用户名: 密码: 验证码:
连铸坯凝固过程热模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究连铸坯凝固过程和组织形成规律,对于冶金生产中合理制定连铸工艺,改善铸坯质量具有十分重要的意义。目前对连铸钢坯凝固过程的研究主要有数值模拟、物理模拟和工业实验三种方法。受热物性参数和计算能力的制约,数值模拟尚不能准确反映连铸坯凝固过程。物理模拟方法可以定性地揭示凝固原理,但无法定量研究金属的凝固规律。工业试验成本高,因此较少采用。本文根据连铸坯传热及凝固特点,基于枝晶生长条件相似原理,提出连铸坯枝晶生长水平式单向凝固热模拟方法并设计制造了连铸坯枝晶生长热模拟试验机。该热模拟试验机具有原位浇注、控制冷速和冷却强度及施加搅拌等功能。该方法用数百克钢再现连铸坯枝晶生长过程,为研究连铸坯凝固过程、固液界面形貌及溶质分布、柱状晶向等轴晶转变(简称CET)规律及连铸工艺对凝固组织的影响提供了实验手段。
     本文以2205双相不锈钢为实验材料,从传热及凝固组织两方面验证了连铸坯枝晶生长热模拟方法与连铸坯凝固之间的相似性。热模拟试样的热流密度及其变化规律与连铸坯的传热较一致,且浇注温度和水冷端的冷却强度可以调节,从而可模拟不同的工艺条件。热模拟试样的宏观、微观组织与相同过热度浇注的连铸坯相似度很好,柱状晶向等轴晶转变位置、晶粒尺寸及两相比例与连铸坯基本一致。这些结果证明,该热模拟方法能够比较准确地再现连铸坯的凝固过程。
     利用热模拟装置研究了外部强冷条件下的CET,发现对流对CET影响很大,材料凝固特性对CET也有一定的影响。在强制对流条件下,Al-Cu合金凝固初期会出现游离晶粒,而双相不锈钢则未发现游离晶。液淬实验表明,柱状晶生长期间出现的游离晶是枝晶熔断或者型壁附近形核并被液流卷入的结果。无强制对流时,CET之前未发现游离晶,等轴晶区的晶核来源是液相过冷形核和液面形核产生的“结晶雨”。
     利用连铸坯枝晶生长热模拟装置研究了连铸工艺条件对双相不锈钢、T10A钢和铝铜合金凝固组织演变的影响规律。发现几种材料在连铸条件下表现出不同的凝固特点。这些材料凝固组织对浇注温度和冷却强度变化的敏感性差异很大,按照大小排序为:Al-4.5wt.%Cu(铝铜单相合金)>T10A(高碳钢)>2101、2205和2304(双相不锈钢)。据此可以推断,双相不锈钢可以在较宽松的连铸条件下生产而不显著改变凝固组织。这一方面是由于三种材料凝固过程中溶质富集程度不同,另一方面是传热能力不同。另外还发现,机械振动可以大幅增加Al-Cu合金和T10A的等轴晶率,但是对双相不锈钢影响很小。由此可以推断,强制对流可有效提高溶质分配系数k<<1的合金的等轴晶率,但是对纯金属和平衡分配系数接近1的合金影响不明显。
     本文采用简化的合金凝固KGT模型,利用有限元商业软件ProCAST数值模拟了连铸坯热模拟试样的传热及凝固过程。发现Al-4.5wt.%Cu合金热模拟试样凝固组织及CET转变的预测结果与实际凝固组织相似度较高,证明KGT模型可以较准确预测二元合金连铸条件下的凝固组织。而2205双相不锈钢微观组织预测结果与实际凝固组织偏差较大,说明利用KGT模型预测多元合金尤其是钢的微观组织并不理想,实验模拟仍然是连铸钢坯凝固过程必要的研究手段。
To investigate the solidification process and structure of slab is of great importancefor choosing rational production parameters and improving the quality of continuouscasting billets. There are three methods to study the solidification process of continuouscasting, which are numerical simulation, physical simulation and industrial experiments.Restricted by the thermal-physical parameters and the computing power, numericalsimulation still cannot accurately reflect the billet’s solidification process. Physicalsimulation method can reveal qualitatively the solidification principle, but cannot evaluatethe development of solidification structure of metals quantitatively. Due to the high cost,industrial experiments are rarely used. Based on the analysis of heat transfer, solidificationfeatures of billets, and the similarity of dendrite growth conditions, a horizontal directionalsolidification thermal simulation method for dendritic growth in continuous casting wasproposed and a corresponding thermal simulation system was designed. The system canachieve in-situ pouring, cooling rate and intensity controlling and mechanical stirring. Withsuch a system, the dendrite growth process of billets can be reproduced by use of dozens orhundreds of grams of steel, offering a laboratory technique to study the slab solidificationprocess, morphology of solid-liquid interface, solute distribution, columnar to equiaxedtransition (CET) and the effect of production parameters on slab solidification structure.
     The consistency of thermal simulation system and continuous casting were verified bycomparing heat transfer and solidification structure using2205duplex stainless steel (DSS).It is shown that the heat flux of thermal simulation samples agreed well with continuouscasting slab. In addition, the pouring temperature and cooling intensity could be regulatedto simulate different production conditions. The macro and micro structure of thermalsimulation sample, such as the CET positions, grain sizes and proportions of two phases,etc. were similar to that of slab. These results demonstrate that the thermal simulationmethod can reproduce the billet solidification process properly.
     The CET behaviors under external strong cold conditions were studied on the thermalsimulation system. It’s found that the CET was strongly affected by the liquid convection,and was also affected by the materials’ coherent solidification characteristics. With forcedconvection, free dendritic grains were observed during the columnar dendritic growth inAl-Cu alloy simples while not in DSS. The solid-liquid interface and dendriticmetallography of quenched samples indicated that these free dendritic grains werefragments of remelted dendrites or the nucleus which formed on chill mold wall and embroiled into bulk liquid by convection. Without forced convection, none free dendriticgrain was distinguished in quenched samples. The equiaxed grains nucleated inundercooled bulk liquid and free surface, and then the grains nucleated on free surfacesedimentated into bulk liquid with convection, which was called as “grain rain”.
     The effect of continuous casting production parameters on solidification structure ofDSS, T10A steel and Al-Cu alloy were investigated using the thermal simulation system.These materials showed different solidification characteristics in continuous castingconditions. The sensitivity of these materials’ solidification structure on pouringtemperature and cooling intensity were of great difference, which sorted as follows:Al-4.5wt%Cu (single-phase alloys)> the T10A (high carbon steel)>>2101,2205and2304(DSS). So, it can be inferred that the solidification structure of DSS will not change assignificantly as other two materials under wide continuous casting conditions. Thisphenomenon is due to the difference of solute concentration of these materials duringsolidification and the different heat conductivities are another important factor. It alsofound that mechanical vibration can substantially increase equiaxed grain rate of Al-Cualloys and T10A steel, while has little effect on the DSS. It can be inferred that the forcedconvection can effectively improve the equiaxed grain proportion of alloy with little solutedistribution coefficient (k <<1), but has little effect on pure metals and alloy with k closeto unity.
     In this paper, based on the simplified alloy solidification Kurz-Giovanola-Trivedi(KGT) model, the billet thermal simulation specimens heat transfer and solidificationprocess were numerically simulated on the finite element commercial software ProCAST.The numerical simulate solidification structure and CET of Al-4.5wt.%Cu alloy weresimilar to the actual structure of thermal simulation sample, which approve the KGT modelcan accurately predict the binary alloy’s solidification process under continuous castingconditions. However, the prediction of solidification of2205DSS was not consistent to thethermal simulation samples. These results demonstrated that numerical simulation thesolidification of multicomponent alloy was not accurate enough now, and the experimentalsimulation is still a necessary means for study of solidification during continuous casting.
引文
[1] Committee-On-Statistic. A handbook of world steel statistics1978[M]. Brussels:International Iron and Steel Institute,1978.
    [2] Committee-On-Statistic. Steel statistical yearbook1980[M]. Brussels: International Iron andSteel Institute,1980.
    [3] Committee-On-Statistic. Steel statistical yearbook1990[M]. Brussels: International Iron andSteel Institute,1990.
    [4] Committee-On-Statistic. Steel statistical yearbook2000[M]. Brussels: International Iron andSteel Institute,2000.
    [5] World-Steel-Association. Steel statistical yearbook2010[M]. Brussels: World SteelCommittee on Economic Studies,2010.
    [6] World-Steel-Association. Steel statistical yearbook2011[M]. Brussels: World SteelCommittee on Economic Studies,2011.
    [7]王婷婷.2011中国与世界钢产量及消费分析[J].冶金管理,2012(02):23-25.
    [8] Ha J. S., Cho J. R., Lee B. Y., et al. Numerical analysis of secondary cooling and bulging inthe continuous casting of slabs [J]. Journal of Materials Processing Technology,2001,113(1):257-261.
    [9]韦行.中国连铸生产近年取得新进展[J].上海金属,2009(03):59.
    [10]杨拉道,谢东钢.常规板坯连铸技术[M].北京:冶金工业出版社,2002:1-5.
    [11] Flemings M. C. Our understanding of macrosegregation: past and present [J]. ISIJInternational,2000,40(9):833-841.
    [12]翁宇庆.超细晶钢:钢的组织细化理论与控制技术[M].冶金工业出版社,2003:25-87.
    [13]仇圣桃,陶红标,张慧,等.复式结晶器传热特征及其对铸坯凝固组织的影响[J].钢铁研究学报,2005,17(004):30-32.
    [14]黄诚,宋波,毛璟红,等.非均质形核润湿角数学模型研究[J].中国科学: E辑,2004,34(7):737-742.
    [15] Asai S. Birth and recent activities of electromagnetic processing of materials [J]. ISIJInternational,1989,29(12):981-992.
    [16]赫冀成.电磁场对改善钢材质量的作用[J].钢铁,2005,40(001):24-30.
    [17] Fan Z., Liu G., Hitchcock M. Solidification behavior under intensive forced convection [J].Materials Science and Engineering: A,2005,413–414:229-235.
    [18] Zhai Q. J., Luo J., Zhao P. Effect of thermal cycle on liquid structure of pure iron at justabove its melting point [J]. ISIJ International,2004,44(8):1279-1282.
    [19] Luo J., Zhai Q. J., Zhao P., et al. The structure of liquid Fe-C alloy near the melting point [J].Canadian Metallurgical Quarterly,2004,43(2):177-182.
    [20]田陆,张丹.轻压下枝晶变形及溶质分布的实验模拟研究[J].连铸,2011(01):10-14.
    [21]朱苗勇,林启勇.连铸坯的轻压下技术[J].鞍钢技术,2004(01):1-6.
    [22]王建华,王先德,苏旭平,等.镧对锌铝合金显微组织和力学性能的影响[J].铸造,2011(02):171-174.
    [23]毛新平,陈麒琳,朱达炎.薄板坯连铸连轧微合金化技术发展现状[J].钢铁,2008,43(04):1-9.
    [24]宋军涛,章俊,秦红霞,等.电脉冲对P510L钢的影响[J].北京科技大学学报,2005,27(5):564-566.
    [25] Cui H., Zong Y., Cang D., et al. Improving the solidification structure of commercially purealuminium with electropulse acting on liquid metal [J]. Journal of University of Science andTechnology Beijing,2007,14(4):317-320.
    [26]闫猛,宋长江,翟启杰.金属凝固组织的脉冲磁场细化技术[J].现代铸铁,2008(06):32-36.
    [27]罗正.超声振动对7050铝合金铸锭宏观偏析作用规律的实验研究[J].机械制造与自动化,2011(04):29-31.
    [28]段萌萌,陈长乐.超声振动对Scn-3%Eth模拟合金定向凝固的影响[J].金属学报,2010,46(07):885-889.
    [29]李国忠,陈峰,陈伟庆,等.M-Ems对中碳钢连铸方坯碳偏析的影响[J].炼钢,2008,24(01):40-43.
    [30] Liao X. L., Zhai Q. J., Luo J., et al. Refining mechanism of the electric current pulse on thesolidification structure of pure aluminum [J]. Acta Materialia,2007,55(9):3103-3109.
    [31] Fredriksson H., Hillert M. On the formation of the central equiaxed zone in ingots [J].Metallurgical and Materials Transactions B,1972,3(2):569-574.
    [32] Burden M. H., Hunt J. D. Cellular and dendritic growth. I [J]. Journal of Crystal Growth,1974,22(2):99-108.
    [33] Burden M. H., Hunt J. D. Cellular and dendritic growth. II [J]. Journal of Crystal Growth,1974,22(2):109-116.
    [34]刘林,张军,沈军,等.高温合金定向凝固技术研究进展[J].中国材料进展,2010(07):1-9,41.
    [35] Chikawa J., Fujimoto I., Asaeda Y. X-ray topography with chromatic-aberration correction [J].Journal of Applied Physics,1971,42(12):4731-4735.
    [36] Mathiesen R. H., Arnberg L. Stray crystal formation in al-20wt.%cu studied by synchrotronx-ray video microscopy [J]. Materials Science and Engineering a,2005,413-414:283-287.
    [37] Arnberg L., Mathiesen R. H. The real-time high-resolution x-ray video microscopy ofsolidification in aluminum alloys [J]. Jom,2007,59:20-26.
    [38] Ruvalcaba D., Mathiesen R. H., Eskin D. G., et al. In situ observations of dendriticfragmentation due to local solute-enrichment during directional solidification of an aluminumalloy [J]. Acta Materialia,2007,55(13):4287-4292.
    [39] Wang T. M., Xu J. J., Li J., et al. In situ study on dendrite growth of metallic alloy by asynchrotron radiation imaging technology [J]. Science China Technological Sciences,2010,53(5):1278-1284.
    [40]介万奇,周尧和.柱状晶向等轴晶转变过程的模拟实验研究[J].西北工业大学学报,1988(01):29-40.
    [41] Jackson K. A., Hunt J. D., Uhlmann D. R., et al. On the origin of equiaxed zone in casting [J].Transactions of the Metallurgical Society of Aime,1966,236:149-158.
    [42] Yang J. W., Du Y. P., Cui X. C., et al.3-D coupled numerical simulation for flowingdistribution and temperature distribution in beam blank continuous casting process [J]. ActaMetallurgica Sinica,2001,37(7):767-771.
    [43] Majchrzak E. Numerical simulation of continuous casting solidification by boundary elementmethod [J]. Engineering Analysis with Boundary Elements,1993,11(2):95-99.
    [44] Na X. Z., Xue M., Zhang X. Z., et al. Numerical simulation of heat transfer and deformationof initial shell in soft contact continuous casting mold under high frequency electromagneticfield [J]. Journal of Iron and Steel Research International,2007,14(6):14-21.
    [45] Kermanpur A., Rappaz M., Varahram N., et al. Thermal and grain-structure simulation in aland-based turbine blade directionally solidified with the liquid metal cooling process [J].Metallurgical and Materials Transactions B,2000,31(6):1293-1304.
    [46] Dong H. B., Lee P. D. Simulation of the columnar-to-equiaxed transition in directionallysolidified Al-Cu alloys [J]. Acta Materialia,2005,53(3):659-668.
    [47] Kumar S., Meech J. A., Samarasekera I. V., et al. Development of intelligent mould for onlinedetection of defects in steel billets [J]. Ironmaking and Steelmaking,1999,26:269-284.
    [48] Wang B., Walker B. N., Samarasekera I. V. Shell growth, surface quality and mould taperdesign for high-speed casting of stainless steel billets [J]. Canadian Metallurgical Quarterly,2000,39:441-454.
    [49] Chow C., Samarasekera I. V., Walker B. N., et al. High speed continuous casting of steelbillets part2: mould heat transfer and mould design [J]. Ironmaking and Steelmaking,2002,29:61-69.
    [50] Zhang L., Thomas B. G. Numerical simulation on inclusion transport in continuous castingmold [J]. Journal of University of Science and Technology Beijing,2006,13(4):293-300.
    [51] Ramirez A., Carrillo F., Gonzalez J. L., et al. Stochastic simulation of grain growth duringcontinuous casting [J]. Materials Science and Engineering: A,2006,421(1-2):208-216.
    [52] Cao N., Zhu M. Y. Numerical simulation for the interfacial behavior of steel and slag in a slabcontinuous casting mold with high casting speed [J]. Acta Metallurgica Sinica,2007,43(8):834-838.
    [53] Jin B. G., Wang Q., Gao A., et al. Electromagnetic field distribution in two-section slitlessmold for soft-contact electromagnetic continuous casting [J]. ISIJ International,2009,49(1):44-50.
    [54] Li W., Wang F., Qi F., et al. Mathematical model on steel strip-feeding of mold in continuouscasting process [J]. Acta Metallurgica Sinica,2007,43(11):1191-1194.
    [55] Wu D. F., Cheng S. S., Cheng Z. J. Characteristics of shell thickness in a slab continuouscasting mold [J]. International Journal of Minerals Metallurgy and Materials,2009,16(1):25-31.
    [56] Yuan F. M., Wang X. H., Zhang J. M., et al. Numerical simulation of Al2O3deposition at anozzle during continuous casting [J]. Journal of University of Science and TechnologyBeijing,2008,15(3):227-235.
    [57]樊俊飞,沈建国,职建军,等.板坯连铸过程中钢液流动与凝固现象的数值模拟[J].内蒙古科技大学学报,2008(01):62-66.
    [58]郭俊玉,王波.板坯连铸结晶器内钢液流场的数值模拟[J].连铸,2007(02):13-15.
    [59]李建超,崔建忠,王宝峰,等.大方坯连铸跨结晶器电磁搅拌的数值模拟[J].东北大学学报,2006(05):497-500.
    [60] Jin X., Chen D. F., Zhao Y., et al. Numerical simulation of temperature field duringsecondary cooling of thin slab continuous casting [J]. Journal of Iron and Steel ResearchInternational,2009,16:316-321.
    [61] Wang H. D., Zhu M. Y., Yu H. Q. Numerical analysis of electromagnetic field and flow fieldin high casting speed slab continuous casting mold with traveling magnetic field [J]. Journalof Iron and Steel Research International,2010,17(9):25-30.
    [62] Chen Y., Luo X., Shen H. F. Finite element numerical simulation on thermo-mechanicalcouple in bloom mold [J]. Journal of Iron and Steel Research International,2008,15:302-306.
    [63] Liu X., Zhang H. X., Xu R. J., et al. Modelling of level fluctuation in continuous casting [J].Journal of Materials Science&Technology,2003,19:158-160.
    [64] Na X. Z., Xue M., Zhang X. Z., et al. Numerical simulation of heat transfer and deformationof initial shell in soft contact continuous casting mold under high frequency electromagneticfield [J]. Journal of Iron and Steel Research International,2007,14(6):14-21.
    [65] Wang T. M., Cai S. W., Li J., et al. Mould taper optimization for continuous casting steels bynumerical simulation [J]. China Foundry,2010,7(1):61-67.
    [66] Yin H. B., Yao M. Inverse algorithm of heat transfer in round billet continuous casting mould[J]. Acta Metallurgica Sinica,2005,41(6):638-644.
    [67] Zang X. Y., Wang X. D., Yao M. Development of detection method for mould transient heattransfer in continuous casting [J]. Journal of Iron and Steel Research International,2008,15:605-614.
    [68] Deng K., Ren Z. M., Jiang G. C. Theoretical and experimental analysis of continuous castingwith soft-contacted mould [J]. Transactions of Nonferrous Metals Society of China,2000,10(3):314-319.
    [69] Li Y. M., Xing S. M., Zhai Q. J. Numerical simulation of semisolid continuous castingprocess [J]. Transactions of Nonferrous Metals Society of China,2001,11(3):378-381.
    [70] Yuan F. M., Wang X. H., Zhang J. M., et al. Numerical simulation of tundish nozzle cloggingduring continuous casting [J]. Acta Metallurgica Sinica,2006,42(10):1109-1114.
    [71] Yu H. Q., Zhu M. Y.3d numerical simulation of flow field and temperature field in a roundbillet continuous casting mold with electromagnetic stirring [J]. Acta Metallurgica Sinica,2008,44(12):1465-1473.
    [72] Li B. K., Tsukihashi F. Effects of electromagnetic brake on vortex flows in thin slabcontinuous casting mold [J]. ISIJ International,2006,46(12):1833-1838.
    [73] Zhao Y., Chen D. F., Jin X., et al. The development and investigation of numerical simulationsoftware for secondary cooling zone in thin slab continuous casting [J]. Journal of Iron andSteel Research International,2009,16:246-253.
    [74]阎小林.连铸过程原理及数值模拟[M].石家庄:河北科技出版社,2001:49-71.
    [75]干勇,仇圣桃,萧泽强.连续铸钢过程数学物理模拟[M].北京:冶金工业出版社,2001:10-35.
    [76]任三兵,杜锋,樊俊飞,等.薄带连铸布流器数学物理模拟研究.宝钢技术,2009(4):19-22.
    [77]张立,刘中兴,王波,等.不同双辊薄带连铸布流系统的数值模拟对比研究[J].过程工程学报,2010(S1):226-230.
    [78]安阁英.铸件形成理论[M].1.北京:机械工业出版社,1990:131-142.
    [79]魏亚杰.铸锭中等轴晶形成机理初探[J].特种铸造及有色合金,1983(03):22-23.
    [80] Howe H. M. Correspondence on brearley's paper [J]. The Journal of the Iron and SteelInstitute,1916,94:181-192.
    [81] Winegard W. C., Chalmers B. supercooling and dendritic freezing in alloys [J]. Transactionsof the Asm,1954,46:1214-1224.
    [82] Nguyen-Thi H., Reinhart G., Mangelinck-Noel N., et al. In-situ and real-time investigation ofcolumnar-to-equiaxed transition in metallic alloy [J]. Metallurgical and MaterialsTransactions a,2007,38(7):1458-1464.
    [83] Mathiesen R. H., Arnberg L., Bleuet P., et al. Crystal fragmentation andcolumnar-to-equiaxed transitions in al-cu studied by synchrotron X-ray video microscopy [J].Metallurgical and Materials Transactions a,2006,37(8):2515-2524.
    [84] Mathiesen R. H., Arnberg L. Stray crystal formation in Al-20wt.%Cu studied by synchrotronx-ray video microscopy [J]. Materials Science and Engineering a,2005,413-414:283-287.
    [85]郭大勇,杨院生,童文辉,等.电磁驱动熔体流动与枝晶变形断裂模拟[J].金属学报,2003(09).
    [86] Dahle A. K., St. John D. H., Thevik H. J., et al. Modeling the fluid-flow-induced stress andcollapse in a dendritic network [J]. Metallurgical and Materials Transactions B,1999,30(2):287-293.
    [87] Yang Y. S., Liu Q. M., Jiao Y. N., et al. Application of steady magnetic field for refiningsolidification structure and enhancing mechanical properties of25cr-20ni-fe-c alloy incentrifugal casting [J]. ISIJ International,1995,35:389-392.
    [88] Pilling J., Hellawell A. Mechanical deformation of dendrites by fluid flow [J]. Metallurgicaland Materials Transactions a,1996,27(1):229-232.
    [89] Genders G. The interpretation of the macrostructure of cast metals [J]. Journal Institute ofMetals,1926,(35):259-298.
    [90] Chalmers B. The structure of ingots [J]. Journal of the Australian Institute of Metals,1963,8:255-270.
    [91] Ohno A., Motegi T., Soda H. Origin of the equiaxed crystals in castings [J]. ISIJ International,1971,11:18-23.
    [92]大野笃美.金属的凝固(理论、实践及应用)[M].邢建东,译.第一版.北京:机械工业出版社,1990:141-148.
    [93] Southin R. T. Nucleation of the equiaxed zone in cast metals [J]. Transactions of theMetallurgical Society of Aime,1967,239:220-225.
    [94] Ares A. E., Gassa L. M., Gueijman S. F., et al. Correlation between thermal parameters,structures, dendritic spacing and corrosion behavior of Zn-Al alloys with columnar toequiaxed transition [J]. Journal of Crystal Growth,2008,310(7-9):1355-1361.
    [95] Ares A. E., Gueijman S. F., Caram R., et al. Analysis of solidification parameters duringsolidification of lead and aluminum base alloys [J]. Journal of Crystal Growth,2005,275(1-2):e319-e327.
    [96] Ares A. E., Caram R., Schvezov C. E. Directional solidification of commercial brass. TMSAnnual Meeting, Charlotte, NC, United States,2004[C]. Minerals, Metals and MaterialsSociety, Warrendale, PA15086, United States,739-749.
    [97] Ares A. E., Caram R., Schvezov C. E. Columnar to equiaxed transition analysis duringdirectional solidification of different alloy systems. Proceedings of the TMS Fall Extractionand Processing Conference, Charlotte, NC, United States,2004[C]. Minerals, Metals andMaterials Society,247-259.
    [98] Cole G. S., Bolling G. F. Enforced fluid motion and control of grain structures in metalcastings [J]. Transactions of the Metallurgical Society of AIME,1967,239:1824-1835.
    [99] Morando R., Biloni H., Cole G. S., et al. The development of macrostructure in ingots ofincreasing size [J]. Metallurgical and Materials Transactions. A,1970,1:1407-1412.
    [100] Ziv I., Weinberg F. The columnar-to-equiaxed transition in Al3pct Cu [J]. MetallurgicalTransactions. B, Process Metallurgy,1989,20:731-734.
    [101] Dupouy M. D., Camel D., Botalla F., et al. Columnar to equiaxed transition of refinedAl-4wt.%Cu alloys under diffusive and convective transport conditions [J]. MicrogravityScience and Technology,1998,11(1):2-9.
    [102] Poole W. J., Weinberg F. Observations of the columnar-to-equiaxed transition in stainlesssteels [J]. Metallurgical and Materials Transactions A-Physical Metallurgy and Material,1998,29(March):7.
    [103] Siqueira C. A., Cheung N., Garcia A. Solidification thermal parameters affecting thecolumnar-to-equiaxed transition [J]. Metallurgical and Materials Transactions A: PhysicalMetallurgy and Materials Science,2002,33(7):2107-2118.
    [104] Tarshis L., Walker J., Rutter J. Experiments on the solidification structure of alloy castings [J].Metallurgical and Materials Transactions B,1971,2(9):2589-2597.
    [105] Abdel-Reihim M., Hess N., Reif W., et al. Effect of solute content on the grain refinement ofbinary alloys [J]. Journal of Materials Science,1987,22(1):213-218.
    [106] Spittle J. A. Endogenous-exogenous freezing characteristics of pure and impure as-cast Zn-Alalloys [J]. Metal Science,1977,11(12):578-585.
    [107] Hunt J. D. Steady state columnar and equiaxed growth of dendrites and eutectic [J]. MaterialsScience and Engineering,1984,65(1):75-83.
    [108] Ares A. E., Gueijman S. F., Schvezov C. E. An experimental investigation of thecolumnar-to-equiaxed grain transition in aluminum-copper hypoeutectic and eutectic alloys[J]. Journal of Crystal Growth,2010,312(14):2154-2170.
    [109] Ares A. E., Schvezov C. E. Solidification parameters during the columnar-to-equiaxedtransition in lead-tin alloys [J]. Metallurgical and Materials Transactions a,2000,31(6):1611-1625.
    [110] Ares A. E., Schvezov C. E. Influence of solidification thermal parameters on thecolumnar-to-equiaxed transition of aluminum-zinc and zinc-aluminum alloys [J].Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science,2007,38(7):1485-1499.
    [111] Ares A. E., Gueijman S. F., Schvezov C. E. Semi-empirical modeling for columnar andequiaxed growth of alloys [J]. Journal of Crystal Growth,2002,241(1-2):235-240.
    [112] Biscuola V. B., Martorano M. A. Mechanical blocking mechanism for the columnar toequiaxed transition [J]. Metallurgical and Materials Transactions A,2008,39(12):2885-2895.
    [113] Fredriksson H., Olsson A. Mechanism of transition from columnar to equiaxed zone in ingots[J]. Materials Science and Technology,1986,2:508-516.
    [114] Kurz W., Giovanola B., Trivedi R. Theory of microstructural development during rapidsolidification [J]. Acta Metallurgica,1986,34(5):823-830.
    [115] G umann M., Trivedi R., Kurz W. Nucleation ahead of the advancing interface in directionalsolidification [J]. Materials Science and Engineering A,1997,226-228:763-769.
    [116] Wang C. Y., Beckermann C. Prediction of columnar to equiaxed transition duringdiffusion-controlled dendritic alloy solidification [J]. Metallurgical and MaterialsTransactions A,1994,25(A):1081-1093.
    [117] Gandin C. A. From constrained to unconstrained growth during directional solidification [J].Acta Materialia,2000,48(10):2483-2501.
    [118] Siqueira C. A., Cheung N., Garcia A. The columnar to equiaxed transition duringsolidification of sn-pb alloys [J]. Journal of Alloys and Compounds,2003,351(1-2):126-134.
    [119] Spittle J. A., Brown S. G. R. A computer simulation of the influence of processing conditionson as-cast grain structures [J]. Journal of Materials Science,1989,24(5):1777-1781.
    [120] Dong H. B., Lee P. D. Simulation of the columnar-to-equiaxed transition in directionallysolidified al-cu alloys [J]. Acta Materialia,2005,53(3):659-668.
    [121]张宏丽,王恩刚,贾光霖,等.电磁搅拌提高铸坯等轴晶比率的数值模拟[J].东北大学学报,2001(05):535-538.
    [1] Majchrzak E. Numerical simulation of continuous casting solidification by boundaryelement method [J]. Engineering Analysis with Boundary Elements,1993,11(2):95-99.
    [2] Pascon F., Habraken A. M. Finite element study of the effect of some local defects on therisk of transverse cracking in continuous casting of steel slabs [J]. Computer Methods inApplied Mechanics and Engineering,2007,196(21–24):2285-2299.
    [3]于洋,李宝宽,杨刚.钢连铸电磁搅拌工艺中流场的数值模拟[J].北京科技大学学报,2011,33(2):157-160.
    [4]黄卫东,毛志英,周尧和.改变热流方向对定向凝固条件下晶体生长方向的影响——类金属透明有机物结晶过程的观察[J].金属学报,1986(5):140-141.
    [5]张慧,陶红标,李峰,等.振动激发金属液形核过程机理的研究[J].钢铁,2008,43(8):20-24.
    [6]闫小林.连铸过程原理及数值模拟[M].石家庄:河北科技出版社,2001:15-45.
    [7]孙蓟泉.连铸及连轧工艺过程中的传热分析[M].北京:冶金工业出版社,2010:80-96.
    [8]曹晓兵,梁爱生.连铸机二冷区传热系数的研究[J].太原重型机械学院学报,1999,20(4):288-294.
    [9]陈登福,颜广庭.喷嘴喷淋水与铸坯表面间传热的实验研究[J].冶金能源,1992,11(5):27-29.
    [10]冯亮花,朱苗勇,刘坤,等.厚板坯连铸二次冷却传热数学模拟[J].特殊钢,2009,30(2):21-24.
    [11]廖建云,冯科,陈登福.铸坯表面热交换系数的测定[J].冶金能源,2003,22(2):61-63.
    [12]巫英伟,卢义,索晓娜,等.板坯连铸二冷区表面传热系数的预测方法[J].西安交通大学学报,2006,40(1):26-30.
    [13]李仁兴,高玉来,梁建平,等.连铸坯凝固组织生长过程的物理模拟方法及其装置:
    [P].2007-11-21.
    [14]孙卿卿.板坯连铸节约型双相不锈钢凝固过程模拟研究[D].上海:上海大学材料科学与工程学院,2012.
    [15]杨世铭,陶文铨.传热学[G].第四版.北京:高等教育出版社,2006:38,555.
    [16] Alizadeh M., Jenabali Jahromi A., Abouali O. New analytical model for local heat fluxdensity in the mold in continuous casting of steel [J]. Computational Materials Science,2008,44(2):807-812.
    [17] Sun Q. Q., Zhong H. G., Chen X. R., et al. Continuous casting simulation of2304duplexstainless steel via horizontal directional solidification technique.2012EPD Congress-TMS2012Annual Meeting and Exhibition, March11,2012-March15,2012, Orlando,FL, United states,2012[C]. Minerals, Metals and Materials Society,17-23.
    [18] Flemings M. C. Solidification processing [M]. New York: McGraw-Hill,1974:41-47.
    [19] Chalmers B. Principles of solidification [M]. New York: John Wiley&Sons, Inc.,1964:271.
    [1] Kermanpur A., Rappaz M., Varahram N., et al. Thermal and grain-structure simulation in aland-based turbine blade directionally solidified with the liquid metal cooling process [J].Metallurgical and Materials Transactions B,2000,31(6):1293-1304.
    [2] Tassa M., Hunt J. D. The measurement of al-cu dendrite tip and eutectic interfacetemperatures and their use for predicting the extent of the eutectic range [J]. Journal of CrystalGrowth,1976,34(1):38-48.
    [3] Mathiesen R. H., Arnberg L., Bleuet P., et al. Crystal fragmentation andcolumnar-to-equiaxed transitions in al-cu studied by synchrotron x-ray video microscopy [J].Metallurgical and Materials Transactions a,2006,37(8):2515-2524.
    [4]李建国,毛协民.Al—Cu合金高梯度定向凝固过程中的形态转变[J].材料科学进展,1991,5(6):461-466.
    [5]屈敏,刘林,唐峰涛,等.试样直径对Al-Cu合金定向凝固温度梯度和一次枝晶间距的影响[J].中国有色金属学报,2008,18(2):282-287.
    [6]卜晓兵,李落星,张立强,等.Al-Cu合金凝固微观组织的三维模拟及优化[J].中国有色金属学报,2011,21(09):2195-2201.
    [7]严卫东,刘汉武,杨爱民,等.Al-Cu合金等轴枝晶组织形成的模拟及计算机可视化[J].铸造技术,2001(6):14-16.
    [8] Dong H. B., Lee P. D. Simulation of the columnar-to-equiaxed transition in directionallysolidified al-cu alloys [J]. Acta Materialia,2005,53(3):659-668.
    [9] Ruvalcaba D., Mathiesen R. H., Eskin D. G., et al. In situ observations of dendriticfragmentation due to local solute-enrichment during directional solidification of an aluminumalloy [J]. Acta Materialia,2007,55(13):4287-4292.
    [10] Mathiesen R. H., Arnberg L. Stray crystal formation in al20wt.%cu studied by synchrotronx-ray video microscopy [J]. Materials Science and Engineering: A,2005,413(Compendex):283-287.
    [11]李国忠,陈峰,陈伟庆,等.M-Ems对中碳钢连铸方坯碳偏析的影响[J].炼钢,2008,24(1):40-43.
    [12]李永祥,廖明,李碧春,等.高碳钢生产工艺及质量分析[J].炼钢,2009(4):1-4.
    [13]王彦锋,章军,李本海,等.降低高碳钢连铸小方坯中心偏析的研究[J].炼钢,2005,21(1):47-49.
    [1] Winegard W. C., Chalmers B. supercooling and dendritic freezing in alloys [J]. Transactionsof the Asm,1954,46:1214-1224.
    [2] Chalmers B. The structure of ingots [J]. Journal of the Australian Institute of Metals,1963,8:255-270.
    [3] Southin R. T. Nucleation of the equiaxed zone in cast metals [J]. Transactions of theMetallurgical Society of Aime,1967,239:220-225.
    [4] Ohno A., Motegi T., Soda H. Origin of the equiaxed crystals in castings [J]. Isij International,1971,11(Compendex):18-23.
    [5] Ohno A. Formation mechanism of the equiaxed chill zone in ingots [J]. Isij International,1970,10(Compendex):459-463.
    [6] Jackson K. A., Hunt J. D., Uhlmann D. R., et al. On the original equiaxed zone in casting [J].Transactions of the Metallurgical Society of Aime,1966,236:149-158.
    [7] Hunt J. D. Steady state columnar and equiaxed growth of dendrites and eutectic [J]. MaterialsScience and Engineering,1984,65(1):75-83.
    [8] Fredriksson H., Olsson A. Mechanism of transition from columnar to equiaxed zone in ingots[J]. Materials Science and Technology,1986,2:508-516.
    [9] Gandin C. A. Experimental study of the transition from constrained to unconstrained growthduring directional solidification [J]. Isij International,2000,40(10):971-979.
    [10] Gandin C. A. From constrained to unconstrained growth during directional solidification [J].Acta Materialia,2000,48(10):2483-2501.
    [11] Siqueira C. A., Cheung N., Garcia A. The columnar to equiaxed transition duringsolidification of Sn-Pb alloys [J]. Journal of Alloys and Compounds,2003,351(1-2):126-134.
    [12]傅恒志,郭景杰,刘林,等.先进材料定向凝固[M].北京:科学出版社,2008:270-275.
    [13] Trivedi R. Theory of dendritic growth during the directional solidification of binary alloys [J].Journal of Crystal Growth,1980,49(2):219-232.
    [14] Trivedi R., Kurz W. Solidification microstructures: a conceptual approach [J]. ActaMetallurgica Et Materialia,1994,42(1):15-23.
    [15] Kurz W., Fisher D. J. Fundamentals of solidification [M].4th. Uetikon-Zuerich, Switzerland:Trans Tech Pubn,1998.
    [16] Dong H. B., Lee P. D. Simulation of the columnar-to-equiaxed transition in directionallysolidified al-cu alloys [J]. Acta Materialia,2005,53(3):659-668.
    [17]胡汉起.金属凝固原理[M].第二版.北京:机械工业出版社,2008:117-120.
    [18] Ares A. E., Gassa L. M., Gueijman S. F., et al. Correlation between thermal parameters,structures, dendritic spacing and corrosion behavior of zn-al alloys with columnar to equiaxedtransition [J]. Journal of Crystal Growth,2008,310(7-9):1355-1361.
    [19] Ares A. E., Gueijman S. F., Caram R., et al. Analysis of solidification parameters duringsolidification of lead and aluminum base alloys [J]. Journal of Crystal Growth,2005,275(1-2):e319-e327.
    [20] Ares A. E., Gueijman S. F., Schvezov C. E. An experimental investigation of thecolumnar-to-equiaxed grain transition in aluminum-copper hypoeutectic and eutectic alloys[J]. Journal of Crystal Growth,2010,312(14):2154-2170.
    [21] Ares A. E., Schvezov C. E. Solidification parameters during the columnar-to-equiaxedtransition in lead-tin alloys [J]. Metallurgical and Materials Transactions a,2000,31(6):1611-1625.
    [22] Nguyen-Thi H., Reinhart G., Mangelinck-Noel N., et al. In-situ and real-time investigation ofcolumnar-to-equiaxed transition in metallic alloy [J]. Metallurgical and MaterialsTransactions a,2007,38(7):1458-1464.
    [23]唐红伟,陶红标,杨武,等.低温度梯度结晶器的传热分析及其工业应用实验[J].钢铁研究学报,2010(10):20-24.
    [24]王狂飞,米国发,历长云,等.Ti-Al合金定向凝固柱状/等轴晶转变的数值模拟[J].特种铸造及有色合金,2007,No.174(09):674-678.
    [25] Flemings M. C. Our understanding of macrosegregation: past and present [J]. IsijInternational,2000,40(9):833-841.
    [26] Li J., Wang B., Ma Y., et al. Effect of complex electromagnetic stirring on inner quality ofhigh carbon steel bloom [J]. Materials Science and Engineering a,2006,425(1-2):201-204.
    [27]李国忠,陈峰,陈伟庆,等.M-Ems对中碳钢连铸方坯碳偏析的影响[J].炼钢,2008,24(01):40-43.
    [1] Chen X., Sun Q., Ao L., et al. Experimental simulation on the continuous casting solidifiedstructure of s32205duplex stainless steel. TMS2011-140th Annual Meeting andExhibition, February27,2011-March3,2011, San Diego, CA, United states,2011[C].Minerals, Metals and Materials Society,577-584.
    [2] Sun Q., Zhong H., Chen X., et al. Continuous casting simulation of2304duplex stainlesssteel via horizontal directional solidification technique.2012EPD Congress-TMS2012Annual Meeting and Exhibition, March11,2012-March15,2012, Orlando, FL, Unitedstates,2012[C]. Minerals, Metals and Materials Society,17-23.
    [3] Ares A. E., Schvezov C. E. Influence of solidification thermal parameters on thecolumnar-to-equiaxed transition of aluminum-zinc and zinc-aluminum alloys [J].Metallurgical and Materials Transactions a: Physical Metallurgy and Materials Science,2007,38A(7):1485-1499.
    [4]吴玖.双相不锈钢[M].北京:冶金工业出版社,2000:58-63.
    [5]杨世铭,陶文铨.传热学[G].第四版.北京:高等教育出版社,2006:38,555.
    [6] Hunt J. D. Steady state columnar and equiaxed growth of dendrites and eutectic [J]. MaterialsScience and Engineering,1984,65(1):75-83.
    [7] Ziv I., Weinberg F. The columnar-to-equiaxed transition in al3pct cu [J]. MetallurgicalTransactions. B, Process Metallurgy,1989,20(Compendex):731-734.
    [8] Silva J. N., Moutinho D. J., Moreira A. L., et al. The columnar to equiaxed transition duringthe horizontal directional solidification of sn-pb alloys [J]. Journal of Alloys and Compounds,2009,478(1-2):358-366.
    [9] Willers B., Eckert S., Michel U., et al. The columnar-to-equiaxed transition in pb-sn alloysaffected by electromagnetically driven convection [J]. Materials Science and Engineering: A,2005,402(1-2):55-65.
    [10] Cole G. S., Bolling G. F. Enforced fluid motion and control of grain structures in metalcastings [J]. Transactions of the Metallurgical Society of Aime,1967,239:1824-1835.
    [1] Tassa M., Hunt J. D. The measurement of al-cu dendrite tip and eutectic interfacetemperatures and their use for predicting the extent of the eutectic range [J]. Journal of CrystalGrowth,1976,34(1):38-48.
    [2]李建国,毛协民,傅恒志,等.Al-Cu合金高梯度定向凝固过程中的形态转变[J].材料科学进展,1991(6):461-466.
    [3]屈敏,刘林,唐峰涛,等.试样直径对Al-Cu合金定向凝固温度梯度和一次枝晶间距的影响[J].中国有色金属学报,2008,18(2):282-287.
    [4] Mathiesen R. H., Arnberg L., Bleuet P., et al. Crystal fragmentation andcolumnar-to-equiaxed transitions in al-cu studied by synchrotron x-ray video microscopy [J].Metallurgical and Materials Transactions a,2006,37(8):2515-2524.
    [5]严卫东,刘汉武,杨爱民,等.Al-Cu合金等轴枝晶组织形成的模拟及计算机可视化[J].铸造技术,2001(6):14-16.
    [6]卜晓兵,李落星,张立强,等.Al-Cu合金凝固微观组织的三维模拟及优化[J].中国有色金属学报,2011,21(09):2195-2201.
    [7] Rappaz M., Gandin C. A. Probabilistic modelling of microstructure formation in solidificationprocesses [J]. Acta Metallurgical and Materials,1993,41(2):345-360.
    [8] Langer J. S., Müller-Krumbhaar J. Stability effects in dendritic crystal growth [J]. Journal ofCrystal Growth,1977,42(0):11-14.
    [9] Langer J. S. Dynamics of dendritic pattern formation [J]. Materials Science and EngineeringSolidification Microstructure:30Years After Constitutional Supercooling,1984,65(1):37-44.
    [10] Kurz W., Giovanola B., Trivedi R. Theory of microstructural development during rapidsolidification [J].1986,34(5):823-830.
    [11] Lipton J., Kurz W., Trivedi R. Rapid dendrite growth in undercooled alloys [J].1987,35(4):957-964.
    [12]杨世铭,陶文铨.传热学[G].第四版.北京:高等教育出版社,2006:38,555.
    [13] Davies R. H., Dinsdale A. T., Chart T. G., et al. Application of mtdata to the modeling ofmulticomponent equilibria [J]. High Temperature Science,1990,26:251-262.
    [14] Poirier D. R., Speiser R. Surface tension of aluminumrich al-cu liquid alloys [J]. MetallurgicalTransactions a,1991,22(13):1156-1160.
    [15] Jackson K. A., Hunt J. D., Uhlmann D. R., et al. On the original equiaxed zone in casting [J].Transactions of the Metallurgical Society of Aime,1966,236:149-158.
    [16] Nguyen-Thi H., Reinhart G., Mangelinck-Noel N., et al. In-situ and real-time investigation ofcolumnar-to-equiaxed transition in metallic alloy [J]. Metallurgical and MaterialsTransactions a,2007,38(7):1458-1464.
    [17]司乃潮,许能俊,司松海,等.温度梯度对定向凝固Al-4.5%Cu合金一次枝晶间距的影响[J].材料工程,2011(4):75-79.
    [18] Ohno A. Formation mechanism of the equiaxed chill zone in cast ingots [J].1970,34(Compendex):244-248.
    [19] Chalmers B. The structure of ingots [J]. Journal of the Australian Institute of Metals,1963,8:255-270.
    [20] Ohno A., Motegi T., Soda H. Origin of the equiaxed crystals in castings [J]. Isij International,1971,11(Compendex):18-23.
    [21] Ohno A., Soda H. Formation of the equiaxed zone in ingots and macro-segregation in steelingots [J]. Isij International,1970,10(Compendex):13-20.
    [22] Kermanpur A., Rappaz M., Varahram N., et al. Thermal and grain-structure simulation in aland-based turbine blade directionally solidified with the liquid metal cooling process [J].Metallurgical and Materials Transactions B,2000,31(6):1293-1304.
    [23] Kurz W., Giovanola B., Trivedi R. Theory of microstructural development during rapidsolidification [J]. Acta Metallurgica,1986,34(5):823-830.
    [24] Burton J. A., Prim R. C., Slichter W. P. The distribution of solute in crystals grown from themelt. Part i. Theoretical [J]. The Journal of Chemical Physics,1953,21(11):1987-1991.
    [25]胡汉起.金属凝固原理[M].第二版.北京:机械工业出版社,2008:135-140.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700