(1):19-22.
    [50]杨敏林,杨晓西,林汝谋等.太阳能热发电技术与系统[J].热能动力工程,2008,23(3):221-226.
    [1]Luque A, Sala G, Luque-Heredia I. Photovoltaic concentration at the onset of its commercial deployment [J]. Progress in Photovoltaics,2006,14 (5):413-428.
    [2]Swanson R M, The promise of concentrators [J]. Progress in Photovoltaics,2000,8 (1):93-111.
    [3]Coventry J S. Performance of a concentrating photovoltaic/thermal solar collector [J]. Solar Energy,2005,78:211-222.
    [4]Jiang S L, H P, M S P, et al. Optical modeling for a two-stage parabolic trough concentrating photovoltaic/thermal system using spectral beam splitting technology [J]. Solar Energy Materials & Solar Cells,2010,94(10):1686-1696.
    [5]江守利.反射聚光利用太阳能的基础理论和实验研究[D].合肥:中国科学技术大学,2009.
    [6]Chong K K, Siaw F L, Wong C W, et al. Design and Construction of Non-Imaging Planar Concentrator for Concentrator Photovoltaic System[J]. Renewable Energy,2009,34: 1364-1370.
    [7]江守利,陈则韶,胡芃,等.等光强分布的折平板反射聚光系统的实验研究[J].工程热 物理学报,2010,31(6):917-920.
    [8]翟载腾.任意条件下光伏阵列的输出特性预测[D].合肥:中国科学技术大学,2008.
    [9]Luque A, Sala G, Arboiro J C. Electric and Thermal Model for Non-uniformly Illuminated Concentration Cells [J]. Solar Energy Materials and Solar Cells,1998,51(3-4):269-290.
    [10]Duffie J A, Beckman W A. Solar Engineering of Thermal Processes [M]. USA:WILEY, 2006.
    [1]Luque A, Sala G, Luque-Heredia I. Photovoltaic Concentration at the Onset of its Commercial Deployment [J]. Progress in Photovoltaics,2006,14 (5):413-428.
    [2]Swanson R M. The Promise of Concentrators [J]. Progress in Photovoltaics,2000,8(1): 93-111.
    [3]赵春江.太阳能光伏发电系统的技术发展[J].阳光能源,2011(2):56-63.
    [4]叶赞.太阳能光伏发电应用现状与发展趋势[J].中国高新技术企业,2012(11):22-23.
    [5]Price H. Advance in Parabolic Trough Solar Power Technology [J]. Journal of Solar Energy Engineering,2002,124(2):109-125.
    [6]Solucar.10 MW Solar Thermal Power Plant for Southern Spain[R]. NNE5-1999-356, Spain: Solucar,2006.
    [7]Sandia National Laboratories, National Renewable Energy Laboratory, DOE National Laboratories. The Boeing/SES DECC Project[R]. SAND2001-2530P, Washington DC, US: August 2001.
    [8]江守利.反射聚光利用太阳能的基础理论与实验研究[D].合肥:中国科学技术大学,2009.
    [9]王刚.太阳能利用中的热物理基础理论及实验研究[D].合肥:中国科学技术大学,2012.
    [10]戴景民,刘颖.聚光器聚焦光斑能流密度分布的测量与分析[J].应用光学,2008,29(6):917-920.
    [11]戴景民,刘颖,于天河.基于CCD的聚焦光斑能流密度分布测量系统的研制[J].光电子·激光,2008,19(11):1507-1511.
    [12]Ulmer S, Reinalter W, Heller P, et al. Beam Characterization and Improvement with a Flux Mapping System for Dish Concentrators[J]. Journal of Solar Energy Engineering, Transactions of the ASME,2002,124(2):182-188.
    [13]Ju X, Wang Z, Flamant G, et al. Numerical Analysis and Optimization of a Spectrum Splitting Concentration Photovoltaic-Thermoelectric Hybrid System [J]. Solar Energy,2012,86(6): 1941-1954.
    [14]Fisher B, Biddle J. Luminescent Spectral Splitting:Efficient Spatial Division of Solar Spectrum at Low Concentration [J]. Solar Energy Materials & Solar Cells,2011,95(7): 1741-1755.
    [15]张也影.流体力学[M].北京:高等教育出版社,1998.
    [16]王泉河.中高温太阳光谱选择性吸收涂层的研制:[硕士论文][D].广州:广州能源所热能工程,2010.
    [17]ASTM G 173-03. Standard Tables for Reference Solar Spectral Irradiances[S]:Direct Normal and Hemispherical on 37° Tilted Surface,2003.
    [18]孙守建.中高温直通式真空太阳集热管的研制与应用[J].太阳能,2009,(增)10:47-54.
    [19]贺晓雷,于贺军,李建英等.太阳方位角的公式求解及其应用[J].太阳能学报,2008,29(1):69-73.
    [20]Singh P L, Sarviya R M, Bhagoria J L. Thermal Performance of Linear Fresnel Reflecting Solar Concentrator with Trapezoidal Cavity Absorbers[J]. Applied Energy,87 (2010): 541-550
    [21]侯宏娟,高嵩,杨勇平.槽式集热场辅助燃煤机组回热系统混合发电热性能分析[J].太阳能学报,2011,32(12):1772-1776.
    [22]Panna Lal Singh, R.M. Sarviya, J.L. Bhagoria. Thermal performance of linear Fresnel reflecting solar concentrator with trapezoidal cavity absorbers[J], Applied Energy,2010,87: 541-550.
    [23]熊亚选,吴玉庭,马重芳等.槽式太阳能聚光集热技术[J].太阳能,2009,6:21-26.
    [24]熊亚选,吴玉庭,马重芳等.槽式太阳能聚光器性能数值研究[J].工程热物理学报,2010,31(3):495-498.
    [25]W.T. Xie, Y.J. Dai, R.Z. Wang. Numerical and Experimental Analysis of a Point Focus Solar Collector Using High Concentration Imaging PMMA Fresnel Lens[J].Energy Conversion and Management,2011,52:2417-2426.
    [26]Kalogirou S A. Solar Thermal Collectors and Applications [J]. Progress in Energy and Combustion Science,2004,30:231-295.
    [27]张永秋,林清宇,生建文.内插物强化传热及防垢除垢技术的研究进展[J].化工中间体,2008,4(12):15-19.
    [28]林宗虎.强化传热及其工程应用[M].北京:机械工业出版社,1987.
    [1]傅竹西.固体光电子学[M].合肥,中国科学技术大学出版社,1999.
    [2]莫松平,陈则韶,江守利等.太阳电池中光电转换的有效能[J].工程热物理学报,2008,29(11):1821-1825.
    [3]杨德仁.太阳能电池材料[M].北京:化学工业出版社,2006.
    [4]Imenes A G, Mills D R. Spectral Beam Splitting Technology for Increased Conversion Efficiency in Solar Concentrating Systems:a Review[J]. Solar Energy Materials and Solar Cells,2004,84(1-4):19-69.
    [5]Blocker W. High-Efficiency Solar Energy Conversion Through Flux Concentration and Spectrum Splitting [J]. Proceedings of the IEEE,1978,66(1):104-105.
    [6]Jiang S L, Hu P, Mo S P, et al. Modeling for Two-Stage Dish Concentrating Spectral Beam Splitting PV/T system[C]//Asia-Pacific Power and Energy Engineering Conference. Wuhan: IEEE,2009.
    [7]Othman M Y, Yatim B, Sopian K, et al. Performance analysis of a double-pass photovoltaic/thermal (PV/T) solar collector with CPC and fins[J]. Renewable Energy,2005, 30:2005-2017.
    [8]Charalambous P G, Maidment G G, Kalogirou S A, et al. Photovoltaic thermal (PV/T) collectors:A review [J]. Applied Thermal Engineering,2007,27:275-286.
    [9]Joshi A S, Tiwari A. Energy and exergy efficiencies of a hybrid photovoltaic-thermal (PV/T) air collector [J]. Renewable Energy,2007,32:2223-2241.
    [10]Zondag H A. Flat-plate PV-Thermal collectors and systems:A review [J]. Renewable Sustainable Energy Reviews,2008,12:891-959.
    [11]Chow T T. A review on photovoltaic/thermal hybrid solar technology [J]. Applied Energy, 2010,87:365-379.
    [12]Kumar R, Rosen M. A critical review of photovoltaic-thermal solar collectors for air heating[J]. Applied Energy,2011,88:3603-3614.
    [13]Garg H P, Adhikari R S. Performance analysis of a hybrid photovoltaic/thermal (PV/T) collector with integrated CPC troughs [J]. International Journal Energy Research,1999, 23(15):1295-1304.
    [14]Tiwari G N, Nayak S, Dubey S, et al. Performance analysis of a conventional PV/T mixed mode dryer under no load condition[J], International Journal Energy Research,2009,33: 919-930.
    [15]Chemisana D. Building Integrated Concentrating Photovoltaics:A review [J]. Renewable Sustainable Energy Reviews,2011,15:603-611.
    [16]Sun J, Shi M H. Numerical study on optical and electric-thermal performance for solar concentrating PV/T air system [J]. Sci China Ser E-Tech Sci,2009,52(12):3514-3520.
    [17]Imenes A G, Mills D R. Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems:A review [J]. Solar Energy Materials and Solar Cells,2004,84:19-69.
    [18]Jiang S, Hu P, Mo S, et al. Optical modeling for a two-stage parabolic trough concentrating photovoltaic/thermal system using spectral beam splitting technology [J]. Solar Energy Materials and Solar Cells,2010,94:1686-1696.
    [19]Hu P, Zhang Q, Liu Y, et al. Experimental investigation on flat-type solar concentrator PV system with glass mirror reflectors [J]. J Eng Thermophys,2011,32(5):729-732.
    [20]Coventry J S. Performance of a concentrating photovoltaic/thermal solar collector. Sol Energ, 2005,78:211-222.
    [21]Rosell J I, Vallverdu X, Lechon M A, et al. Design and simulation of a low concentrating photovoltaic/thermal system. Energ Convers Manage,2005,46:3034-3046
    [22]ASTM G 173-03. Standard Tables for Reference Solar Spectral Irradiances[S]:Direct Normal and Hemispherical on 37° Tilted Surface,2003.
    [23]Tikhonravov A V, Trubetskov M K, DeBell G W. Application of the Needle Optimization Technique to the Design of Optical Coatings [J]. Applied Optics,1996,35(28):5493-5508.
    [24]Tikhonravov A V, Trubetskov M K, DeBell G W. Optical coating design approaches based on the needle optimization technique[J]. Applied Optics,2007,46(5):704-710.
    [25]Tikhonravov A V. Needle optimization technique:the history and the future [J]. Optical Thin Films V:New Developments,1997,3133:2-7.
    [26]唐晋发.现代光学薄膜技术[M].杭州:浙江大学出版社,2006.
    [27]Ju X, Wang Z, Flamant G, et al. Numerical Analysis and Optimization of a Spectrum Splitting Concentration Photovoltaic-Thermoelectric Hybrid System [J]. Solar Energy,2012,86(6): 1941-1954.
    [28]Fisher B, Biddle J. Luminescent Spectral Splitting:Efficient Spatial Division of Solar Spectrum at Low Concentration [J]. Solar Energy Materials and Solar Cells,2011,95(7): 1741-1755.
    [1]Price H. Advance in Parabolic Trough Solar Power Technology [J]. Journal of Solar Energy Engineering,2002,124(2):109-125.
    [2]陈伟,张军.聚光型太阳能热发电现状及在我国应用的风险分析[J].可再生能源,2010,28(2):148-151.
    [3]Tao Tao, Zheng Hongfei, He Kaiyan, et al. A new trough solar concentrator and its performance analysis [J]. Solar Energy,2011,85:198-207.
    [4]Zheng Hongfei, Tao Tao, Dai Jing, et al. Light tracing analysis of a new kind of trough solar concentrator [J]. Energy Conversion and Management,2011,52:2373-2377.
    [5]江守利,陈则韶,胡芃,等.半抛物槽式聚光分频光伏系统的性能分析[J].工程热物理学报,2009,30(3):365-369.
    [6]王刚,陈则韶,胡芃,等.折平板等光强反射聚光光伏系统的实验研究[J].太阳能学报,2012,33(1):2002-2005.
    [7]Duffie J A, Beckman W A. Solar Engineering of Thermal Processes (2nd edition) [M]. USA: John Wiley & Sons Inc,1991,345-3581.
    [8]谢果,郑宏飞,王海江,等.新型槽式太阳能聚光集热器的研究与试验[J].可再生能源,2010,28(6):1-5.
    [9]Grena R, Tarquini P. Solar linear Fresnel collector using molten nit rates as heat transfer fluid. Energy,2011(36):1048-1056.
    [10]孙守建,中高温直通式真空太阳集热管的研制与应用[J].太阳能,2009,(增)10:47-54.
    [11]裴刚,符惠德,季杰等.槽式太阳能聚光集热系统在不同跟踪模式下的对比[J].太阳能学报,2010,31(10):1324-1330.
    [12]Panna Lai Singh, R.M. Sarviya, J.L. Bhagoria. Thermal performance of linear Fresnel reflecting solar concentrator with trapezoidal cavity absorbers[J]. Applied Energy,2010,87: 541-550.
    [13]熊亚选,吴玉庭,马重芳,等.槽式太阳能聚光集热技术[J].太阳能,2009,6:21-26.Xiong Yaxuan, Wu Yuting, Ma Chongfang, et al. Technology of parabolic trough collector[J]. Solar energy,2009,6:21-26.
    [14]熊亚选,吴玉庭,马重芳,等.槽式太阳能聚光器性能数值研究[J].工程热物理学报,2010,31(3):495-498.
    [15]W.T. Xie, Y.J. Dai, R.Z. Wang. Numerical and experimental analysis of a point focus solar collector using high concentration imaging PMMA Fresnel lens[J]. Energy Conversion and Management,2011,52:2417-2426.
    [16]龚广杰,王军,黄鑫炎等.新型高温真空集热管的热性能实验和分析[J].太阳能学报,2010,31(10):1292-1297.
    [17]龚广杰,王军,黄鑫炎等.槽式太阳能真空集热管的热损失研究[J].太阳能学报,2011,32(4):517-522.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700