用户名: 密码: 验证码:
原位自生Ti_2AlN/TiAl复合材料制备与高温性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文设计并制备了原位自生Ti_2AlN/TiAl复合材料。利用扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)、差热分析(DSC)等多种手段对材料微观组织及合成机理进行了系统研究;采用三点弯曲、氧化、热压缩和摩擦磨损等实验等手段测试了材料的综合性能,并分析了相关的影响因素。
     原材料Ti、Al和TiN颗粒,采用热压烧结工艺,合成制备出增强相体积分数为20%和50%的Ti_2AlN/TiAl复合材料。该复合材料合成过程分为四个阶段:第一阶段Al粉完全熔化(>665℃),此时在Ti颗粒表面形成TiAl3相;第二阶段Al粉参与合成反应而耗尽,Ti颗粒周围形成多层Ti-Al系化合物包围的层状结构,在TiAl3层边缘位置通过熔析反应形成了少量细小的Ti_2AlN颗粒;第三阶段(1100~1300℃期间),高温下基体材料转变为TiAl(芯部为Ti3Al),此时的TiN颗粒与TiAl紧密接触;第四阶段(1300℃保温、保压1小时处理),TiN颗粒与TiAl完全反应得到大量Ti_2AlN颗粒,基体均匀化转变成TiAl相,最终得到Ti_2AlN/TiAl复合材料。
     Ti_2AlN/TiAl复合材料的基体合金可通过热处理转变成全片层、双态和近γ相组织。其中,全片层TiAl基体组织的Ti_2AlN/TiAl复合材料硬度和弹性模量随Ti_2AlN颗粒体积分数增加而升高;高温(800℃)下,弯曲强度随Ti_2AlN颗粒体积分数增加而先升高后降低, Ti_2AlN颗粒体积分数占20%的复合材料弯曲强度最高,Ti_2AlN颗粒体积分数过高对强度不利。
     氧化试验在800~900℃空气条件下进行。900℃下,Ti_2AlN/TiAl复合材料的典型氧化过程分为2个阶段:初期为相(晶)界和表面层快速氧化阶段,随后进入氧化层不断增厚的受扩散控制氧化阶段,随着氧化层厚度的增加氧化速率逐渐减缓。900℃空气条件下,氧化层自外向内分为两层,分别为TiO2层和(Al2O3+TiO2+Ti5Al3O2)混合层。
     热压缩试验结果表明:随温度升高,TiAl合金和Ti_2AlN/TiAl复合材料的压缩强度均降低,而随着应变速率增加压缩强度升高;在高温高应变速率和低温低应变速率条件下,Ti_2AlN/TiAl复合材料的强度比基体TiAl合金提高40~50%。Ti_2AlN/TiAl复合材料热压缩变形方式除滑移外,还有TiAl片层组织晶界滑动、片层弯曲、片层间滑动、孪晶、再结晶等。低体积分数Ti_2AlN/TiAl复合材料中,位于晶界处的Ti_2AlN颗粒能够阻碍TiAl晶界滑动,有利于提高材料强度;高体积分数的Ti_2AlN/TiAl复合材料中,联接成三维网络结构的Ti_2AlN增强体能够有效承载,明显提高了复合材料压缩强度。
     摩擦磨损试验结果表明:Ti_2AlN/TiAl复合材料与镍基合金组成的摩擦副,室温摩擦过程主要分为两个阶段:Ⅰ阶段为非稳态摩擦阶段,镍基合金是主要磨损方,磨损类型是镍基合金附着在复合材料磨面上的粘着磨损;Ⅱ阶段为稳态摩擦阶段,镍基合金仍然是主要磨损方,磨损方式是Ti_2AlN/TiAl复合材料对其产生的磨粒磨损,同时Ti_2AlN/TiAl复合材料发生粘着磨损。室温下,载荷增加,摩擦系数和磨损量均升高;滑动速度加快,Ti_2AlN/TiAl复合材料总磨损量增加,摩擦系数和复合材料的磨损率降低。
     高温下摩擦副发生氧化,镍基合金氧化产物为NiO,Ti_2AlN/TiAl复合材料的氧化产物为Al_2O_3和TiO_2。Ti_2AlN/TiAl复合材料-镍基合金高温摩擦过程主要分为三个阶段:Ⅰ阶段为非稳态-摩擦系数上升阶段,镍基合金发生粘着磨损;Ⅱ阶段为非稳态-摩擦系数下降阶段,镍基合金的磨损方式从粘着磨损向磨粒磨损转变,复合材料磨损方式主要是粘着磨损;Ⅲ阶段为稳态-摩擦系数平稳阶段,镍基合金是主要磨损方,磨损类型为磨粒磨损。高温下,随着滑动速度增加,摩擦系数和复合材料磨损率均降低,复合材料的总磨损量上升;温度升高,摩擦系数和复合材料磨损量均下降。不论在室温还是高温摩擦试验中,复合材料磨损量均低于TiAl基体合金,Ti_2AlN体积分数增加,复合材料的磨损量随之降低。
In this paper, in situ Ti_2AlN/TiAl composites were designed and fabricated.Microstructure and synthesis mechanism of Ti_2AlN/TiAl composites weresystematically investigated by scanning electron microscope(SEM), transmissionelectron microscope(TEM), X ray diffraction(XRD), differential scanningcalorimetry(DSC) and so on. Properties of Ti_2AlN/TiAl composites were tested bythree-point bending, oxidation, hot compression and friction and wear, relatedfactors were also analyzed.
     Ti, Al and TiN particles were raw materials, used hot-pressing technique tofabricated Ti_2AlN/TiAl composites with20%and50%reinforcing phase volumefraction. the synthesis process of Ti_2AlN/TiAl composites were divided into fourstages: the first stage began with Al completely melted(>665℃), TiAl3layer formedat Ti particles surface were the main new phase; in the second stage, Al powderparticipated in synthesis reaction and were depleted, multilayer Ti-Al compoundsbounding Ti particles, minor amounts of small-grained Ti_2AlN particles formed atTiAl3layer edge by liquation reaction; the third stage was at temperature1100℃to1300℃, the base material transformed into TiAl(the core were Ti3Al) at hightemperature, at this time, TiN particles closely contacted with TiAl; at the fourthstage, kept the temperature at1300℃for1h, TiN completely reacted with TiAl andformed many Ti_2AlN particles, the base material homogenizing transformed intoTiAl phase, finally obtained Ti_2AlN/TiAl composites.
     The base TiAl of Ti_2AlN/TiAl composites could transformed to full lamellar,duplex and near γ phase microstructure after heat treatment. For Ti_2AlN/TiAlcomposites that with full lamellar microstructure TiAl base, the hardness and elasticmodulus increased with the increase of Ti_2AlN volume fraction; at high temperature(800℃), bending strength increased at first and then decreased with Ti_2AlN volumefraction increased, the maximum bending strength of the composites happenedwhen Ti_2AlN volume fraction was20%, too high Ti_2AlN volume fraction wasunfavorable to bending strength.
     Oxidation test was carried out at800℃to900℃in air. At900℃, the typicaloxidation process of Ti_2AlN/TiAl composites were divided into two stages: initial stage was fast oxidation stage of phase (or grain) boundary and surface layer, thencarried out the oxide layer continuously thickened oxidation stage, which wascontrolled by diffusion, the oxidation rate decreased with the thickness of the oxidelayer increased. At900℃in air, from outer to inner, the oxide layer were dividedinto two layers, they were TiO2layer and (Al2O3+TiO2+Ti5Al3O2) mixed oxide layer.
     Hot compression test results showed that, compressive strength of TiAl alloyand Ti_2AlN/TiAl composites were all decreased with temperature increased, andwere increased with strain rates increased; at high temperature high strain rates andlow temperature low strain rates, compressive strength of composites increased40%~50%compared with TiAl. Besides sliding, hot compressive deformationmethod of Ti_2AlN/TiAl composites also contained grain boundary sliding oflamellar microstructure, lamellar bending, interlamellar sliding, twin crystal andrecrystallization and so on. In low Ti_2AlN volume fraction composites, Ti_2AlNparticles that were at grain boundary could hinder grain boundary sliding, this washelpful to enhance material strength; In high Ti_2AlN volume fraction composites,Ti_2AlN that were connected to hard frame could effectively carrying strength, thatsignificantly enhanced the compressive strength of Ti_2AlN/TiAl composites.
     In friction and wear test, room temperature friction process of Ti_2AlN/TiAlcomposites-nickel base alloy friction pair were divided into two stages: Ⅰ stage wasunsteady state friction, nickel base alloy was the wore side, adhesive wear of nickelbase alloy adhered on composites wear face was the wear type; Ⅱ stage was steadystate friction, nickel base alloy still was the main wore side, wear type was abrasivewear of Ti_2AlN/TiAl composites to nickel base alloy, at the same time, Ti_2AlN/TiAlcomposites was adhesive wear. At room temperature, coefficient of friction andwear loss of friction pair increased with load increased; with sliding speedincreased, total wear loss of composites increased, coefficient of friction and wearrate of Ti_2AlN/TiAl composites decreased.
     At high temperature, the friction pair happened oxidation reaction, Ni alloyoxide to NiO, Ti_2AlN/TiAl composites oxide to Al_2O_3and TiO_2. Friction process ofTi_2AlN/TiAl composites-nickel base alloy friction pair were divided into threestages: Ⅰ stage was unsteady state-coefficient of friction increase stage, occurredadhesive wear of nickel base alloy; Ⅱ stage was unsteady state-coefficient offriction decrease stage, wear type of nickel base alloy changed from adhesive wearto abrasive wear, wear type of composites mainly were adhesive wear; Ⅲ stage was steady state-coefficient of friction stable stage, nickel base alloy was the main woreside, abrasive wear was the wear type. At high temperature, with the increase ofsliding speed, coefficient of friction and wear rate decreased, and total wear loss ofcomposites increased; with temperature increased, coefficient of friction and wearloss of composites were all decreased. No matter at room temperature or hightemperature friction test, the wear loss of composites were lower than that of TiAlbase alloy, with the increase of Ti_2AlN volume fraction, the wear loss of compositesdecreased.
引文
[1] Dimiduk D M. Gamma Titanium Aluminide Alloys-an Assessment within theCompetition of Aerospace Structural Materials[J]. Materials Science andEngineering A,1999,263(2):281-288.
    [2] Tetsui T. Development of a TiAl Turbocharger for Passenger Vehicles[J].Materials Science and Engineering A,2002,329-331:582-588.
    [3] Wu X H. Review of Alloy and Process Development of TiAl Alloys[J].Intermetallics,2006,14(10-11):1114-1122.
    [4]孔凡涛.稀土对TiAl合金凝固组织及性能影响的研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2003:1.
    [5] Kim Y W. Wrought TiAl Alloy Design[J]. Trans. Nonferrous Met. Soc. China,1999,9:298-308.
    [6]仲增墉,叶恒强.金属间化合物[M].北京:国防工业出版社,2001:687-690.
    [7]孔凡涛.稀土对TiAl合金凝固组织及性能影响的研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2003:2.
    [8] Misra A K. Reaction of Ti and TiAl Alloy with Alumina[J]. Metall. Mater.Tran,1991,22A(3):715-721.
    [9] Shih D S, Amato R A. Iterface Reaction beteen Gamma Titanium AluminideAlloys and Reinforcements[J]. Scripta Metall,1990,24(11):2053-2058.
    [10] Appel F, Wagner R. Microstructure and Deformation of Two-Phase γ-TitaniumAluminides[J]. Materials Science and Engineering,1998, R22(5):187-268.
    [11] Tetsui T, Ono S. Endurance and Composition and Microstructure Effects onEndurance of TiAl Used in Turbochargers[J]. Intermetallics,1999,7(6):689-697.
    [12] Gebauer K. Performance, Tolerance and Cost of TiAl Passenger Car Valves[J].Intermetallics,2006,14:355-360.
    [13] Wang S H, Liu C T. The Minerals-Metals[J]. Materials Society,1990:465.
    [14] Djanarthany S, Viala J C, Bouix J. Development of SiC/TiAl Composites:Processing and Interfacial Phenomena[J]. Materials Science and EngineeringA,2001,300:211-218.
    [15] Wang G X, Mao X. Preparation of TiAl/Mo and TiAl/NiAl Composites byPowder Processing[J]. Journal of Materials Science,1997,32:6325-6329.
    [16]李江田,孙康宁.反应合成Ti3Al/TiC+Al2O3复合材料烧结过程热力学分析[J].稀有金属材料与工程,2005,34(9):1443-1446.
    [17] Mei B C, Yan M. Preparation of TiAl/Ti2AlC Composites with Ti/Al/CPowders by in-situ Hot Pressing[J]. Journal of Wuhan University ofTechnology,2006,21(2):14-16.
    [18] Tsunekawa Y, Gotob K, Okumiya M, et al. Synthesis and High-TemperatureStability of Titanium Aluminide Matrix in situ Composites[J]. Journal ofThermal Spray Technology,1992, l(3):223-229.
    [19] Hirose A, Hondab K, Kobayashi K F. Properties of in-situ Nitride ReinforcedTitanium-Aluminide Layers Formed by Reactive Low Pressure PlasmaSpraying with Nitrogen Gas[J]. Materials Science and Engineering A,1997,222:221-229.
    [20]苏彦庆,郭景杰.483Q发动机用TiAl基合金排气阀门的研制[J].材料工程,2000,(5):21-23.
    [21]欧阳鸿武,刘咏. TiAl基合金排气阀的研制和应用前景[J].材料导报,2003,17(4):8-10.
    [22]司玉锋,陈子勇,孟丽华,等. Ti3Al基金属间化合物的研究进展[J].特种铸造及有色合金,2003,(4):33-34.
    [23]路新,赵丽明,曲选辉.粉末冶金TiAl金属间化合物的研究进展[J].材料导报,2006,20(8):69-71.
    [24]岳云龙,吴海涛,王志杰,等. TiAl金属间化合物的研究进展[J].济南大学学报,2006,18(1):31-34.
    [25]李宝辉,孔凡涛,陈玉勇,等. TiAl金属间化合物的合金设计及研究现状[J].航空材料学报,2006,26(2):72-77.
    [26]孔凡涛,陈玉勇,田竞,等. TiAl基金属间化合物研究进展[J].材料科学与工艺,2003,11(4):441-443.
    [27] Barbosa J, Ribeiro C S, Monteiro A C. Influence of Superheating on Casting ofγ-TiAl[J]. Intermetallics,2007,15(7):945-955.
    [28] Yang R, Cui Y Y, Dong L M, et al. Alloy Development and Shell MouldCasting of Gamma TiAl[J]. Journal of Materials Processing Technology,2003,135(2-3):179-188.
    [29] Hsiung L M, Nieh T G. Microstructures and Properties of Powder MetallurgyTiAl Alloys[J]. Materials Science and Engineering A,2004,364(1-2):1-10.
    [30] Cao W B, Kirihara S, Miyamoto Y, et al. Development of Freeform FabricationMethod for Ti-Al-Ni Intermetallics[J]. Intermetallics,2002,10(9):879-885.
    [31] Fang W B, Hu L X, He W X, et al. Microstructure and Properties of a TiAlAlloy Prepared by Mechanical Milling and Subsequent Reactive Sintering[J].Materials Science and Engineering A,2005,403(1-2):186-190.
    [32]李志强,韩杰才,赫晓东,等.燃烧合成TiAl金属间化合物的反应机制[J].稀有金属材料与工程,2002,31(1):4-7.
    [33]岳云龙,吴海涛. TiAl化合物的热爆合成热力学与动力学分析[J].济南大学学报,2005,19(2):106-109.
    [34] Qu H P, Wang H M. Microstructure and Mechanical Properties of LaserMelting Deposited γ-TiAl Intermetallic Alloys[J]. Materials Science andEngineering A,2007,466(1-2):187-194.
    [35] Rawers J C. Heat Treatment of Reaction-Sintered Hot-Pressed TiAl[J]. ScriptaMetallurgica Materialia,1990,24(10):1985-1990.
    [36] Rawers J C. Processing, Structure and Properties of Metal-IntermetallicLayered Composites[J]. Materials Science and Engineering A,1995,192(2):624-632.
    [37] Wang G X. Microstructures and Tensile Properties of some γ-TiAl AlloysMade from Elemental Powders[J]. Scripta Metallurgica et Materialia,1992,27(11):1651-1656.
    [38] Wang G X. Tensile Properties and Fracture Behavior of Ti52Al48andTi50Al48Cr2Prepared from Elemental Powders[J]. Scripta Metallurgica etMaterialia,1993,29(7):943-948.
    [39] Yi H C, Petric A, Moore J J. Effect of Heating Rate on the CombustionSynthesis of Ti-Al Intermetallic Compounds[J]. Journal of Materials Science,1992,27(24):6797-6806.
    [40] Takemoto T, Kawakatsu I. Clearance Filling Test for Evaluation of Brazabilityof Aluminum[J]. Welding in the World,1988,26(2):2-8.
    [41] Ahmed A H. Crystallization of Complex Aluminide Compounds from DiluteAl-Ti Melts Containing One or Two Other Transition Metals of IVB to VIBgroups. Zeitschrift fuer Metallkunde,1990,81(8):601-605.
    [42] Van Loo F J J, Rieck G D. Diffusion in the Titanium-Aluminium System-II.Interdiffusion in the Composition Range between25and100at.%Ti[J]. ActaMetallurgica,1973,21(1):73-84.
    [43] Mackowiak J, Shreir L L. The Nature and Growth of Interaction LayersFormed during the Reaction between Solid Titanium and Liquid Aluminium[J].Journal of the Less Common Metals,1959,1(6):456-466.
    [44] Sujata M, Bhargava S, Sangal S. On the Formation of TiAl3during Reactionbetween Solid Ti and Liquid Al[J]. Journal of Materials Science Letters,1997,16(14):1175-1178.
    [45] Ebrahimi F, Ruiz-Aparicio J G L. Diffusivity in the Nb-Ti-Al Ternary SolidSolution[J]. Journal of Alloys and Compounds,1996,245(1):1-9.
    [46] Kattner U R. Thermodynamics Assessment and Calculation of the Ti-AlSystem[J]. Metall Trans A,1992,23:2081-2083.
    [47] Ohnuma I, Fujita Y, Mitsui H. Phase Equilibria in the Ti-Al Binary System[J].Acta Mate.2000,48:3113-3116.
    [48]王学成,张小明,柴惠芬,等.燃烧合成TiAl合金结构转变动力学的端部淬火熄灭法分析[J].稀有金属材料与工程,1999,28(3):161-165.
    [49] Wang G X, Dahms M. Reaction Sintering of Cold-Extruded Elemental PowderMixture Ti-48Al[J]. Metall Mater Trans,1993,24(7):1517-1526.
    [50]彭超群,黄伯云. TiAl基合金在快速加热循环热处理过程中的结构失稳[J].稀有金属材料与工程,2004,33(4):363-367.
    [51]刘咏,黄伯云.元素粉末冶金方法制备TiAl基合金[J].粉末冶金材料科学与工程,1999,4(3):189-194.
    [52]王晓军,范群成,夏天东,等. TiAl自蔓延高温合成反应的机理[J].甘肃工业大学学报,2003,29(3):22-24.
    [53] Zhang F, Sha Y H, Wang Y D, et al. Textures and Ordering Influence in γ–TiAl Based Alloy[J]. Materials Science Forum,2002,408-412:1783-1788.
    [54]张永刚,韩雅芳,陈国良,等.金属间化合物结构材料[M].北京:国防工业出版社,2001:719,440-443.
    [55] Xia Q F, Wang J N, Yang J. On the Massive Transformation in TiAl-BasedAlloys[J]. Intermetallcs,2001,9(5):361-367.
    [56] Denquin A, Naka S. Phese Transformation Mechanisms involved in Two-Phase TiAl-Based Alloys-I. Lamellar Structure Formation[J]. Acta Mater,1996,44(1):343-352.
    [57]贺跃辉,黄伯云,曲选辉,等. TiAl基合金双温热处理及其相变特征的研究[J].中南工业大学学报,1996,27(3):298-302.
    [58]李书江,刘自成,陈国良.循环热处理细化一次锻造的Ti-46Al-8.5Nb-0.2W合金组织[J].材料科学与工艺,2000,8(3):46-49.
    [59]何双珍,贺跃辉,黄伯云,等.淬火/回火热处理对TiAl基合金晶粒细化的影响[J].航空材料学报,2003,23(3):5-10.
    [60]张小明. TiAl基合金在汽车发动机上的应用[J].稀有金属快报,2002,(10):18-19.
    [61]曲恒磊,周廉,王克光,等. TiAl基合金高温氧化动力学分析[J].钛工业进展,2000,(3):37-39.
    [62] Taylor T N, Paffett M T. Oxide Properties of a γ-TiAl:a Surface ScienceStudy[J]. Materials Science and Engineering A,1992,153(1-2):584-590.
    [63] Fu Q, Wagner T. Interaction of Nanostructured Metal Overlayers with OxideSurfaces[J]. Surface Science Reports,2007,62(11):431-498.
    [64] Schmiedgen M, Graat P C J, Baretzky B, et al. The Initial Stages of Oxidationof γ-TiAl:an X-ray Photoelectron Study[J]. Thin Solid Films,2002,415(1-2):114-122.
    [65] Xia J, Dong H S, Bell T. Surface Properties of a γ-based Titanium Aluminideat Elevated Temperatures[J]. Intermetallics,2002,10:723-729.
    [66] Percael I V, Kiss G, et al. In Situ Surface Analytical Investigation of theThermal Oxidation of Ti-Al Intermatallics up to1000℃[J]. Appllied SurfaceScience,2002,200:185-195.
    [67] Maurice V, Despert G, Zanna S, et al. XPS Study of the Initial Stages ofOxidation of2-Ti3Al and γ-TiAl Intermetallic Alloys[J]. Acta Materialia,2007,55(10):3315-3325.
    [68] Shetnet V, Hoven H, Quadakkers W J, et al. Oxygen Uptake and DepletionLayer Formation during Oxidation of γ-TiAl Based Alloys[J]. Intermatallics,1997,5(4):311-320.
    [69] Shemet V, Karduck P, Hoven H, et al. Synthesis of the Cubic Z-phase in theTi-Al-O System by a Powder Metallurgical Method[J]. Intermatallics,1997,5(4):271-280.
    [70] Copland E H, Gleeson B, Young D J. Formation of Z-Ti50Al30O20in the Sub-Oxide Zones of γ-TiAl Based Alloys during Oxidation at1000℃[J]. ActaMaterialia,1999,47(10):2937-2949.
    [71]李向阳,张永刚,陈昌麒,等.二元Ti-Al合金高温氧化机理[J].金属学报,1997,33(9):964-970.
    [72] Cao R, Li L, Chen J H, et al. Study on Compression Deformation, Damage andFracture Behavior of TiAl Alloys: Part I. Deformation and DamageBehavior[J]. Materials Science and Engineering A,2010,527(10-11):2455-2467.
    [73]刘彬. TiAl基合金的制备及高温变形行为研究[D].长沙:中南大学博士学位论文,2008:45-57.
    [74] Nonaka K, Tanosaki K, Fujita M, et al. Deformation and Fracture Behavior ofTiAl in Compression Tests at Room Temperature[J]. Materials Transactions,JIM,1992,33(9):802-810.
    [75] Bartels A, Clemens H, Dehm G, et al. Strain Rate Dependence of theDeformation Mechanisms in a Fully Lamellar γ-TiAl-Based Alloy[J]. Z.Metallkd,2002,93(3):180-185.
    [76]李雷,曹睿,张继等.不同应变速率下TiAl基合金压缩断裂行为的研究[J].稀有金属,2008,32(4):409-414.
    [77] Li C X, Xia J, Dong H. Sliding Wear of TiAl Intermetallics Against Steel andCeramics of Al2O3, Si3N4and WC/Co[J]. Wear,2006,261(5-6):693-701.
    [78] Lii D F, Lin M H, Huang J L. The Effects of TiAl Interlayer on PVD TiAlNFilms[J]. Surface and Coatings Technology,1998,99(1-2):197-202.
    [79] Rastkar A R, Bloyce A, Bell T. Sliding Wear Behaviour of Two Gamma-Based Titanium Aluminides[J]. Wear,2000,240(1-2):19-26.
    [80] Miyoshi K, Lerch B. Fretting Wear of Ti-48Al-2Cr-2Nb[J]. TribologyInternational,2003.36(2):145-153.
    [81] Ramaseshan R, Kakitsuji A, Seshadri S K. Microstructure and some Propertiesof TiAl-Ti2AlC Composites Produced by Reactive Processing[J].Intermetallics,1999,7(5):571-577.
    [82] Stefano G, Giovanni S. Interplay between Oxidation and Wear Behaxior of theTi-48Al-2Cr-2Nb-1B Alloy[J]. Metallurgical and Materials Transactions A,1999,30(8):2019-2026.
    [83] Chen Y, Wang H M. Microstructure and High-Temperature Wear Resitance ofa Laser Surface Alloyed γ-TiAl with Carbon[J]. Applied Surface Science,2003,220(1-4):186-192.
    [84] Luo H L, Karin G, Li S P, et al. Abrasive Wear Comparison of Cr3C2/Ni3A1Composite and Stellite12Alloy Cladding[J]. Journal of Iron and SteelResearch,2007,14(5):15-20.
    [85] Goldenstein H, Silva Y N, Yoshimura H N. Designing a New Family of HighTemperature Wear Resistant Alloys Basedon Ni3Al IC:Experimental Resultsand Thermodynamic Modeling[J]. Intermetallics,2004,12(7-9):963-968.
    [86] Karin G, Luo H L, Feng D, et al. Ni3Al-Based Intermetallic Alloys as a NewType of High-Temperature and Wear-Resistant Materials[J]. Journal of Ironand Steel Research,2007,14(5):21-25.
    [87] Johnson M L, Mikkola D E, Wright R N. Cavitation Erosion and AbrasiveWear of Ni3Al Alloys[J]. Intermetallics,1995,3(5):389-396.
    [88] Narksitipan S, Thongtem T, McNallan M, et al. Surface Modification of γ-TiAlAlloys by Acetylene Plasma Deposition[J]. Applied Surface Science,2006,252(24):8510-8513.
    [89] Moser M, Mayrhofer P H, Clemens H. On the Influence of Coating andOxidation on the Mechanical Properties of a γ-TiAl Based Alloy[J].Intermetallics,2008,16(10):1206-1211.
    [90] Vargas R G. Wear Mechanisms of WC Inserts in Face Milling of GammaTitanium Aluminides[J]. Wear,2005(259):1160-1167.
    [91]彭超群,黄伯云,贺跃辉.合金化对TiAl基合金性能的影响及机理[J].中国有色金属学报,1998,8(1):11-17.
    [92] Liu X B, Wang H M. Microstructure and Tribological Properties of Laser Cladγ/Cr7C3/TiC Composite Coatings on γ-TiAl Intermetallic Alloy[J]. Wear,2007,262(5-6):514-521.
    [93]刘秀波,王华明. TiAl合金激光熔覆复合材料涂层耐磨性研究[J].材料热处理学报,2006,27(1):87-91.
    [94] Liu X B, Yu R L. Effects of La2O3on Microstructure and Wear Properties ofLaser Clad γ/Cr7C3/TiC Composite Coatings on TiAl Intermatallic Alloy[J].Materials Chemistry and Physics,2007,101(2-3):448-454.
    [95]王华明,李晓轩,于利根. γ-TiAl金属间化合物激光表面合金化制备Al2O3/TiAl耐磨复合材料涂层研究[J].应用激光,1999,19(5):247-252.
    [96]贺跃辉,黄伯云. TiAl合金的表面渗碳行为及其机理[J].材料研究学报,2005,19(2):139-146.
    [97]许玮,刘小萍,郭朝丽,等.等离子渗碳提高TiAl基合金耐磨性[J].热加工工艺,2006,35(4):51-52.
    [98] Liu X P, Tian W H, Xu W, et al. Wear Resistance of TiAl Intermetallics byPlasma Alloying and Plasma Carburization[J]. Surface and CoatingsTechnology,2007,201(9-11):5278-5281.
    [99] Rastkar A R, Bell T. Tribological Performance of Plasma Nitrided GammaBased Titanium Aluminides[J]. Wear,2002,253(11-12):1121-1131.
    [100]王利捷,郝建民. TiAl基合金离子渗氮与耐磨性研究[J].热加工工艺,2006,35(12):47-49.
    [101]王利捷,陈宏,郝建民.钛铝基合金离子碳氮共渗及其耐磨性的研究[J].材料保护,2005,38(8):49-58.
    [102] Rastkar A R, Bell T. Characterization and Tribological Performance of OxideLayers on a Gamma Based Titanium Aluminide[J]. Wear,2005,258(11-12):1616-1624.
    [103]公衍生. TiC颗粒增强TiAl金属间化合物基复合材料的制备与性能研究[D].济南:济南大学硕士学位论文,2003:32-42.
    [104]王芬,艾桃桃,罗宏杰. Nb2O5掺杂原位合成Al2O3/TiAl复合材料的组织与性能[J].材料热处理学报,2008,29(2):26-30.
    [105]艾桃桃,王芬.三元层状Ti2AlC陶瓷强化TiAl基复合材料的研究[J].陶瓷,2006,11:17-20.
    [106] Mei B C, Miyamoto Y. Investigation of TiAl/Ti2AlC Composites Prepared bySpark Plasma Sintering[J]. Materials Chemistry and Physics,2002,75(1-3):291-295.
    [107] Saqib M, Weiss I, Mehrotra G M, et al. Microstructural and Thermal Stabilityof Ti-43Al Alloy Containing Dispersoids of Titanium Di-Boride[J]. Metall.Mater. Tran,1991,22A(8):1721-1728.
    [108] Lin Z J, Zhuo M J, Li M S, et al. Synthesis and Microstructure of Layered-Ternary Ti2AlN Ceramic[J]. Scripta Materialia,2007,56(12):1115-1118.
    [109]严明,梅炳初,朱教群,等.块体Ti2AlN多晶陶瓷的制备研究[J].武汉理工大学学报,2007,29(3):20-22.
    [110]田晨光,严明,梅炳初.三元层状氮化物(Ti2AlN)陶瓷的研究[J].稀有金属快报,2006,25(6):6-9.
    [111]王开阳,王金国,陈国良.机械合金化制备γ-TiAl+Ti2AlN纳米复合材料[J].北京科技大学学报,1995,17(1):46-49.
    [112] Kakitsuji A, Miyamoto H, Mabuchi H, et al. Synthesis of TiAl-(TiB2+Ti2AlN)Composites by HIP Reactive Sintering[J]. Mater. Tran. JIM,1999,40(9):942-945.
    [113] Tian W H, Nemoto M. Precipitation Behavior of Nitrides in L10-OrderedTiAl[J]. Intermetallics,2005,13(10):1030-1037.
    [114] Kattner U R, Lin J C, Chang Y A. Termodynamic Assessment andCalculation of the Ti-Al System[J]. Metallurgical Transactions A,1992,23:2081-2090.
    [115] Sun T, Wang Q, Sun D L, et al. Study on Dry Sliding Friction and WearProperties of Ti2AlN/TiAl Composite[J]. Wear,2010,268(5-6):693-699.
    [116]张天播.兼具自洁性能的新型节能薄膜TiNxOy的制备和性能研究[D].杭州:浙江大学硕士学位论文,2007:75.
    [117] Fu E K Y, Rawlings R D, Mcshane H B. Reaction Synthesis of TitaniumAluminides[J]. Journal of Materials Science,2001,36(23):5537-5542.
    [118]吴引江,兰涛.漫渗燃烧合成TiAl金属间化合物的物化过程探讨[J].稀有金属材料与工程,1996,25(2):17-20.
    [119]刘艳梅. Tif/TiAl3复合材料反应合成及高温性能研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2010:65.
    [120]严明. Ti2AlN及Ti2AlN/Ti复合材料的合成、结构与性能研究[D].武汉:武汉理工大学博士学位论文,2007:38.
    [121] Waldner P, Eriksson G. Thermodynamic Modelling of the System Titanium-Oxygen[J]. Calphad,1999,23(2):189-218.
    [122]张德铭,陈贵清,韩杰才,等. γ-TiAl基高温结构材料研究评述[J].中国稀土学报,2005,23(suppl.):163-167.
    [123]苏彦庆,贾均,郭景杰. Ti-Al二元系活度系数[J].铸造,1998,1:17-20.
    [124] Kovács K, Perczel I V, Josepovits V K, et al. In Situ Surface AnalyticalInvestigation of the Thermal Oxidation of Ti-Al Intermetallics up to1000℃[J].Applied Surface Science,2002,200:185-195.
    [125]王福会.金属间化合物的高温腐蚀与防护[J].材料科学与工程,1995,13(2):14-17.
    [126]付姚,曹望和,夏天,等. TiO2纳米粒子热处理过程相变原因研究[J].功能材料,2005,36(2):250-254.
    [127]杨建,薛向欣,王文忠,等.氧化物添加剂对TiO2相变和晶粒生长的影响机制[J].功能材料,2005,36(7):978-983.
    [128] Greenberg B A, Antonova O V, Indenbaum V N, et al. DislocationTransformations and the Anomalies of Deformation Characteristics in TiAl-I.Models of Dislocation Blocking[J]. Acta Metallurgica et Materialia,1991,39(2):233-242.
    [129] Myhra S, Crossley J A A, Barsoum M W. Crystal-chemistry of the Ti3AlC2and Ti4AlN3Layered Carbide/Nitride Phases-Characterization by XPS[J].Journal of Physics and Chemistry of Solids,2001,62(4):811-817.
    [130]李宝辉,陈玉勇,孔凡涛. Ti-45Al-5Nb-0.3Y合金的等温热变形模拟及包套锻造[J].航空材料学报,2007,27(3):42-46.
    [131]刘自成.高铌TiAl基合金成分及组织优化的研究[D].北京:北京科技大学博士学位论文,2000:26-30.
    [132]李慧中,李洲,刘咏,等. TiAl基合金的高温塑性变形行为[J].中国有色金属学报,2010.20(1):79-85.
    [133]李书江.高铌TiAl基合金微合金化及蠕变性能的研究[D].北京:北京科技大学博士学位论文,2001:30-36.
    [134] Zhang W, Liu Y, Li H Z, et al. Constructive Modeling and Processing Map forElevated Temperature Flow Behaviors of Powder Merallurgy TitaniumAluminide Alloy[J]. Journal of Materials Processing Technology,2009,209:5363-5367.
    [135] Kroll S, Stolwijk N A, Herzig C, et al. Titanium self-Diffusion in theIntermetallic Compound γ-TiAl[J]. Defect and Diffusion Forum,1993,95-98:865-868.
    [136]戚运莲. Ti600高温钛合金的热变形行为及加工图研究[D].西安:西北工业大学硕士学位论文,2007:75.
    [137] Tetsui T, Ono S. Endurance and Composition and Microstructure Effects onEndurance of TiAl Used in Turbochargers[J]. Intermetallics,1999,7(6):689-697.
    [138] Lv F J, Li Q, Fu G R. Failure Analysis of an Aero-Engine Combustor Liner[J].Engineering Failure Analysis,2010,17(5):1094-1101.
    [139] Sierra C, Vázquez A J. Dry Sliding Wear Behaviour of Nickel AluminidesCoatings Produced by Self-Propagating High-Temperature Synthesis[J].Intermetallics,2006,14(7):848-852.
    [140] Palaniappa M, Seshadri S K. Friction and Wear Behavior of Electroless Ni-Pand Ni-W-P Alloy Coatings[J]. Wear,2008,265(5-6):735-740.
    [141] Ulutan D, Ozel T. Machining Induced Surface Integrity in Titanium andNickel Alloys:A Review[J]. International Journal of Machine Tools andManufacture,2011,51(3):250-280.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700