用户名: 密码: 验证码:
尖吻蝮蛇FIX/FX-bps的抗凝血和降血压活性机理及FIX/FX亲和纯化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Identification of Anticoagulant Hypotensive Effect of FIX/FX-bps from the Venom of Agkistrodon Acutus and Conformation-specific Affinity Purification of Factor IX and Factor X
  • 作者:沈登科
  • 论文级别:博士
  • 学科专业名称:分析化学
  • 学位年度:2011
  • 导师:徐小龙 ; 苏庆德
  • 学科代码:070302
  • 学位授予单位:中国科学技术大学
  • 论文提交日期:2011-05-01
摘要
C-型凝集素类似蛋白具有与C-型凝集素类似的结构,但没有凝集素活性。蛇毒中C-型凝集素类似蛋白具有多种生物活性,包括抗凝血和血小板调节活动。凝血因子IX/凝血因子X结合蛋白属于C-型凝集素类似蛋白,它们广泛存在于蝰科蛇毒中。它们都是通过与血液中凝血因子IX或者凝血因子X结合来抑制凝血反应,所有结合反应都依赖于Ca~(2+)等离子。尖吻蝮蛇蛇毒中抗凝血因子(IACFⅠ)和抗凝血因子(ACFⅡ)是凝血因子IX/X结合蛋白家族中的两个新成员。本论文主要研究金属离子对ACFⅠ和ACFⅡ的结构稳定性和功能的影响、ACFⅠ和ACFⅡ对血液循环系统的影响以及它们在亲和纯化凝血因子IX和凝血因子X方面的应用。全文分为四章。
     在第一章中,我们对凝血过程分子机理、凝血因子IX和凝血因子X等重要凝血因子的性质和功能、凝血因子IX和凝血因子X纯化技术、C-型凝集素类似蛋白以及凝血因子IX/X结合蛋白家族等进行了综述。
     在第二章中,我们研究了ACFⅠ和ACFⅡ在体内抗凝血活性、碱土金属离子与ACFⅠ和ACFⅡ的结合反应以及它们对ACFⅠ和ACFⅡ的结构稳定性和功能的影响。ACFⅠ和ACFⅡ在老鼠体内表现出显著的抗凝血活性,它们都显著延长APTT和PT,都对TT没有影响,表明它们的抗凝血作用与抑制凝血因子IX/X活性有关。非变性聚丙烯酰胺凝胶电泳和表面等离子共振的结果都显示,ACFⅡ与FX_a结合反应不是绝对依赖Ca~(2+),Mg~(2+)、Sr~(2+)和Ba~(2+)也可以诱导ACFⅡ与FX_a结合反应。与ACFⅡ结合的金属离子半径不仅显著影响金属离子与ACF II结合亲和性,而且也显著影响ACFⅡ抗GdnHCl变性和热变性的结构稳定性。而与凝血因子X结合的金属离子半径显著影响ACFⅡ与FX结合亲和性。金属离子对ACFⅡ亲和性强弱和金属离子诱导ACFⅡ结构稳定性能力大小遵循相同顺序:Ca~(2+) > Sr~(2+) > Ba~(2+)。而金属离子诱导的ACFⅡ与FX结合反应的能力大小为:Mg~(2+) > Ca~(2+) > Sr~(2+) > Ba~(2+)。虽然Mg~(2+)对ACFⅡ的亲和性最低,但Mg~(2+)诱导ACFⅡ与FX结合反应能力最强。我们的实验结果表明,金属离子与ACFⅡ结合能显著增强ACFⅡ结构稳定性,但金属离子与ACFⅡ的结合反应不是ACFⅡ与FX_a发生结合反应的前提条件;金属离子与FX_a结合反应才是ACFⅡ与FX_a相互识别的前提条件。另外,ACFⅡ是基于金属离子半径选择结合Ca~(2+)。
     在第三章中,我们利用凝血因子IX/X结合蛋白作为亲和配基,建立了快速高效亲和纯化凝血因子IX和凝血因子X的方法。新配基结合凝血因子IX及凝血因子X的亲和能力强,而且在温和的条件下就可以方便的洗脱下来凝血因子IX和凝血因子X。通过凝血因子IX/X结合蛋白亲和柱层析,可以直接从任何血浆中分离出仅含有凝血因子IX和凝血因子X的混合物。再经过FPLC共两步色谱就可同时得到高纯度的凝血因子IX和凝血因子X。该方法纯化效率和产率与单克隆抗体亲和层析方法相当。单克隆抗体的制备方法繁琐,抗体价格昂贵,而抗体不稳定。而新配基凝血因子IX/X结合蛋白是天然配基,长期稳定,价格便宜,很方便大规模工业制备。另外,用单克隆抗体亲和层析只能从一个特定动物血浆中纯化一种凝血因子,而用新亲和层析方法可以从任何血浆和溶液中同时纯化出凝血因子IX和凝血因子X。因此新亲和层析方法可用来工业上大规模纯化凝血因子IX和凝血因子X,以便为B型血友病患者和提供高纯而廉价的凝血因子IX。
     在第四章中,我们研究了ACFⅠ和ACFⅡ对大鼠血液循环系统的影响,发现ACFⅡ具有显著的降血压活性,同时对心率没有产生显著的影响。静脉注射ACFⅡ能迅速导致大鼠血压显著下降并在几十秒后达到最大下降幅度,接着血压缓慢升高,恢复到明显低于给药前水平的平台值,并长期维持这个较低血压的平台状态。在体外,ACFⅡ能诱导血管舒张。血管内皮细胞中有一氧化氮(NO)合成酶,该酶合成NO。NO是信号分子,它能诱导血管平滑肌舒张。N-硝基精氨酸甲酯(L-NAME)是NO合成酶抑制剂。在体外,L-NAME能显著抑制ACFⅡ的舒张血管活性;在体内,L-NAME能显著抑制ACFⅡ的降血压活性。由此可知,ACFⅡ通过NO信号途径诱导血管舒张从而导致血压下降。因此ACFⅡ是凝血因子IX/X结合蛋白家族中一个独特的多功能蛋白,它通过不同途径作用与血液系统,兼具抗凝血和降血压双重活性。尽管ACFⅠ和ACFⅡ具有十分相似的空间结构,但ACFⅠ没有任何降压活性。
C-type lectin-like proteins (CLPs) have similar structures to that of C-type lectins, but they have no lectin activity. The CLPs from snake venom have a variety of biological activities, including anticoagulant- and platelet-modulating activities. A family of coagulation factor IX/factor X-binding protein (IX/X-bp) which belongs to CLPs has been identified from the venoms of different snake species. IX/X-bps interact with theγ-carboxyglutamic acid (Gla) domain of factor IX/IX_a and/or factor X/X_a in a Ca~(2+)-dependent manner and thereby block the amplification of the coagulation cascade. Anticoagulation factor I (ACFⅠ) and anticoagulation factor II (ACFⅡ) purified from the venom of Agkistrodon acutus are two members of the IX/X-bp protein family. In this thesis, the effects of metal ions on the structural stability and function of ACFⅠand ACFⅡ, the hypotensive effects of ACFⅠand ACF II on the cardiovascular system, and their application in the purification of coagulation factor IX and coagulation factor X have been investigated. The whole thesis is divided into four chapters.
     The first chapter gives a brief overview of the molecular mechanism of coagulation process, the character and function of the important coagulation factors, especially on coagulation factor IX and coagulation factor X, the purification technology of coagulation factor IX/X, C-type lectin-like proteins, and coagulation factor IX/X-binding protein family.
     In the second chapter, the anticoagulant activity of ACFⅠand in vivo, the thermodynamics of the binding of alkaline earth metal ions to ACFⅡand their effects on the stability of ACFⅡand the binding of ACFⅡto FX_a were investigated by isothermal titration calorimetry, fluorescence, differential scanning calorimetry and surface plasmon resonance, respectively. Both ACFⅠand ACFⅡexhibit high anticoagulation activity in vivo. The binding of ACFⅡto FX_a does not have an absolute requirement for Ca~(2+). Mg~(2+), Sr~(2+) and Ba~(2+) can induce the binding of ACFⅡto FX_a. The radii of the cations bound in ACFⅡcrucially affect the binding affinity of ACFⅡto cations and the structural stability of ACFⅡagainst GdnHCl and thermal denaturation, while the radii of cations bound in FX_a markedly affect on the binding affinity between ACFⅡand FX_a. The binding affinities of ACFⅡfor cations and the capacities of metal-induced stabilization of ACFⅡfollow the same trend Ca~(2+) > Sr~(2+) > Ba~(2+). The metal-induced binding affinities of ACFⅡto FX_a follow the trend Mg~(2+) > Ca~(2+) > Sr~(2+) > Ba~(2+). Although Mg~(2+) shows significantly low binding affinity with ACFⅡ, Mg~(2+) is the most effective to induce the binding of ACFⅡwith FX_a. Our observations suggest that in blood, the bindings of Ca~(2+) in two sites of ACFⅡincrease the structural stability of ACFⅡ, but these bindings are not essential for the binding of ACFⅡwith FX_a, and that the binding of Mg~(2+) and Ca~(2+) to FX_a may be essential for the recognition between FX_a and ACFⅡ. Like Ca~(2+), the abundant Mg~(2+) in blood also plays an important role in the anticoagulation of ACFⅡ.
     In the third chapter, we have developed an rapid affinity chromatography procedure using coagulation factor IX/factor X-binding proteins as novel affinity ligands to isolate coagulation factor IX and coagulation factor X from plasma. The native affinity ligands efficiently bind FIX/FX and release them under very mild conditions. FIX and FX can be simultaneously purified from unclarified plasma by IX/X-bps affinity chromatography followed by HPLC with a purification factor and yield similar to that of monoclonal antibody immunoaffinity chromatography. In contrast to monoclonal antibody that is cumbersome, expensive and suffer from its instability, the novel affinity ligands IX/X-bps are long-term stable and cheap to prepare in large scale. In addition, monoclonal antibody immunoaffinity chromatography is used to purify FIX only from the specific plasma, while the new affinity chromatography can be used to purify both FIX and FX from any unclarified plasma or solutions. This new affinity chromatography has potential application for the industrial scale purification of FIX and FX for specific replacement therapy in hemophilia B and patients with FX deficiency.
     In the fourth chapter, the effects of ACFⅠand ACFⅡon the mean arterial blood pressure (MABP) and heart rate (HR) in anesthetized rats have been investigated. The results indicate that ACFⅡinduces a dose-dependent response in rats with a short fast drop of MABP followed by an increase and then a longer lasting slight decrease in MABP, but does not obviously affect HR. ACFⅡ-induced hypotension is significantly blocked by the NO synthase inhibitor N-omega-L-arginine methyl ester (L-NAME). ACFⅡproduces a concentration-dependent relaxation of rat aortic rings with functional-endothelium. The ACFⅡ-induced vasodilatation is completely inhibited by removal of endothelium and significantly inhibited by pretreatment with L-NAME. These observations demonstrate that ACFⅡinduces hypotension through an endothelium-dependent vasodilation, which is strongly mediated by the release of NO from endothelium. Therefore, ACFⅡis so far identified as the first unique bifunctional protein in the IX/X-bp family that has both anticoagulant and hypotensive effects on the blood of rats through different pathways. However, ACFⅠdoes not show any hypotensive effect in rats.
引文
1. Esnouf, M.P., The blood clotting mechanism [J]. Prog Clin Biol Res, 1976. 5: p. 69-84.
    2. Furie, B. and B.C. Furie, Mechanisms of thrombus formation [J]. N Engl J Med, 2008. 359(9): p. 938-49.
    3. Seegers, W.H., Blood clotting mechanisms: three basic reactions [J]. Annu Rev Physiol, 1969. 31: p. 269-94.
    4. Gerrits, W.B., Fibrinogen and its derivatives in intravascular coagulation. A review [J]. Neth J Med, 1975. 18(1): p. 31-44.
    5. Ofosu, F.A., Review: Laboratory markers quantifying prothrombin activation and actions of thrombin in venous and arterial thrombosis do not accurately assess disease severity or the effectiveness of treatment [J]. Thromb Haemost, 2006. 96(5): p. 568-77.
    6. Daubie, V., et al., Tissue factor: a mini-review [J]. J Tissue Eng Regen Med, 2007. 1(3): p. 161-9.
    7. Kjalke, M., et al., The effects of activated factor VII in a cell-based model for tissue factor-initiated coagulation [J]. Blood Coagul Fibrinolysis, 1998. 9 Suppl 1: p. S21-5.
    8. Rosing, J. and G. Tans, Coagulation factor V: an old star shines again [J]. Thromb Haemost, 1997. 78(1): p. 427-33.
    9. Duga, S., R. Asselta, and M.L. Tenchini, Coagulation factor V [J]. Int J Biochem Cell Biol, 2004. 36(8): p. 1393-9.
    10. Lenting, P.J., J.A. van Mourik, and K. Mertens, The life cycle of coagulation factor VIII in view of its structure and function [J]. Blood, 1998. 92(11): p. 3983-96.
    11. Chavin, S.I., Factor VIII: structure and function in blood clotting [J]. Am J Hematol, 1984. 16(3): p. 297-306.
    12. Antonarakis, S.E., Molecular genetics of coagulation factor VIII gene and hemophilia A [J]. Thromb Haemost, 1995. 74(1): p. 322-8.
    13. Lawn, R.M., The molecular genetics of hemophilia: blood clotting factors VIII and IX [J]. Cell, 1985. 42(2): p. 405-6.
    14. Taran, L.D., Factor IX of the blood coagulation system: a review [J]. Biochemistry (Mosc), 1997. 62(7): p. 685-93.
    15. vandeWater, N.S., et al., Factor IX gene mutations in haemophilia B: A New Zealand population-based study [J]. Haemophilia, 1996. 2(1): p. 24-27.
    16. Jackson, C.M., Characterization of two glycoprotein variants of bovine factor X anddemonstration that the factor X zymogen contains two polypeptide chains [J]. Biochemistry, 1972. 11(26): p. 4873-82.
    17. Jesty, J. and M.P. Esnouf, The preparation of activated factor X and its action on prothrombin [J]. Biochem J, 1973. 131(4): p. 791-9.
    18. Gailani, D., Activation of factor IX by factor XIa [J]. Trends Cardiovasc Med, 2000. 10(5): p. 198-204.
    19. Minnema, M.C., H. Ten Cate, and C.E. Hack, The role of factor XI in coagulation: a matter of revision [J]. Semin Thromb Hemost, 1999. 25(4): p. 419-28.
    20. Walsh, P.N. and S.S. Ahmad, Proteases in blood clotting [J]. Essays Biochem, 2002. 38: p. 95-111.
    21. Drickamer, K., C-type lectin-like domains [J]. Current Opinion in Structural Biology, 1999. 9(5): p. 585-590.
    22. Morita, T., C-type lectin-related proteins from snake venoms [J]. Curr Drug Targets Cardiovasc Haematol Disord, 2004. 4(4): p. 357-73.
    23. Mizuno, H., et al., Crystal structure of an anticoagulant protein in complex with the Gla domain of factor X [J]. Proc Natl Acad Sci U S A, 2001. 98(13): p. 7230-4.
    24. Takeya, H., et al., Coagulation Factor-X Activating Enzyme from Russells Viper Venom (Rvv-X) - a Novel Metalloproteinase with Disintegrin (Platelet-Aggregation Inhibitor)-Like and C-Type Lectin-Like Domains [J]. Journal of Biological Chemistry, 1992. 267(20): p. 14109-14117.
    25. Yamada, D., F. Sekiya, and T. Morita, Prothrombin and factor X activator activities in the venoms of Viperidae snakes [J]. Toxicon, 1997. 35(11): p. 1581-1589.
    26. Atoda, H., M. Hyuga, and T. Morita, The primary structure of coagulation factor IX/factor X-binding protein isolated from the venom of Trimeresurus flavoviridis. Homology with asialoglycoprotein receptors, proteoglycan core protein, tetranectin, and lymphocyte Fc epsilon receptor for immunoglobulin E [J]. J Biol Chem, 1991. 266(23): p. 14903-11.
    27. Fukuda, K., et al., Crystal structure of flavocetin-A, a platelet glycoprotein Ib-binding protein, reveals a novel cyclic tetramer of C-type lectin-like heterodimers [J]. Biochemistry, 2000. 39(8): p. 1915-1923.
    28. Atoda, H., et al., Blood-Coagulation Factor Ix-Binding Protein from the Venom of Trimeresurus-Flavoviridis - Purification and Characterization [J]. Journal of Biochemistry, 1995. 118(5): p. 965-973.
    29. Chen, Y.L. and I.H. Tsai, Functional and sequence characterization of coagulation factor IX factor X-binding protein from the venom of Echis carinatus leucogaster [J]. Biochemistry,1996. 35(16): p. 5264-5271.
    30. Jung, W.K., et al., A novel anticoagulant protein from Scapharca broughtonii [J]. J Biochem Mol Biol, 2002. 35(2): p. 199-205.
    31. Xu, X.L., et al., Purification and characterization of anticoagulation factors from the venom of Agkistrodon acutus [J]. Toxicon, 2000. 38(11): p. 1517-1528.
    32. Zingali, R.B., et al., Bothrojaracin, a new thrombin inhibitor isolated from Bothrops jararaca venom: characterization and mechanism of thrombin inhibition [J]. Biochemistry, 1993. 32(40): p. 10794-802.
    33. Yamada, D. and T. Morita, CA-1 method, a novel assay for quantification of normal prothrombin using a Ca2+ -dependent prothrombin activator, carinactivase-1 [J]. Thromb Res, 1999. 94(4): p. 221-6.
    34. Read, M.S., et al., Role of botrocetin in platelet agglutination: formation of an activated complex of botrocetin and von Willebrand factor [J]. Blood, 1989. 74(3): p. 1031-5.
    35. Usami, Y., et al., Primary structure of alboaggregin-B purified from the venom of Trimeresurus albolabris [J]. Biochem Biophys Res Commun, 1996. 219(3): p. 727-33.
    36. Wang, W.J., Agglucetin, a tetrameric C-type lectin-like venom protein, regulates endothelial cell survival and promotes angiogenesis by activating integrin alpha v beta 3 signaling [J]. Biochemical and Biophysical Research Communications, 2008. 369(2): p. 753-760.
    37. Bergmeier, W., et al., Rhodocytin (aggretin) activates platelets lacking alpha(2)beta(1) integrin, glycoprotein VI, and the ligand-binding domain of glycoprotein Ib alpha [J]. Journal of Biological Chemistry, 2001. 276(27): p. 25121-25126.
    38. Polgar, J., et al., Platelet activation and signal transduction by convulxin, a C-type lectin from Crotalus durissus terrificus (tropical rattlesnake) venom via the p62/GPVI collagen receptor [J]. Journal of Biological Chemistry, 1997. 272(21): p. 13576-13583.
    39. Peng, M.L., et al., Echicetin - a Snake-Venom Protein That Inhibits Binding of Vonwillebrand-Factor and Alboaggregins to Platelet Glycoprotein-Ib [J]. Blood, 1993. 81(9): p. 2321-2328.
    40. Taniuchi, Y., et al., Flavocetin-a and Flavocetin-B, 2 High-Molecular-Mass Glycoprotein Ib Binding-Proteins with High-Affinity Purified from Trimeresurus-Flavoviridis Venom, Inhibit Platelet-Aggregation at High-Shear Stress [J]. Biochimica Et Biophysica Acta-General Subjects, 1995. 1244(2-3): p. 331-338.
    41. Horii, K., et al., Structural characterization of EMS 16, an antagonist of collagen receptor (GPIa/IIa) from the venom of Echis multisquamatus [J]. Biochemistry, 2003. 42(43): p. 12497-12502.
    42. Atoda, H. and T. Morita, A novel blood coagulation factor IX/factor X-binding protein with anticoagulant activity from the venom of Trimeresurus flavoviridis (Habu snake): isolation and characterization [J]. J Biochem, 1989. 106(5): p. 808-13.
    43. Hamako, J., et al., Purification and characterization of bitiscetin, a novel von Willebrand factor modulator protein from Bitis arietans snake venom [J]. Biochemical and Biophysical Research Communications, 1996. 226(1): p. 273-279.
    44. Peng, M., W. Lu, and E.P. Kirby, Alboaggregin-B: a new platelet agonist that binds to platelet membrane glycoprotein Ib [J]. Biochemistry, 1991. 30(49): p. 11529-36.
    45. Navdaev, A., et al., Echicetin, a GPIb-binding snake C-type lectin from Echis carinatus, also contains a binding site for IgM kappa responsible for platelet agglutination in plasma and inducing signal transduction [J]. Blood, 2001. 97(8): p. 2333-2341.
    46. Chen, Y.L. and I.H. Tsai, Functional and Sequence Characterization of Agkicetin, a New Glycoprotein Ib Antagonist Isolated from Agkistrodon Acutus Venom [J]. Biochemical and Biophysical Research Communications, 1995. 210(2): p. 472-477.
    47. Morita, T., Structures and functions of snake venom CLPs (C-type lectin-like proteins) with anticoagulant-, procoagulant-, and platelet-modulating activities [J]. Toxicon, 2005. 45(8): p. 1099-1114.
    48. Ouyang, C. and C.M. Teng, Purification and properties of the anticoagulant principle of Agkistrodon acutus venom [J]. Biochim Biophys Acta, 1972. 278(1): p. 155-62.
    49. Teng, C.M. and W.H. Seegers, Agkistrodon acutus snake venom inhibits prothrombinase complex formation [J]. Thromb Res, 1981. 23(3): p. 255-63.
    50. Sekiya, F., H. Atoda, and T. Morita, Isolation and characterization of an anticoagulant protein homologous to botrocetin from the venom of Bothrops jararaca [J]. Biochemistry, 1993. 32(27): p. 6892-7.
    51. Lu, Y., et al., Purification and double chain structure of anticoagulant factor from five-pace snake (Agkistrodon acutus) venom [J]. Hemostasis and Animal Venoms, 1987: p. 12.
    52. Zang, J., M. Teng, and L. Niu, Purification, crystallization and preliminary crystallographic analysis of AHP IX-bp, a zinc ion and pH-dependent coagulation factor IX binding protein from Agkistrodon halys Pallas venom [J]. Acta Crystallogr D Biol Crystallogr, 2003. 59(Pt 4): p. 730-3.
    53. Wu, H., et al., Mg(II)-induced binding of factor IX-binding protein from the venom of Agkistrodon Halys Pallas with factor Xa [J]. Toxicon, 2010. 55(7): p. 1358-64.
    54. Atoda, H., et al., Coagulation factor X-binding protein from Deinagkistrodon acutus venom is a Gla domain-binding protein [J]. Biochemistry, 1998. 37(50): p. 17361-17370.
    55. Atoda, H. and T. Morita, Arrangement of the disulfide bridges in a blood coagulation factor IX/factor X-binding protein from the venom of Trimeresurus flavoviridis [J]. J Biochem, 1993. 113(2): p. 159-63.
    56. Atoda, H., et al., Binding-Properties of the Coagulation-Factor-Ix Factor-X Binding-Protein Isolated from the Venom of Trimeresurus-Flavoviridis [J]. European Journal of Biochemistry, 1994. 224(2): p. 703-708.
    57. Shikamoto, Y., et al., Crystal structure of Mg2+- and Ca2+-bound Gla domain of factor IX complexed with binding protein [J]. Journal of Biological Chemistry, 2003. 278(26): p. 24090-24094.
    58. Xu, X., Q. Liu, and Y. Xie, The effect of calcium (II) on the binding of anticoagulation factor I with activated coagulation factor X [J]. J Protein Chem, 2001. 20(1): p. 33-7.
    59. Atoda, H., et al., Calcium-binding analysis and molecular modeling reveal echis coagulation factor IX/factor X-binding protein has the Ca-binding properties and Ca ion-independent folding of other C-type lectin-like proteins [J]. FEBS Lett, 2002. 531(2): p. 229-34.
    60. Mizuno, H., H. Atoda, and T. Morita, Crystallization and preliminary X-ray study of blood coagulation factor IX/factor X-binding protein with anticoagulant activity from Habu snake venom [J]. J Mol Biol, 1991. 220(2): p. 225-6.
    61. Zhang, L.Y., et al., Small-molecule reductants inhibit multicatalytic activity of AA-NADase from Agkistrodon acutus venom by reducing the disulfide-bonds and Cu(II) of enzyme [J]. Biopolymers, 2010. 93(2): p. 141-9.
    62. Fryklund, L., H. Borg, and L.O. Andersson, Amino-terminal sequence of human factor IX: presence of gamma-carboxyl glumatic acid residues [J]. FEBS Lett, 1976. 65(2): p. 187-9.
    63. Andersson, L.O., H. Borg, and M. Miller-Andersson, Purification and characterization of human factor IX [J]. Thromb Res, 1975. 7(3): p. 451-9.
    64. Osterud, B., B.N. Bouma, and J.H. Griffin, Human blood coagulation factor IX. Purification, properties, and mechanism of activation by activated factor XI [J]. J Biol Chem, 1978. 253(17): p. 5946-51.
    65. Thompson, A.R., Structure, function, and molecular defects of factor IX [J]. Blood, 1986. 67(3): p. 565-72.
    66. Morita, T., et al., Derivatives of blood coagulation factor IX contain a high affinity Ca2+-binding site that lacks gamma-carboxyglutamic acid [J]. J Biol Chem, 1984. 259(9): p. 5698-704.
    67. Nelsestuen, G.L., et al., On the role of gamma-carboxyglutamic acid in calcium andphospholipid binding [J]. Biochem Biophys Res Commun, 1975. 65(1): p. 233-40.
    68. Furie, B., et al., Conformation-specific antibodies: approach to the study of the vitamin K-dependent blood coagulation proteins [J]. Methods Enzymol, 1982. 84: p. 60-83.
    69. Lindquist, P.A., K. Fujikawa, and E.W. Davie, Activation of bovine factor IX (Christmas factor) by factor XIa (activated plasma thromboplastin antecedent) and a protease from Russell's viper venom [J]. J Biol Chem, 1978. 253(6): p. 1902-9.
    70. Mukherjee, S., et al., Structural analysis of factor IX protein variants to predict functional aberration causing haemophilia B [J]. Haemophilia, 2008. 14(5): p. 1076-1081.
    71. Schneider, H., et al., Therapeutic plasma concentrations of human factor IX in mice after gene delivery into the amniotic cavity: A model for the prenatal treatment of haemophilia B [J]. Journal of Gene Medicine, 1999. 1(6): p. 424-432.
    72. Aznar, J.A., et al., Pharmacokinetic study of a high-purity factor IX concentrate (Factor IX Grifols (R)) with a 6-month follow up in previously treated patients with severe haemophilia B [J]. Haemophilia, 2009. 15(6): p. 1243-1248.
    73. Pipe, S.W., Recombinant clotting factors [J]. Thrombosis and Haemostasis, 2008. 99(5): p. 840-850.
    74. Di Scipio, R.G., et al., A comparison of human prothrombin, factor IX (Christmas factor), factor X (Stuart factor), and protein S [J]. Biochemistry, 1977. 16(4): p. 698-706.
    75. Katayama, K., et al., Comparison of amino acid sequence of bovine coagulation Factor IX (Christmas Factor) with that of other vitamin K-dependent plasma proteins [J]. Proc Natl Acad Sci U S A, 1979. 76(10): p. 4990-4.
    76. Mertens, K. and R.M. Bertina, Pathways in the activation of human coagulation factor X [J]. Biochem J, 1980. 185(3): p. 647-58.
    77. Fujikawa, K., et al., Isolation and characterization of bovine factor IX (Christmas factor) [J]. Biochemistry, 1973. 12(24): p. 4938-45.
    78. Modi, G.J., M.A. Blajchman, and F.A. Ofosu, The isolation of prothrombin, Factor IX and Factor X from human Factor IX concentrates [J]. Thromb Res, 1984. 36(6): p. 537-47.
    79. Burnouf, T., et al., Properties of a highly purified human plasma factor IX:c therapeutic concentrate prepared by conventional chromatography [J]. Vox Sang, 1989. 57(4): p. 225-32.
    80. Feldman, P.A., et al., Large-scale preparation and biochemical characterization of a new high purity factor IX concentrate prepared by metal chelate affinity chromatography [J]. Blood Coagul Fibrinolysis, 1994. 5(6): p. 939-48.
    81. Hoffer, L., H. Schwinn, and D. Josic, Production of highly purified clotting factor IX by acombination of different chromatographic methods [J]. Journal of Chromatography A, 1999. 844(1-2): p. 119-128.
    82. Jackson, C.M., T.F. Johnson, and D.J. Hanahan, Studies on bovine factor X. I. Large-sclae purification of the bovine plasma protein possessing factor X activity [J]. Biochemistry, 1968. 7(12): p. 4492-505.
    83. Husi, H. and M.D. Walkinshaw, Separation of human vitamin K-dependent coagulation proteins using hydrophobic interaction chromatography [J]. J Chromatogr B Biomed Sci Appl, 1999. 736(1-2): p. 77-88.
    84. Husi, H. and M.D. Walkinshaw, Purification of factor X by hydrophobic interaction chromatography [J]. J Chromatogr B Biomed Sci Appl, 2001. 755(1-2): p. 367-71.
    85. Church, W.R. and K.G. Mann, A simple purification of human factor X using a high affinity monoclonal antibody immunoadsorbant [J]. Thromb Res, 1985. 38(4): p. 417-24.
    1. Atoda, H. and T. Morita, A novel blood coagulation factor IX/factor X-binding protein with anticoagulant activity from the venom of Trimeresurus flavoviridis (Habu snake): isolation and characterization [J]. J Biochem, 1989. 106(5): p. 808-13.
    2. Atoda, H., et al., Blood-Coagulation Factor Ix-Binding Protein from the Venom of Trimeresurus-Flavoviridis - Purification and Characterization [J]. Journal of Biochemistry, 1995. 118(5): p. 965-973.
    3. Zang, J., M. Teng, and L. Niu, Purification, crystallization and preliminary crystallographic analysis of AHP IX-bp, a zinc ion and pH-dependent coagulation factor IX binding protein from Agkistrodon halys Pallas venom [J]. Acta Crystallogr D Biol Crystallogr, 2003. 59(Pt 4): p. 730-3.
    4. Wu, H., et al., Mg(II)-induced binding of factor IX-binding protein from the venom of Agkistrodon Halys Pallas with factor Xa [J]. Toxicon, 2010. 55(7): p. 1358-64.
    5. Lu, Y., et al., Purification and double chain structure of anticoagulant factor from five-pace snake (Agkistrodon acutus) venom [J]. Hemostasis and Animal Venoms, 1987: p. 12.
    6. Xu, X.L., et al., Purification and characterization of anticoagulation factors from the venom of Agkistrodon acutus [J]. Toxicon, 2000. 38(11): p. 1517-1528.
    7. Manak, M.S. and R.J. Ferl, Divalent cation effects on interactions between multiple Arabidopsis 14-3-3 isoforms and phosphopeptide targets [J]. Biochemistry, 2007. 46(4): p. 1055-1063.
    8. Camci-Unal, G. and N.L.B. Pohl, Thermodynamics of binding interactions between divalent copper and chitin fragments by isothermal titration calorimetry (ITC) [J]. Carbohydrate Polymers, 2010. 81(1): p. 8-13.
    9. Mukherjee, M., X. Zhu, and M.Y. Ogawa, Cd2+-induced conformational change of a synthetic metallopeptide: Slow metal binding followed by a slower conformational change [J]. Inorganic Chemistry, 2008. 47(11): p. 4430-4432.
    10. Xu, X.L., Q.L. Liu, and Y.S. Xie, Metal ion-induced stabilization and refolding of anticoagulation factor II from the venom of Agkistrodon acutus [J]. Biochemistry, 2002. 41(11): p. 3546-3554.
    11. Muzammil, S., Y. Kumar, and S. Tayyab, Anion-induced stabilization of human serum albumin prevents the formation of intermediate during urea denaturation [J]. Proteins-Structure Function and Genetics, 2000. 40(1): p. 29-38.
    12. Vaz, D.C., et al., Enthalpic and entropic contributions mediate the role of disulfide bonds on the conformational stability of interleukin-4 [J]. Protein Science, 2006. 15(1): p. 33-44.
    13. Taka, J., et al., Stabilization due to dimer formation of phosphoribosyl anthranilate isomerase from Thermus thermophilus HB8: X-ray Analysis and DSC experiments [J]. J Biochem, 2005. 137(5): p. 569-78.
    14. Martinez, J.C., et al., A calorimetric study of the thermal stability of barstar and its interaction with barnase [J]. Biochemistry, 1995. 34(15): p. 5224-33.
    15. Byrne, S.L. and A.B. Mason, Human serum transferrin: a tale of two lobes. Urea gel and steady state fluorescence analysis of recombinant transferrins as a function of pH, time, and the soluble portion of the transferrin receptor [J]. Journal of Biological Inorganic Chemistry, 2009. 14(5): p. 771-781.
    16. Talmard, C., R.L. Yona, and P. Faller, Mechanism of zinc(II)-promoted amyloid formation: zinc(II) binding facilitates the transition from the partially alpha-helical conformer to aggregates of amyloid beta protein(1-28) [J]. Journal of Biological Inorganic Chemistry, 2009. 14(3): p. 449-455.
    17. Xu, X.L. and Q.L. Liu, Binding of anticoagulation factor II from the venom of Agkistrodon acutus with activated coagulation factor X [J]. Toxicon, 2001. 39(9): p. 1359-1365.
    18. Lakey, J.H., R. Maget-Dana, and M. Ptak, The lipopeptide antibiotic A21978C has a specific interaction with DMPC only in the presence of calcium ions [J]. Biochim Biophys Acta, 1989. 985(1): p. 60-6.
    19. DeKoster, G.T. and A.D. Robertson, Thermodynamics of unfolding for kazal-type serine protease inhibitors: Entropic stabilization of ovomucoid first domain by glycosylation [J]. biochemistry, 1997. 36(8): p. 2323-2331.
    20. Svensson, G., S. Linse, and K. Mani, Chemical and Thermal Unfolding of Glypican-1: Protective Effect of Heparan Sulfate against Heat-Induced Irreversible Aggregation [J]. Biochemistry, 2009. 48(42): p. 9994-10004.
    21. Mizuno, H., H. Atoda, and T. Morita, Crystallization and Preliminary-X-Ray Study of Blood-Coagulation Factor-Ix Factor-X-Binding Protein with Anticoagulant Activity from Habu Snake-Venom [J]. Journal of Molecular Biology, 1991. 220(2): p. 225-226.
    22. Mizuno, H., et al., Crystal structure of an anticoagulant protein in complex with the Gla domain of factor X [J]. Proceedings of the National Academy of Sciences of the United States of America, 2001. 98(13): p. 7230-7234.
    23. Shikamoto, Y., et al., Crystal structure of Mg2+- and Ca2+-bound Gla domain of factor IX complexed with binding protein [J]. Journal of Biological Chemistry, 2003. 278(26): p.24090-24094.
    24. Persson, E. and A. Ostergaard, Mg2+ binding to the Gla domain of factor X influences the interaction with tissue factor [J]. Journal of Thrombosis and Haemostasis, 2007. 5(9): p. 1977-1978.
    25. Sunnerhagen, M., et al., The relative orientation of Gla and EGF domains in coagulation factor X is altered by Ca2+ binding to the first EGF domain. A combined NMR-small angle X-ray scattering study [J]. Biochemistry, 1996. 35(36): p. 11547-59.
    26. Nelsestuen, G.L., M. Broderius, and G. Martin, Role of gamma-carboxyglutamic acid. Cation specificity of prothrombin and factor X-phospholipid binding [J]. Journal of Biological Chemistry, 1976. 251(22): p. 6886-93.
    27. Sekiya, F., et al., Localization of the specific binding site for magnesium(II) ions in factor IX [J]. Febs Letters, 1996. 392(3): p. 205-208.
    1. Furie, B. and B.C. Furie, Mechanisms of thrombus formation [J]. N Engl J Med, 2008. 359(9): p. 938-49.
    2. Thompson, A.R., Structure, function, and molecular defects of factor IX [J]. Blood, 1986. 67(3): p. 565-72.
    3. Mertens, K. and R.M. Bertina, Pathways in the activation of human coagulation factor X [J]. Biochem J, 1980. 185(3): p. 647-58.
    4. Fujikawa, K., M.E. Legaz, and E.W. Davie, Bovine factors X 1 and X 2 (Stuart factor). Isolation and characterization [J]. Biochemistry, 1972. 11(26): p. 4882-91.
    5. Fujikawa, K., et al., Isolation and characterization of bovine factor IX (Christmas factor) [J]. Biochemistry, 1973. 12(24): p. 4938-45.
    6. Howard, J.B. and G.L. Nelsestuen, Isolation and characterization of vitamin K-dependent region of bovine blood clotting factor X [J]. Proc Natl Acad Sci U S A, 1975. 72(4): p. 1281-5.
    7. Esnouf, M.P., P.H. Lloyd, and J. Jesty, A method for the simultaneous isolation of factor X and prothrombin from bovine plasma [J]. Biochem J, 1973. 131(4): p. 781-9.
    8. Liebman, H.A., et al., Immunoaffinity purification of factor IX (Christmas factor) by using conformation-specific antibodies directed against the factor IX-metal complex [J]. Proc Natl Acad Sci U S A, 1985. 82(11): p. 3879-83.
    9. Xu, X.L., et al., Purification and characterization of anticoagulation factors from the venom of Agkistrodon acutus [J]. Toxicon, 2000. 38(11): p. 1517-1528.
    10. Xu, X., et al., Effect of metal ion substitutions in anticoagulation factor I from the venom of Agkistrodon acutus on the binding of activated coagulation factor X and on structural stability [J]. J Biol Inorg Chem, 2009. 14(4): p. 559-71.
    11. Xu, X.L., et al., Metal ions- and pH-induced conformational changes of acutolysin a from Agkistrodon acutus venom probed by fluorescent spectroscopy [J]. Biopolymers, 2007. 85(1): p. 81-90.
    12. Wu, H., et al., Mg(II)-induced binding of factor IX-binding protein from the venom of Agkistrodon Halys Pallas with factor Xa [J]. Toxicon, 2010. 55(7): p. 1358-64.
    13. Shen, D., et al., Identification of a nitric oxide-dependent hypotensive effect of anticoagulation factor II from the venom of Agkistrodon acutus [J]. Biochem Pharmacol, 2010. 79(3): p. 498-506.
    14. Sturzebecher, J., et al., Dramatic enhancement of the catalytic activity of coagulation factor IXa by alcohols [J]. FEBS Lett, 1997. 412(2): p. 295-300.
    15. Lindquist, P.A., K. Fujikawa, and E.W. Davie, Activation of bovine factor IX (Christmas factor) by factor XIa (activated plasma thromboplastin antecedent) and a protease from Russell's viper venom [J]. J Biol Chem, 1978. 253(6): p. 1902-9.
    16. Chen, M., et al., Analysis of human liver proteome using replicate shotgun strategy [J]. Proteomics, 2007. 7(14): p. 2479-2488.
    17. Manak, M.S. and R.J. Ferl, Divalent cation effects on interactions between multiple Arabidopsis 14-3-3 isoforms and phosphopeptide targets [J]. Biochemistry, 2007. 46(4): p. 1055-1063.
    18. Burnouf, T., et al., Properties of a highly purified human plasma factor IX:c therapeutic concentrate prepared by conventional chromatography [J]. Vox Sang, 1989. 57(4): p. 225-32.
    19. Josic, D., F. Bal, and H. Schwinn, Isolation of plasma proteins from the clotting cascade by heparin affinity chromatography [J]. J Chromatogr, 1993. 632(1-2): p. 1-10.
    20. Belattar, N., Affinity adsorption of human vitamin K-dependent coagulation factor IX onto heparin-like poly (styrene sodium sulfonate) adsorbent [J]. Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 2007. 27(4): p. 849-854.
    21. Andersson, L.O., H. Borg, and M. Miller-Andersson, Purification and characterization of human factor IX [J]. Thromb Res, 1975. 7(3): p. 451-9.
    22. Jackson, C.M., T.F. Johnson, and D.J. Hanahan, Studies on bovine factor X. I. Large-sclae purification of the bovine plasma protein possessing factor X activity [J]. Biochemistry, 1968. 7(12): p. 4492-505.
    23. Goodall, A.H., et al., Preparation of factor IX deficient human plasma by immunoaffinity chromatography using a monoclonal antibody [J]. Blood, 1982. 59(3): p. 664-70.
    24. Kim, H.C., et al., Purified factor IX using monoclonal immunoaffinity technique: clinical trials in hemophilia B and comparison to prothrombin complex concentrates [J]. Blood, 1992. 79(3): p. 568-75.
    25. Atoda, H. and T. Morita, A novel blood coagulation factor IX/factor X-binding protein with anticoagulant activity from the venom of Trimeresurus flavoviridis (Habu snake): isolation and characterization [J]. J Biochem, 1989. 106(5): p. 808-13.
    26. Sekiya, F., H. Atoda, and T. Morita, Isolation and characterization of an anticoagulant protein homologous to botrocetin from the venom of Bothrops jararaca [J]. Biochemistry, 1993. 32(27): p. 6892-7.
    27. Atoda, H., et al., Blood-Coagulation Factor Ix-Binding Protein from the Venom of Trimeresurus-Flavoviridis - Purification and Characterization [J]. Journal of Biochemistry, 1995. 118(5): p. 965-973.
    28. Chen, Y.L. and I.H. Tsai, Functional and sequence characterization of coagulation factor IX factor X-binding protein from the venom of Echis carinatus leucogaster [J]. Biochemistry, 1996. 35(16): p. 5264-5271.
    29. Mizuno, H., et al., Crystal structure of an anticoagulant protein in complex with the Gla domain of factor X [J]. Proc Natl Acad Sci U S A, 2001. 98(13): p. 7230-4.
    30. Shikamoto, Y., et al., Crystal structure of Mg2+- and Ca2+-bound Gla domain of factor IX complexed with binding protein [J]. Journal of Biological Chemistry, 2003. 278(26): p. 24090-24094.
    1. Atoda, H., et al., Coagulation factor X-binding protein from Deinagkistrodon acutus venom is a Gla domain-binding protein [J]. Biochemistry, 1998. 37(50): p. 17361-70.
    2. Gopinath, S.C., et al., Snake-venom-derived Factor IX-binding protein specifically blocks the gamma-carboxyglutamic acid-rich-domain-mediated membrane binding of human Factors IX and X [J]. Biochem J, 2007. 405(2): p. 351-7.
    3. Mizuno, H., et al., Crystal structure of an anticoagulant protein in complex with the Gla domain of factor X [J]. Proceedings of the National Academy of Sciences of the United States of America, 2001. 98(13): p. 7230-7234.
    4. Zang, J.Y., M.K. Teng, and L.W. Niu, Purification, crystallization and preliminary crystallographic analysis of AHP IX-bp, a zinc iron and pH-dependent coagulation factor IX binding protein from Agkistrodon halys Pallas venom [J]. Acta Crystallographica Section D-Biological Crystallography, 2003. 59: p. 730-733.
    5. Suzuki, N., et al., pH-dependent structural changes at Ca2+-binding sites of coagulation factor IX-binding protein [J]. Journal of Molecular Biology, 2005. 353(1): p. 80-87.
    6. Mizuno, H., et al., Structure of coagulation factors IX/X-binding protein, a heterodimer of C-type lectin domains [J]. Nature Structural Biology, 1997. 4(6): p. 438-441.
    7. Mizuno, H., et al., Crystal structure of coagulation factor IX-binding protein from habu snake venom at 2.6 ? implication of central loop swapping based on deletion in the linker region [J]. Journal of Molecular Biology, 1999. 289(1): p. 103-112.
    8. Xu, X.L., et al., Purification and characterization of anticoagulation factors from the venom of Agkistrodon acutus [J]. Toxicon, 2000. 38(11): p. 1517-1528.
    9. Xu, X.L. and Q.L. Liu, Binding of anticoagulation factor II from the venom of Agkistrodon acutus with activated coagulation factor X [J]. Toxicon, 2001. 39(9): p. 1359-1365.
    10. Xu, X.L., Q.L. Liu, and Y.S. Xie, Metal ion-induced stabilization and refolding of anticoagulation factor II from the venom of Agkistrodon acutus [J]. Biochemistry, 2002. 41(11): p. 3546-3554.
    11. de Siqueira, R.J.B., et al., Cardiovascular effects of the essential oil of Croton zehntneri leaves and its main constituents, anethole and estragole, in normotensive conscious rats [J]. Life Sciences, 2006. 78(20): p. 2365-2372.
    12. Rees, D.D., et al., Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo [J]. Br J Pharmacol, 1990. 101(3): p. 746-52.
    13. Desai, K.M., et al., EDHF-mediated rapid restoration of hypotensive response to acetylcholine after chronic, but not acute, nitric oxide synthase inhibition in rats [J]. Eur J Pharmacol, 2006. 546(1-3): p. 120-6.
    14. Moon, M.K., et al., Vasodilatory and anti-inflammatory effects of the aqueous extract of rhubarb via a NO-cGMP pathway [J]. Life Sciences, 2006. 78(14): p. 1550-1557.
    15. Liew, H.C., et al., Synergism between hydrogen sulfide (H(2)S) and nitric oxide (NO) in vasorelaxation induced by stonustoxin (SNTX), a lethal and hypotensive protein factor isolated from stonefish Synanceja horrida venom [J]. Life Sci, 2007. 80(18): p. 1664-8.
    16. Hayashida, K., et al., Bovine lactoferrin has a nitric oxide-dependent hypotensive effect in rats [J]. Am J Physiol Regul Integr Comp Physiol, 2004. 286(2): p. R359-65.
    17. Calver, A., J. Collier, and P. Vallance, Nitric-Oxide and Cardiovascular Control [J]. Experimental Physiology, 1993. 78(3): p. 303-326.
    18. Shen, D., et al., Identification of a nitric oxide-dependent hypotensive effect of anticoagulation factor II from the venom of Agkistrodon acutus [J]. Biochem Pharmacol, 2010. 79(3): p. 498-506.
    19. Sicker, T., et al., Systemic vascular effects of thrombin and thrombin receptor activating peptide in rats [J]. Thrombosis Research, 2001. 101(6): p. 467-475.
    20. Tang, M., et al., Regulator of G-protein signaling-2 mediates vascular smooth muscle relaxation and blood pressure [J]. Nature Medicine, 2003. 9(12): p. 1506-1512.
    21. Cicala, C., Protease activated receptor 2 and the cardiovascular system [J]. British Journal of Pharmacology, 2002. 135(1): p. 14-20.
    22. Wakabayashi, I. and H. Masuda, Association of pulse pressure with fibrinolysis in patients with type 2 diabetes [J]. Thrombosis Research, 2007. 121(1): p. 95-102.
    23. Williams, J.C., et al., Acute Blood-Pressure Effects of Selected Serine Proteases in Normotensive Rats and Dogs [J]. Pharmacology, 1991. 43(4): p. 199-209.
    24. Huntington, J.A., How Na+ activates thrombin - a review of the functional and structural data [J]. Biological Chemistry, 2008. 389(8): p. 1025-1035.
    25. Wang, Y., W. Luo, and G. Reiser, Trypsin and trypsin-like proteases in the brain: Proteolysis and cellular functions [J]. Cellular and Molecular Life Sciences, 2008. 65(2): p. 237-252.
    26. Fay, W.P., N. Garg, and M. Sunkar, Vascular functions of the plasminogen activation system [J]. Arteriosclerosis Thrombosis and Vascular Biology, 2007. 27(6): p. 1231-1237.
    27. Henriksen, P.A. and J.M. Sallenave, Human neutrophil elastase: Mediator and therapeutic target in atherosclerosis [J]. International Journal of Biochemistry & Cell Biology, 2008. 40(6-7): p. 1095-1100.
    28. Thrower, E., S. Husain, and F. Gorelick, Molecular basis for pancreatitis [J]. Current Opinion in Gastroenterology, 2008. 24(5): p. 580-585.
    29. Luo, W., Y.F. Wang, and G. Reiser, Protease-activated receptors in the brain: Receptor expression, activation, and functions in neurodegeneration and neuroprotection [J]. Brain Research Reviews, 2007. 56(2): p. 331-345.
    30. Wang, H. and G. Reiser, Thrombin signaling in the brain: The role of protease-activated receptors [J]. Biological Chemistry, 2003. 384(2): p. 193-202.
    31. Moore, S.A., et al., Three-dimensional structure of diferric bovine lactoferrin at 2.8 angstrom resolution [J]. Journal of Molecular Biology, 1997. 274(2): p. 222-236.
    32. Prieto, D., Physiological regulation of penile arteries and veins [J]. International Journal of Impotence Research, 2008. 20(1): p. 17-29.
    33. Tsuchiya, T., et al., Milk-derived lactoferrin may block tolerance to morphine analgesia [J]. Brain Research, 2006. 1068(1): p. 102-108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700