用户名: 密码: 验证码:
天然气减阻剂的合成及减阻性能测试装置的改进与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于全球油气资源分布很不均衡,需求量因地区差异较大,使得油气资源从产地到用户之间需要一个庞大的储运系统来连接。一旦这个储运系统的运行受阻,不仅对油气消费区的经济发展产生不利影响,而且还会给油气生产区的经济造成巨大损失。对于关键的输送环节而言,新建管道难以满足需求,而老管道由于腐蚀老化输送能力又逐渐下降,解决这个矛盾最经济有效的方法就是使用天然气减阻增输技术。目前,国内外普遍采用管道内涂层减阻技术来实现增输,并取得了很好的技术效果和良好的经济效益,但管道内涂层减阻方法施工设备复杂、费用较高,特别是随着输气时间的延长和不定时清管,管道内涂层不断脱落,减阻效果逐渐降低,严重时甚至产生负效应,且只有管径较大时(大于500mm)内涂层才会有经济效益。
     20世纪90年代,美国率先提出了天然气减阻剂减阻技术,并在实际输气管道中进行了应用实验,取得了初步效果。该技术是将具有表面活性剂性质的被称作天然气减阻剂的化学品定期注入天然气管道中,通过极性端对钢铁表面的吸附,形成弹性分子薄膜,达到降低管壁粗糙度实现减阻的目的。直接注入天然气减阻剂减阻技术可以克服管道内涂层减阻技术的不足,具有广阔的应用前景。目前该技术在国外还处于研发阶段,而国内还是空白。
     本文综述了国内外天然气管道发展的技术现状及趋势,着重分析了天然气管道内涂层减阻技术和减阻剂减阻技术。在减阻剂减阻技术中,对天然气减阻剂减阻机理进行了初步探索,指出构成天然气减阻剂的主要物质应具有类似表面活性剂的结构,即一端为长链烷基,另一端为能与钢铁表面牢固结合的具有含氮基团的大分子化合物或聚合物。还分析了天然气减阻剂减阻技术的可行性以及可能存在的问题。
     根据天然气减阻剂减阻机理,设计并合成了三种天然气减阻剂:多酰胺基减阻剂、长链烷基醇酰胺Ⅰ和长链烷基醇酰胺Ⅱ。用红外光谱图表征了所合成的目的产物,通过优化实验探讨了各种反应条件对反应的影响,给出了最佳合成条件。用SEM技术观察了三种化合物在钢片表面成膜情况,结果表明这三种化合物都具有良好的成膜性能,具有潜在的减阻性能。
     针对测试中出现的问题,对原有的天然气减阻性能测试系统进行了改造;开发了可以满足减阻性能测试需要的数据采集软件,初步确定了天然气减阻剂性能评价方法;对合成出的各种天然气减阻剂都进行了不同温度和不同浓度的测试,并对测试结果以图表的形式进行了分析;对系统误差进行了理论分析,提出了消除系统误差的建议。
Because the hydrocarbon resourses in the earth are pockety and the demand is different among areas, we need a storage and transportation system to connect the users and the place where hydrocarbon is extracted. Once the storage and transportation system was interrupted, there would be a great influence on the economic development of consumption areas and production areas. As for as the pivotal link—transportation, the newly-built pipeline could't meet demand, and the old pipeline's conveying capacity decreased gradually because of aging. The drag-reducing technology was the most effective solution to settle this difficult problem. At present, the drag-reducing technology of using the inner-coated pipeline is adopted to reduce the pipe wall roughness, which had obtained excellent results and better economical benefits. But, for this technology, the construction equipments were complex and the cost was high, furthermore we just got profit only when used in big caliber(>500mm), the more serious problems were that the drag-reducing effect reduced and the inverse effect happened because of long time transportation and irregular pigging.
     In 1990s, the gas DRAs(drag reducing agents) technology was firstly introduced and applied in actual pipeline by America, and the initial effect was obtained. The chemicals with surface activity said as gas DRAs were periodically injected into gas pipeline, the polar groups were adsorbed onto the pipe iron inner surface and formed an elastic film, so the roughness of the pipe wall was accordingly reduced and the drag-reducing effect was obtained. The gas DRAs technology could overcome the disadvantages of the inner coating technology and had wide application foreground. At present, this technology is in researching stage abroad, and the domestic research is blank.
     This paper summarized the current situation & development trend of gas pipeline, and analyzed mainly the inner coating and DRAs technologies in gas pipeline. As far as the DRAs technology, we did some exploratory research on the drag reducing mechanism and pointed out that the main chemicals composing DRAs were big molecule chemicals or polymers having the similar structure with surface active agents: one group was long chain fatty group and the other group was nitrogenous group bonding stably with iron surface. The feasibility of gas DRAs and the possible problems were also analyzed.
     Three gas DRAs were designed and synthesized according to the drag-reducing mechanism of gas DRAs, :multi-amido DRA, long-chain alkylolamide I and long-chain alkylolamide II . The synthetic products were characterized by infra-red spectrogram. The influences factor on the synthesis were discussed through optimized experiments and the best reacting conditions were given. We observed the film formed by these three chemicals on the steel sheet surface by SEM (scanning electronic microscope) technology. The results showed that they all had good film-forming property and had the potential to be gas DRAs.
     Some changes were done to the drag-reducing test loop, directing towards the problems which appeared in the test process; a data acquisition system was exploited and the evaluation procedure of the drag-reducing property was established basically; we tested the drag-reducing property of these three chemicals at different temperature and different concentration, analyzed the experimental data and gave the suggestion to eliminate the systematic error.
引文
[1]张静.天然气与中国能源发展前景[J].中国石油与化工经济分析,2007,12:20-24.
    [2]宋玉春.2007年世界油气管道工程建设总览[J].中国石油和化工经济分析,2007,12:58-65.
    [3]吴长春,张孔明.天然气的运输方式及其特点[J].油气储运,2003,22(9):39-43.
    [4]吴长春,张孔明.天然气的运输方式及其特点[J].油气储运,2003,22(9):39-43.
    [5]王功礼,王莉.油气管道技术现状与发展趋势[J].石油规划设计,2004,15(4):1-7.
    [6]阎光灿,冯亚利,吴邦辉.世界天然气输送管网系统[J].天然气与石油,1999,17(1):58-64.
    [7]阎光灿,冯亚利,吴邦辉.世界天然气输送管网系统[J].天然气与石油,1998,11(4):50-55.
    [8]胡杰 我国近年来油气勘探开发建设新形势[J].中国石油和化工经济分析,2007,16:38-45.
    [9]林竹,刘本华等.输气管道减阻涂料现状及发展趋势[J].上海涂料,2004,1:16-18.
    [10]吴宏.西气东输管道工程介绍(上)[J].天然气工业,2003,23(6):117-122.
    [11]吴宏.西气东输管道工程介绍(下)[J].天然气工业,2004,24(1):80-85.
    [12]姚光镇.输气管道设计与管理[M].北京:石油大学出版社,1991.
    [13]吴玉国,陈保东.输气管线摩阻系数的影响因素以及减阻的主要方法[J].管道技术与设备,2003,5:1-3.
    [14]John JM.Piping design handbook[M].NewYork:Marcel dekker,1992.
    [15]吴玉国,陈保东.输气管线摩阻公式评价[J].油气储运,2003,22(1):23-28.
    [16]郑洽馀,鲁钟琪.流体力学[M].北京:机械工业出版社,1980.
    [17]沈善策.输气管道采用内壁覆盖层时的工艺设计问题[J].油气储运,2000,19(7):19-24.
    [18]Sletfjerding,Elling,Gudmundsson,etal.Friction factor in gas pipelines in the North Sea[C].Richardson.SPE proceedings- Gas Technology Symposium.Texas USA:SPE,2000:459-467.
    [19]S.Kut.High Performance Coatings for the Oil and Gas Industry Internal and External Liquid Coatings for Pipelines.[J].Corrosion in the Oil and Gas Industry.Kosice.Czechoslovakia.1989,3.
    [20]钱成文,刘广文,王武,刘春林.天然气管道的内涂层减阻技术[J].油气储运,2001,20(3):1-6.
    [21]胡士信,陈向新.天然气管道减阻内涂技术[M]北京:化学工业出版社,2003.
    [22]前景广阔的减阻型涂料[J].石油管道报2003.08.18
    [23]林竹,张丽萍,袁中立,秦延龙.减阻型涂料在天然气管道中的应用[J].焊管,2002,25(6):1-4.
    [24]刘雯,钱成文.输气管道内涂层用料[J].油气储运,2001,20(2):13-15,19.
    [25]关中原等.国外减阻剂研究新进展[J].油气输送,2001,20(6):1-4.
    [26]Motier,J.F.and Prilutski,D.J.Case Histories of Polymer Drag Reduction in Crude Oil Lines.[J].Pipe Line Industry,1985(6):33-37.
    [27]Jean Boschat,Jerome Sabachier etal.Ecuador Plans Expanded Crude Oil Line.[J].Oil & Gas Journal,1995(1):37-41.
    [28]Frank E Lowther.Drag Reduction Method for Gas Pipelines:US,4958653[P].1990-07-26.
    [29]Ying-Hsiao Li.Drag Reduction Method for Gas Pipelines:US,5020561[P].1991-06-04.
    [30]Ying-Hsiao Li,Chesnut G R,Richmond R D,etal.Laboratory Tests and Field Implementation of Gas-Drag-Reduction Chemicals[J].SPE Production & Facilities,1998,13(1):53-58.
    [31]Huey J Chen,Gene E Kouba,Michael S Fouchi,etal.DRA For Gas Pipelining Successful in Gulf of Mexico Trial[J].Oil & Gas Journal,2000,98(23):54-58.
    [32]Randi Naess.Pressure Loss in Gas Pipe with Adsorbed Layers[R].Norway:Department of Petroleum Engineering and Applied Geophysics of NTNU,1999.
    [33]Randi Naess.Drag Reduction Agents for Natural Gas Flow in Pipelines [D].Norway:Department of Petroleum Engineering and Applied Geophysics of NTNU,1999.
    [34]刘广文等天然气管道内涂层减阻技术[M]北京:石油工业出版社,2001.
    [35]博布罗夫斯基.天然气管路输送[M]北京:石油工业出版社,1985.
    [36]姚玉英.化工原理[M]天津:天津科学技术出版社,2004.
    [37]Zhang X,Wang F,He Y,et al.Study of The Inhibition Mechanism of Imidazoline Amide on CO_2 Corrosion of Armco Iron[J].Corrosion Science,2001,43(8):1403-1415.
    [38]Subramanian A,Natesan M,Muralidharan VS.An overview:vapor phase Corrosion inhibitions[J].Corrosion,2000,56(2):144-155.
    [39]Mtiller B.Organic corrosion inhibitors for zinc pigment[J].Br.Corrosion,2000,35:311.
    [40]ZhangXY,WangFP,HeYF,etal.Study of the inhibition mechanism of imidazoline amide on CO_2 corrosion of Amoco iron[J].Corrosion Science,2001,43:1417-1431.
    [41]WangDX,YuY The synthesis of a imidazoline and the test of its inhibiting performance[J].Univ Petroleum,2000,24(6):52-54.
    [42]LiHP,PeiLY,LiaoJG The synthesis of water soluble substituted imidazoline and exploration of their inhibitory efficiency[J].Chang sh Univ Electric Power,2000,5(5):74-75.
    [43]Ma SY Synthesis and application of benzotriazole[J].Liaoyang Petrochemical College,2001,17(2):8-11.
    [44]HeLY,ZhangQF,HeXK.The study of packaging material of corrosion protection[J].Chinese Packaging Industry,2002,96(6):37.
    [45]黄亦军 周建勋,陈洪元多酰胺阳离子表面活性剂的合成[J].表面活性剂工业,1996,(2):25-27:
    [46]藤本武彦著,高仲江等译新表面活性剂入门[M].北京:化学工业出版社,1989.
    [47]朱领地主编.表面活性剂清洁生产工艺[M].北京:化学工业出版社,2005.
    [48]谢亚杰,王伟,刘深编著.表面活性剂制备技术与分析测试[M].北京:化学工业出版社,2006.
    [49]王培义,徐宝财,王军主编.表面活性剂合成·性能·应用[M].北京:化学工业出版社,2007.
    [50]Hollingsworth,etal.Method for 1,2-substituted imidazoline compositions[P].US:5214155,1993.
    [51](美)M.I.A.迈克尔著王绳武等译.表面活性剂大全[M].北京:化学工业出版社,2007.
    [52]黄洪周主编.中国表面活性剂总览[M].北京:化学工业出版社,2003.
    [53]S.M.Gawish,P.Kirkov,A.A.B.Hazzaa and B.El-Din Gebril.A new class of acid corrosion inhibitors:2-hydroxy-3-(2-undecyl,pentadecyl or heptadecyl amido-ethylamino)propane-1-tri-ethyl ammonium hydroxides[J]Corrosion Science 1979,19(7):983-989.
    [54]张国运.纸张柔软剂的概况及应用[J].西南造纸,2004,33(1):15-17.
    [55]刘瑞斌,王慧龙,辛剑等.高级脂肪酰胺基烷基咪唑啉合成工艺条件的研究[J].广东化工,2004,2:7-8.
    [56]中国科学院数学研究所统计组编正交试验设计[M].天津:天津有机染料工业公司出版,1975.
    [57]Merten Dscar,Scito Setsuo.Preparation and Use of Fatty Acid Alkanolamidea[P].DE 19827304,1999.
    [58]Robert Ernst,Los Angeles,Calif.Process For the Production of Fatty Hydroxyalkylamides[P].UC 3024260,1962.
    [59]Fujii Tamotau,Shimichi Akiko.Preparation of A Mixt of Polyoxypropylene Fatty Acid Alkanolamide Compounds and Chemicals Containing Them[P].JP 08337560.1996.
    [60]李柏林,张长宝,牛瑞霞.烷醇酰胺的合成及应用[J].天津化工,2006,20(3):38-40.
    [61]Daniel S.Connor,Jeffrey J.Scheibel;Roland G.Severson,all of Cincinnati,Ohio.Preparation Of Polyhydroxy Fstty Acid Amides In The Presence Of Solvents[P].UC 5194639,1993.
    [62]汪多仁.烷醇酰胺类产品的合成与应用进展[J].印染助剂.2002,19(1):1-5.
    [63]吴松,牛瑞霞,李柏林,杨叔杰.用于驱油的脂肪酸烷醇酰胺的制备[J].大庆石油学院学报,2005,29(2):51-53.
    [64]Sunder Ramachandran,etal.Self-assembled monolayer mechanism for corrosion inhibition of iron by imidazolines[J].Langmuir,1996,26(12):6419-6428.
    [65]姚光镇.输气管道设计与管理[M].北京:石油大学出版社,1991.
    [66]美国管道规划委员会管道处编.烃类气体和液体的管道设计[M].北京:石油工业出版社,1980.
    [67]李华飞,郑家燊,俞敦义.钢板热浸镀55%Al-Zn合金新工艺[J].新工艺新技术,2001,1:39-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700