用户名: 密码: 验证码:
千米承压材料的制取与力学性态研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类创造了一个又一个辉煌,但同时又为地球和人类本身留下了一个又一个的创伤或隐患。时至今日,人类面临人口剧增、土地面积剧减、资源和能源过度消耗、环境污染严重等几大难题,人类的生存受到严重的挑战。为了适应生存与发展,人类拨动了向高空发展、向沙漠和草原进军、向南北极地探索、向海洋扩张、向太空迈进的主旋律,于是,就有了“空中城市”、“海市蜃楼”、“海洋站”、“空中电梯”、“太空基地”等设想;也有了可持续发展策略和“绿色革命”口号。
     人类要解决生存和发展难题,要满足城市化和基础设施建设需求,要实现自己的众多美妙设想,大力研究、开发和应用新型材料将是必然趋势,而首当其冲的将是新型结构材料的开发和应用。可以预见的是,未来的新型结构材料应是能满足超大高度或超大跨度要求的结构材料。基于此点,本文提出了千米承压材料的定义、性能要求和制备途径,并展望了此种新型结构材料的应用前景。在全面考察目前可供大量应用的结构材料以及展望了两大主流结构材料——钢材和混凝土的发展趋势后,作者认为钢管特超强混凝土是千米承压材料的有力候选者。文末,通过对超高强钢管特超强混凝土与5种型钢的计算承载力、名义强度、质量比强度、柱质量比较、柱经济成本的比较,提出了超高强钢管特超强混凝土是千米承压材料的最佳候选者的结论。
     特超强混凝土拥有强度高、弹性模量大、耐久性优异等诸多优点,但是其脆性很大,普通的配筋方式已不适宜;采用钢管套箍的形式是目前最佳的选择。要使特超强混凝土真正能够满足工程要求,除此之外,尚需要解决其工作性能问题和收缩,特别是自收缩过大的问题,以及提供必要的基础力学性能指标。在解决了特超强混凝土自身的基本问题后,将其应用于钢管混凝土结构中,则必须掌握其制作技术,知晓其力学性态和本构关系,明了钢管和特超强混凝土的协同工作机理,由此,本文开展了如下研究工作:
     1) 研制强度为100~160MPa的特超强/超高强混凝土,分析混凝土内部的微观结构;
     2) 研究特超强/超高强混凝土的收缩(主要是自收缩)问题,探讨有效降低特超强/超高强混凝土收缩的途径;
     3) 测试特超强/超高强混凝土的力学性能,包括抗压强度、劈拉强度、抗折强度、轴压强度、轴压应力-应变曲线,分析轴压应力-应变曲线特点,并对其本构关系进行构造、拟合;
     4) 制作钢管特超强/超高强混凝土构件,测试构件的极限荷载、极限变形
    
    重庆大学博士学位论文
     以及荷载一位移关系;
     5)分析钢管特超强/超高强混凝土的荷载一位移曲线,建立其本构关系模
     型,并探讨其协同工作机理。
     通过对特超强混凝土和钢管特超强混凝土的试验研究和数值分析,本文取得了
     以下研究结果:
     1)采用背散射电子显微镜观察了特超强/超高强混凝土的微观形态,并根据物
     质元素背散射电子图像的灰度规律,运用颜色分离和局部区域去斑等图像
     处理技术,对特超强混凝土的亚微观组成进行了分析;
     2)研究了42组抗压强度为50MPa~165MPa的混凝土的收缩(主要是自收缩),
     发现特超强混凝土的自收缩比较大,特别是3天前的自收缩很大。采用掺
     减缩剂、惰性矿物掺合料、微孔掺合料和加强早期,特别是3天前的水养
     护,较为完美地解决了特超强/超高强混凝土收缩过大的问题;
     3)通过对特超强混凝土的早期小时抗压强度、劈拉强度和收缩的研究,提出
     了超高强混凝土与特超强混凝土的收缩测量方法;
     4)获得了立方体抗压强度为50MPa~165MPa范围内的高强、超高强、特超强
     混凝土的各种强度性能、变形性能与抗压强度的关系式,以及各种强度等
     级的超高强、特超强混凝土的系列力学性能指标;
     5)提出了抗压强度为50MPa~165MPa范围内的混凝土的应力一应变本构关系,
     只需要给出混凝土的立方体抗压强度,就可以确定轴心受压应力一应变关系;
     6)通过对23组68根钢管特超强超高强混凝土短柱的研究,回归得出了极限
     荷载、极限变形、低谷荷载、低谷变形的计算关系式,并介绍和分析了钢
     管混凝土轴压试验结束后的外观形态、体积变形以及核心混凝土的破坏形
     态;
     7)采用数值分析方法,将钢管混凝土视为统一材料,提出了其荷载一变形本构
     关系,通过上升段参数c和下降段参数b,只需要给出混凝土的抗压强度、
     钢管外径和璧厚、钢材屈服强度,就可以确定所制得的钢管特超强/超高强
     混凝土的荷载一位移曲线;
     8)采用内力分析方法,首次研究了超高强钢管特超强混凝土的协同工作机理。
     通过对钢管的纵向和环向应力以及混凝土纵向应力和径向紧箍力的发展的
     研究,发现5135钢管特超强混凝土中,混凝土先于钢管破坏,但构件极限
     荷载相应于钢管屈服时。
    关键词:钢管混凝土,超高强混凝土,自收缩,力学性能,本构关系,微观结构,
     千米承压材料
Human beings have gained one after another brilliant achievements, but at the same time they also bring the earth and themselves into one after another hidden troubles. Today, human beings face lots of unprecedented challenges, such as explosion of the population, acute reduction of the soil area, exhaustion of the resource and energy and serious pollution of the environment. For the living of human beings and the benefits of offspring, we should consider moving our feet to the sky, the desert, the grassland, the polar region and even the ocean and the outer space. So human beings begin to dream of constructing the Sky City, the Mirage, the Ocean Station, the Space Elevator, the Outer Space Bastion, and etc.To get out of the difficult dilemma of living and development, meet the needs of urbanization and infrastructure construction, and realize the dream of human beings , an irreversible trend is to develop, to research and to utilize new materials, first of which are structural materials.We can foresee that new structural materials should fulfill the requirements of ultra great height or ultra large span (even over 1000 meters). Based on this and the viewpoints of professor PU Xincheng, the author defines the Kilometer Compressive Material (KCM), gives the criterion of the properties and choosing requirements, brings forward the preparation method of the KCM, and prospects the future of this new structural material.After investigating the structural materials largely used hitherto and the development trend of two leading structural materials, namely, steel and concrete, the author drew the conclusion that the steel tubular confined super high strength concrete was one of the best candidates for KCM. In the last chapter of the thesis, through case compute, the author gained the calculated loading, the nominal strength, the strength to weight ratio, the weight of column, and the cost of super high strength steel confined super high strength concrete column. By comparing these properties with 5 types of shaped steel columns, the author concluded that the super high strength steel confined ultra high strength concrete was the best choice for KCM.Super high strength concrete (SHHC) has a lot of advantages over ordinary concrete, such as high strength and elastic modulus, and good durability. Howerver, its large fragility makes the ordinary bar arrangement unsuitable and utilization of steel
    
    tube confined concrete is the best replacement for this. Besides, to make the super high strength concrete completely meet the needs of constrution in situ, workability and shrinkage, expecially large autogenous shrinkage, should be solved and necessary basic mechanical properties should be provided as well. After settling problems of super high strengh concrete itself and applying it to the steel tube confined concrete structure, the preparing techniques, mechanical behavior, stress-strain response, and coordination between SHHC and steel tube should be known first. Therefore, five parts of work are included in the reasearch:1) Research and develop super high strength concrete with compressive strength about 100~160MPa, and analyze its microstructure.2) Study the shrinkage (especially autogenious shrinkage ) of SHHC, and probe into the efficient way of reducing it.3) Measure the mechanical properties of SHHC, including cubic compressive strength, splitting tensile strength, flexural strength, uniaxial compressive strength, uniaxial stress-strain response curve; analyze the characteristics of stress-strain response curve; and simulate and build the stress-strain response relationship.4) Prepare steel tube confined SHHC member, measure the limit load, ultimate deformation, and load-displacement relationship.5) Analyze the load-displacement relationship curve of steel tube confined SHHC, build stress-strain model, and discuss the coordinate work mechanism.After experiment work and numerical analyses, the writer achieved the results as follows:1) With backscattered scanning electron microscope (BSE), the author qualitativel
引文
[1] 丁大钧,蒋永生编.土木工程概论[M].北京:中国建筑工业出版社.2003.2:pp.395~401
    [2] 张其林.Udo peil欧美塔桅钢结构研究状况——LASS塔桅工作组95会议简介[J].特种结构.1996(2):pp.58~63
    [3] 蒲心诚,王勇威,蒲怀京,王冲.千米承压材料与制取途径[J].土木工程学报.2004,37(7):pp.35~40,58
    [4] 蒲心诚,王勇威,蒲怀京,王冲.千米承压材料研制与应用前景[J].建筑技术.(待发表)
    [5] 蒲心诚著.超高强高性能混凝土-原理·配制·结构·性能·应用[M].重庆:重庆大学出版社(待出版)
    [6] Ken-ichi Kikuchi, Yasutsugu Shimizu. X-SEED4000. Structure Engineering International[J]. Journal of IABSE. 1992-11, 2(4): pp.284~286
    [7] 孙德建,丁海涛编.来自大海的疑问[M].青岛:青岛海洋大学出版社.1998年
    [8] 项海帆.21世纪世界桥梁工程的展望[J].土木工程学报.2000.6,33(3):pp.1~6
    [9] [西]贝仑.加西亚编.刘伟庆,欧谨译.世界名建筑抗震方案设计[M].北京:中国水利水电出版社,知识产权出版社.2001年:pp.208
    [10] 千家网智能建筑(出自德国之声).“超群大厦”将使上海鹤立鸡群[EB/OL].网址:http://www.qianjia.com/info/BAMarket/2004210115233.htm. 2004年2月10日11:52
    [11] 潘家华,刘淑琴.“海洋站”建成“海市蜃楼”时隐时现(摘自《大众科技报》)[EB/OL].北京科普之窗,网址:http://www.bjkp.gov.cn/gkjqy/hykx/k21018-03.htm. 2003年
    [12] 小风.人类将建造“太空电梯”[EB/OL].E时代·科学探索·未来科技,网址:http://www.chinabyte. net/20021231/1646452.shtml. 2002.12.31
    [13] 张洋.搭梯子上天堂[J].大自然探索.2001.4:pp.2-5
    [14] 明月.科学家拟造“太空电梯”用以探索浩瀚宇宙[EB/OL].新浪首页·科技时代·科学探索,网址: http://tech.sina.com.cn/other/2003-09-16/0811233857.shtml. 2003.9.16
    [15] Shimiza Corporation. EHME[M], Tokyo. 1991(40)
    [16] 蒲心诚.超高强钢管混凝土——千米承压材料[A].第三届全国现代建筑材料科学技术研讨会论文集《建筑材料》[C],第三届全国现代建筑结构技术学术研讨会论文集《建筑结构技术新进展》[C].陕西人民教育出版社,昆明,2002年7月:pp.34~39
    [17] 蒲心诚,严吴南,王冲,万朝均,白光,何桂.150MPa超高强高性能混凝土研究与应用前景[J].混凝土.1999(3):pp.13~19
    [18] 蒲心诚,蒲怀京,王冲,王勇威.钢管特超强混凝土千米承压材料的变形性能与承载能力研究[A].《全国高强与高性能混凝土专题研讨会论文集》[C].福州,2002年12月: pp.361~370
    [1
    
    [19] 张立德,牟季美.纳米材料与纳米技术[M].北京:科学出版社.2001年
    [20] 谭克锋,蒲心诚,蔡绍怀.钢管超高强混凝土的性能与极限承载能力[J].建筑结构学报.1999(1):pp.10~15
    [21] 蔡绍怀.钢管高强混凝土在我国土建工程中的应用[A].《高强混凝土结构设计与施工指南》(第二版)[M].北京:中国建筑工业出版社.2001年
    [22] 摘自《首都建设》.千米高塔·发电无声[J].特种结构.2002(4):pp.61
    [23] 代彦军,黄海宾,王如竹.太阳能热风发电技术应用于宁夏地区的研究[J].太阳能学报.2003.6,24(3):pp.408~412
    [24] C. Matsui, I. Mitani, A. Kawano, K. Tsuda. AIJ design method for CFST structures[A]. In: Concrete Filled Steel Tubes A Comparison of International Codes And Practices[C], Seminar by ASCCS, Insbruck, Sep. 1997
    [25] 钟善桐.钢管混凝土结构(第3版)[M].北京:清华大学出版社.2003年8月
    [26] 陈宝春.钢管混凝土拱桥设计与施工[M].北京:人民交通出版社.1999年9月
    [27] 蔡绍怀,焦占拴.复式钢管混凝土柱的基本性能和承载力计算[M].建筑结构学报.1997年12月,18(6):pp.20~25
    [28] 蔡绍怀.现代钢管混凝土结构[M].北京:人民交通出版社.2003年4月
    [29] 韩林海.钢管混凝土结构[M].北京:科学出版社.2000年6月
    [30] 蔡绍怀.钢管混凝土结构的计算与应用[M].北京:中国建筑工业出版社.1989
    [31] 汤关祚.钢管混凝土基本力学性能的研究[J].建筑结构学报.1992(1):pp.13~31
    [32] 李继读.钢管混凝土轴压承载力的研究[J].工业建筑.1985(2):pp.25~31
    [33] Lally Handbook of Lally Column Construction (Steel Column-Concrete Filled) Tenth Edition[M]. New York: Lally Column Companies, 1926:pp.85
    [34] Neogi E K., Sen H. K. and Chapman J. C.. Concrete-filled tubular steel columns under eccentric loading[M]. Structural Engineer. 1969, 47(5): pp. 187~195
    [35] Sen H. K.. Triaxial effects in concrete-filled tubular steel column[D]. Dissertation of London University, 1969
    [36] 斯托鲁托科著.伯群,东奎译.钢管混凝土结构[M].北京:冶金工业出版社.1982
    [37] Randall V R and Foot K B. High-strength concrete for Pacific First Center[J]. Concrete International. 1989,11(4): pp.14~16
    [38] Ralson M and Korman R. Composite system stiffened with 19000-psi mix[J]. NER. Feb.16, 1989, 222(7): pp.44~53
    [39] 钟善桐.钢管混凝土在高层建筑中的发展[J].建筑钢结构进展.2000,2(4):pp.3~15
    
    [40] 蔡绍怀.钢管混凝土结构.设计与施工规程CECS28:90学习辅导[M].北京:中国建筑科学研究院.1992年
    [41] 钟善桐.管混凝土结构(第2版)[M].哈尔滨:黑龙江科学技术出版社.1994年
    [42] 钟善桐.高层钢管混凝土结构[M].哈尔滨:黑龙江科学技术出版社.1999年
    [43] 蒋家奋,汤关祚.三向应力混凝土[M].北京:中国铁道出版社.1988年
    [44] 潘光籍、唐丽娟.我国的能源形势和化学工业的耗能与节能[J].化工技术经济.1994年第1期:pp.9~15
    [45] 谭克锋.钢管与超高强混凝土复合材料的力学性能及承载能力研究[D].重庆建筑大学博士学位论文.1998年
    [46] 赵国藩,张德娟,黄承逵.钢管砼增强高强砼柱的抗震性能研究[J].大连理工大学学报.1996,36(6):pp.759~766
    [47] 陈周熠,赵国藩,张德娟.钢管混凝土增强高强混凝土柱的轴压比限值分析研究[J].工业建筑.2002,32(4):pp.55~57
    [48] 幸坤涛,赵国藩,岳清瑞.高强钢管混凝土核心柱轴压短柱的承载力研究[J].钢结构.2002年,17(1):pp.18~21
    [49] 孟世强,陈广智,覃维祖.钢管活性粉末混凝土初步研究[J].混凝土与水泥制品.2003.2,129(1):pp.5~8
    [50] 张静,吴炎诲.钢管活性粉末混凝土的特性和应用前景[J].福建建材.2002,78(4):pp.12~14
    [51] 蔡绍怀.我国钢管混凝土结构技术的最新进展[J].土木工程学报.1999,3(3):pp.1~10
    [52] Forbes D. Three tall buildings in southern China[J]. Structural Engineering International. 1997, 7(3): pp.157~159
    [53] Zhou P, Zhu Z Q . Concrete-filled tubular arch bridges in China[J]. Structural Engineering International. 1998,7(3): pp.161~166
    [54] Yan G, Yang Z. Wanxian Yangtze bridge, China[J]. Structural Engineering International. 1997,7(3): pp.164~166
    [55] 杨稚华,谢邦珠.万县长江大桥的设计与施工[J].西南公路.1997(3):pp.1~6
    [56] 陈立祖.深圳赛格广场大厦钢管混凝土柱工程介绍[A].中国钢协钢-混凝土组合结构协会第六次年会论文集[C].哈尔滨::哈尔滨建筑大学学报.1997(5):pp.14~16
    [57] 程宝坪.深圳赛格广场地下室全逆作法施工技术简介[J].哈尔滨建筑大学学报.1999(3):pp.39~45
    [58] 林立岩,李庆钢.混凝土与钢的组合促进高层建筑结构的发展[J].东南大学学报(自然科学版).2002年9月,32(5):pp.702~705
    [59] 韩林海,陶忠,刘威.钢管混凝土结构——理论与实践[J].福州大学学报(自然科学版). 2001.12,29(6):pp.24~34
    [6
    
    [60] 陈鼎,黎文献.日本的超级钢材料计划[J].中国锰业.2000年2月,18(1):pp.46~48
    [61] 翁宇庆.钢铁结构材料的高性能化[J].中国工程科学.2002年3月,4(3):pp.48~53
    [62] 翁宇庆.中国钢铁材料发展现状及迈入新世纪的对策[J].钢铁.2001年10月,36(10):pp.1~5
    [63] 翁宇庆.钢铁结构材料的组织细化[J].钢铁.2003年5月,38(5):pp.1-11
    [64] Weng Yuqing. New generation of iron and steel materials in China[A]. Proceedings of ultra steel[C]. Tsukuba, JapanJan, 2000 (plenary lecture)
    [65] 张译中.中日韩三国高强度高韧性钢材的研发进程[J].冶金信息导刊.2003年第2期:pp.9-11
    [66] Akira Sato. Research project on ultra steel in Japan(STX-21)[A]. Asia's Steel [C]. 2000, Beijing, vol(A):General: pp. 192
    [67] Won Pyo Lee. Development of high performance structure ultra steels for 21st century in Korea[A]. Proceedings of ultra steel[C], Tsukuba, Japan, Jan. 2000: pp. 33~63
    [68] 曾浩,黄玲.新三级钢和原一,二级钢筋等裂缝宽度代换的方法[J].有色冶金设计与研究.2001年12月,22(4):pp.42~44
    [69] Pierre-Claude Aitcin. Cement of yesterday and today-concrete of tomorrow[J]. Cement Concrete Research. 2000, vol.30: pp. 1349~1359
    [70] 张人为.循环经济与中国建材产业发展[A].中国硅酸盐学会2003年学术年会论文摘要集[C].北京,2003:pp.1~2
    [71] 唐明述.水泥混凝土与可持续发展[A].中国硅酸盐学会2003年学术年会论文摘要集[C].北京,2003:pp.2~3
    [72] 袁文献.从水泥生产工艺探讨粉尘对大气的污染[A].中国硅酸盐学会2003年学术年会论文摘要集[C].北京,2003:pp.25~26
    [73] 吴中伟.高性能混凝土及其矿物细掺料[J].建筑技术.1999年第3期北京,2003:pp.160~163
    [74] Gjorv O E. High-sregth concrete, Advanced in Concrte Technology[M], Edited by Malhotra V M, CANMENT, 1992:pp:21-78
    [75] Zhang M H, and Gjorv O E. Development of high-strength lightweight concrete, High-strength Concrete[J], ACI SP-121, 1990:667-681
    [76] 蒲心诚,蒲怀京,王勇威,王冲.千米承压材料的试制与性能研究[J].混凝土.2003.3:pp.3~9
    [77] 王勇威,蒲心诚,王志军.单轴压力下60~160MPa混凝土的应力.应变关系[J].建筑结构学报(待发表)
    
    [78] 北京混凝土协会.美国未来三十年混凝土行业蓝图——介绍ACI2030年展望[EB/OL].北京混凝土商务信息网,2002.12.4.
    [79] 丁星.三维网格配纤及配筋高强混凝土强度与韧性研究[D].重庆建筑大学博士学位论文.2000年1月
    [80] 张守纪.西方行为科学的奠基人马斯洛[J].企业改革与管理.1998年10期:pp.29
    [81] 周士琼.建筑材料[M].北京:中国铁道出版社.1999年
    [82] 王勇威.超高强高性能混凝土的组成、结构及其收缩与补偿的研究[D].重庆大学硕士论文.2001年10月
    [83] Mindess S. Relationships between strength and microstructure for cement based materials: an overview[A]. Proceedings of Materials Research Society Symposia[C], Vol. 42, Pennsylvania, 1984
    [84] 蒲心诚,王勇威.超高强高性能混凝土的孔结构与界面结构研究[J].混凝土与水泥制品.2004年第3期:pp.9~13
    [85] 蒲心诚,王勇威.高效活性矿物掺料对超高强水泥石的水化程度和水化物组成特征的影响[A].中国硅酸盐学会2003年学术年会水泥基材料论文集(下册)[C].北京,2003年9月:pp.278~284
    [86] Lyman C G. Growth and movement in Portland cement concrete[M]. London: Oxford University Press. 1934:pp.1~139
    [87] Davis H E. Autogenous volume change of concrete[A]. Proceeding of the 43rd annual American society for testing materials[C]. Atlantic city, ASTM,1940:pp.1103-1113
    [88] Mak S. L., Torii k. Strength development of high strength of ultra high-strength concrete subjected to high hydration temperature[J]. Cement. Concrete. Research.. 1995,25(8): pp.1791~1802
    [89] Quanbing Yang. Inner relative humidity and degree of saturation in high-performance concrete stored in water of salt solution for 2 years[J]. Cement. Concrete. Research.. 1999,29(1): pp.45~53
    [90] Lim S N, Wee T H. Autogenous shrinkage of ground granulated blast furnace slag concrete[J]. ACI Material Journal. 2000,97(5): pp.587~593
    [91] C. Hua, P. Acher and A. Ehrlacher. Analyses and models of the autogenous shrinkage of hardening cement paste. Ⅰ .Modeling at macroscopic scale[J]. Cement. Concrete. Research., 1995,25(7): pp.1457~1468
    [92] Ei-ichi Tazawa and Shingo Miyzawa. Influence of cement and admixture on autogenous shrinkage of concrete[J]. Cement. Concrete. Research.. 1995,25(2): pp.281~287
    [93] Erika E.Holt. Early age autogenous shrinkage of concrete[D]. Doctor dissertation of University of Washington, 2001
    [9
    
    [94] JCI Technical Committee Report on Autogenous Shrinkage. Autogenous Shrinkage of Concrete[A]. Proceedings of the International Workshop[C]. ed. Tazawa, E&FN Spon, London, 1998:pp.3~63
    [95] Mehta, P. Kumar and J. M. Monteiro. Concrete: Structure, Properties and Materials[M], 2nd Edition, Prentice Hall, Inc., 1993:pp.548
    [96] 巴恒静,高小建,张武满.高性能混凝土自生收缩的研究进展[J].工业建筑.2003年,33(5):pp.56~60
    [97] 巴恒静,高小建,杨英姿.高性能混凝土早期自收缩测试方法研究[J].工业建筑.2003,33(8):pp.1~4
    [98] 安明哲,覃维祖,朱金铨.高强混凝土的自收缩试验研究[J].山东建材学院学报.1998,12(增刊):pp.139~143
    [99] H. E W. Taylor. Cement Chemistry[M]. Academic Press. 1995
    [100] 蒋正武,孙振平,王新友,王玉吉,张冠伦.国外混凝土自收缩研究进展评述[J].混凝土.2001年第4期:pp.30~33
    [101] Tazawa E. and Miyazawa S. Experimental study on mechanism of autogenous shrinkage of concrete[J].Cement, and Concrete. Research. 1995, 25(8): pp.1633~1638
    [102] 李悦.水泥混凝土材料的自收缩特性及其机理研究[D].同济大学博士后学位论文.2001.5
    [103] Pierre-Claude A(?)tcin. Demystifying autogenous shrinkage, autogenous shrinkage can no longer be neglected-but it can be avoided[J]. Concrete International, Nov. 1999: pp. 54~56
    [104] Anna Kronl(?)f, Markku Leivo, and Pekka Sipari. Experimental study on the basic phenomena of shrinkage and cracking of fresh mortar[J]. Cement. and Concrete. Research. 1995, 25(8): pp.1747~1754
    [105] Yunsheng Xu, D.D.L. Chung. Reducing the drying shrinkage of cement paste by admixture surface treatment[J]. Cement. and Concrete. Research. 2000, 30(2): pp.241~245
    [106] J Xie, et al. Mechanical properties of three high-strength (60,90,120MPa) concrete containing silica fume[J]. ACI Materials Journal. 1995,92(2): pp. 135~145
    [107] Dr-Ing. R Breitenb(?)cher. Developments and applications of high performance concrete[J]. Materials and Structures. 1998, 131:pp.209-215
    [108] Surendra P Shan. High performance concrete: past, present and future[A]. Proceedings of the International Symposium of High Performance Concrete——Workability, Strength and Durability[C]. Hong Kong & Shenzhen, China, 2000, Volume Ⅰ: pp.3~30
    [109] 中国土木工程学会高强与高性能混凝土委员会.高强混凝土结构设计与施工指南(第 二版)[M].北京:中国建筑工业出版社.2001年
    [1
    
    [110] 蒲心诚,严吴南,王冲,万朝均,白光,何桂.100~150MPa超高强高性能混凝土的强度与流动性影响因素研究[J].混凝土.1999.1:pp.8~15
    [111] 蒲心诚,严吴南,王冲.硅灰对150MPa超高强高性能混凝土的流动性及强度贡献[J].混凝土与水泥制品.2000.1:pp.8~12
    [112] 蒲心诚.超高强高性能混凝土的强度构成分析[J].混凝土与水泥制品.1999.1:pp.7~10
    [113] 蒲心诚,王志军,王冲,严吴南,王勇威.超高强高性能混凝土的力学性能研究[J].建筑结构学报.2002,23(6):pp.49-55
    [114] 王志军,蒲心诚.超高强混凝土单轴受压性能及应力应变曲线的试验研究[J].重庆建筑大学学报.2000年5月,第22卷,增刊:pp.27~33
    [115] 王志军.超高强高性能混凝土棱柱体受压性能及高强混凝土有侧移柱考虑变形支撑作用的试验研究[D].重庆建筑大学博士后研究工作报告.2000.2
    [116] 藤智明,朱金铨编著.混凝土结构及砌体结构[J].北京:中国建筑工业出版社.1995年
    [117] 陈肇元,朱金铨,吴佩刚.高强混凝土及其应用[M].北京:清华大学出版社.1991年
    [118] 过镇海.混凝土的强度与变形——试验基础和本构关系[M].北京:清华大学出版社.1997年
    [119] 许锦峰,庄崖屏,石裕翔.高强混凝土应力应变全曲线的试验研究[A].约束混凝土与普通混凝土强度理论及应用学术讨论会论文集[C].烟台,1987:187~195
    [120] POPOVICS S. A numerical approach to the complete stress-strain curve of concrete[J]. Cement and Concrete Research. 1973, 3(5): pp. 583~599.
    [121] 周氐,康清梁,童保全.现代钢筋混凝土基本理论[M].上海:上海交通大学出版社.1989
    [122] HOGNESTAD E. A study of combined bending and axial loads in reinforced concrete members[D]. Illinois: University of Illinois Engineering Experimental Station, Bulletin Series No. 399, November 1951
    [123] CEB-FIP Committee. Model Code 90[S]. London: Thoman Telford press, 1993
    [124] Commission of the European Communities. Design of composite steel and concrete structures[S]. Eurocode No. 4, Part 1, Revised draft, Issuel. Brussells, October
    [125] Standard Australia. Steel structure. Australian Standard AS4100-1900[S]. Syney, 1990
    [126] M D O'Shea and R Q Bridge. High strength concrete in thin walled circular steel structure[A]. Proceedings of 6th International Symposium on Tubular Structures[C]. Melbourne, Australia, 1994: pp. 277~285
    
    [127] ENV1994-1-1. Design of composite steel and concrete structures. Eurocode No. 4, Part 1: General rules and rules for buildings[S]. British Standards Institution, London, 1992
    [128] C D Goode(韩林海译).钢管混凝土组合柱的研究进展[J].工业建筑.1996,26(3):pp.23~27,7
    [129] 潘有光.钢管混凝土中核心混凝土本构关系的确定[J].哈尔滨建筑工程学院学报.1989,22(1):pp.37~47
    [130] J.I. Goldstein, D.E. Newbury, P. Echlin, D.C. Joy, A.D Romig, C.E.Lyman, C. Fiori, E. Lifshin. Scanning Electron Microscopy andX-Ray Microanalysis[M], second ed., Plenum, New York, 1992
    [131] K. Scrivemer. Backscattered electron imaging of cementitious microstructures, understanding and quantification[J]. Cement and Concrete Composites, article in press
    [132] Hong Zhao and David Darwin. Quantitative backscattered electron analysis of cement paste[J]. Cement and Concrete Research. 1992, vol. 22: pp.695~706
    [133] J. Chermant, L. Chermant, and et al. Some fields of applications of automatic image analysis in civil engineering[J]. Cement and Concrete Composites. 2001, vol. 23: pp. 157~169
    [134] S. Diamond, et al. The ITZ in concrete - a different view based on image analysis and SEM observations[J]. Cement and Concrete Composites. 2001, vol. 23: pp. 179~188
    [135] J. Chermant, Why automatic image analysis: An introduction to this issue[J]. Cement and Concrete Composites. 2001, vol. 23: pp. 127~131
    [136] M. Mouret, E. Ringot, A. Bascoul. Image analysis, a tool for the characterisation of hydration of cement in concrete - metrological aspects of magnification on measurement[J]. Cement and Concrete Composites. 2001, vol. 23:pp.201~206
    [137] R. Yang and N.R. Buenfeld. Binary segmentation of aggregate in SEM image analysis of concrete[J]. Cement and Concrete Research. 2001,vol.31: pp.437~441
    [138] S. Igarashi, M. Kawamura, and A Watanabe. Analysis of cement pastes and mortars by a combination of backscatter-based SEM image analysis and calculations based on the Powers model [J]. Cement and Concrete Composites, article in press
    [139] David A. Lange. Image analysis techniques for characterization of pore structure of cement-based materials[J]. Cement and Concrete Research. 1994, vol. 24: pp.841~53
    [140] M. Mouret, E. Ringot, A. Bascoul. Image analysis, a tool for the characterisation of hydration of cement in concrete - metrological aspects of magnification on measurement[J]. Cement and Concrete Composites. 2001, vol. 23:pp.201~206
    [141] K.L. Scrivener. The effect of heat treatment on inner product CSH[J]. Cement. Concrete. Research. 1992, vol.22:pp.1224~1226
    
    [142] A.M. Harrison, N.B. Winter, H.F.W. Taylor. X-ray microanalysis of microporous materials[J]. J. Mater. Sci. Lett. 1987,vol.6 : pp.1339~1340
    [143] C. Famya, K.L. Scrivener a, A. Atkinsonb, A.R. Brought. Effects of an early or a late heat treatment on the microstructure and composition of inner C-S-H products of Portland cement mortars[J]. Cement and Concrete Research. 2002,vol.32:pp.269~278
    [144] 庞之浩.航天母舰——空间站.大自然探索[J].2001.5:pp.8~9
    [145] 王勇威,蒲心诚,王志军.单轴压力下60~160MPa混凝土的应力-应变关系[J].建筑结构学报.已接收,待发表.
    [146] 翁宇庆.中国钢铁工业科技进步回顾与展望[J].钢铁.1999年第9期:pp.1~5,18
    [147] J. Zeghiche, K. Chaoui. An experimental behaviour of concrete-filled steel tubular columns[J]. Journal of Constructional Steel Research. 2005, 61(2005): pp.53~66
    [148] Fam, A. Z. and Rizkalla, S. H. Flexural behavior of concrete-filled fiber-reinforced polymer circular tubes[J]. ASCE Journal of Composites for Construction, 2002,6(2): pp. 123~132.
    [149] Lin-Hai Han. Flexural behavior of concrete-filled steel tubes[J]. Journal of Constructional Steel Research. 2004, 60(2004): pp.313~337
    [150] Lin-Hai Han, You-Fu Yang, Lei Xu. An experimental study and calculation on the fire resistance of concrete-filled SHS and RHS columns[J]. Journal of Constructional Steel Research. 2003, 59(2003): pp.427~452
    [151] Han LH. Fire performance of concrete filled steel tubular beam-columns[J]. Journal of Constructional Steel Research—An International Journal 2001, 57(6): pp.697~711
    [152] Chin-Tung Cheng, Lap-Loi Chung. Seismic performance of steel beams to concrete-filled steel tubular column connections[J]. Journal of Constructional Steel Research. 2003, 59(2003): pp.405~426
    [153] L.-H. Han, Y.-E Yang, Z. Tao. Concrete-filled thin-walled steel SHS and RHS beam-columns subjected to cyclic loading[J]. Tin-Walled Structure 2003,41(2003): pp.801~833
    [154] D.C. Rai, S. C. Goel. Seismic evaluation and upgrading of chevron braced frames[J]. Journal of Constructional Steel Research. 2003, 59(2003): pp.971~994
    [155] Lin-Hai Han, Guo-Huang Yao. Experimental behaviour of thin-walled hollow structural steel(HSS) columns filled with self-consolidating concrete(SCC)[J]. Tin-Walled Structure 2004,42(2004): pp.1357~1377
    [156] Lin-Hai Han, Guo-Huang Yao. Influence of concrete compaction on the strength of concrete-filled steel RHS columns[J]. Journal of Constructional Steel Research. 2003, 59(2003): pp.751~767
    
    [157] Roeder, C.W., Cameron, B., and Brown, C.B. Composite action in concrete filled tubes[J]. ASCE Journal of Structural Engineering. 1999, 125(5): pp.477~484
    [158] Wassim Naguib, Amir Mirmiran. Creep modeling for concrete-filled steel tubes[J]. Journal of Constructional Steel Research. 2003, 59(2003): pp.1327-1344
    [159] L.-H. Han, Y.-F. Yang. Analysis of thin-walled steel RHS columns filled with concrete under long-term sustained loads[J]. Tin-Walled Structure 2003,41(2003): pp.849~870
    [160] Zhong Tao, Lin-Hai Han, Xiao-Ling Zhao. Behaviour of concrete-filled double skin(CHS inner and CHS outer) steel tubular stub columns and beam-columns[J]. Journal of Constructional Steel Research. 2004, 60(2004): pp.1129-1158
    [161] Qingxiang Wang, Dazhou Zhao, Ping Guan. Experimental study on the strength and ductility of steel tubular columns filled with steel-reinforced concrete[J]. Engineering Structure. 2004,26(2004): pp.907~915
    [162] Christopher Tuan. Aurora arch bridge[J]. Concrete International. April 1, 2004, 26(4) (see from the Internet)
    [163] G. D. Hatzigeorgiou, D. E. Beskos. Minimum cost design of fibre-reinforced concrete-filled steel tubular columns[J]. Journal of Constructional Steel Research. 2005, 61(2005): pp.167-182
    [164] Johansson, M. Composite Action and Confinement Effects in Tubular Steel-Concrete Columns [D]. Department of Structural Engineering, Chalmers University of Technology, Doctoral Thesis, Publication 02:8, Goteborg, Sweden, November 2002: pp.173
    [165] N. V. Tue, H. Schneider, G Simsch, D. Schmidt. Bearing capacity of stub columns made of NSC,HSC and UHPC confined by a steel tube[A]. Proceedings of the International Symposium on Ultra High Performance Concrete[C]. Kassel, Germany. Kassel university press. 2004: pp.339~350
    [166] N. V. Tue, M. Kchler, G Schenck, R. Jrgen. Application of UHPC filled tubes in buildings and bridges[A]. Proceedings of the International Symposium on Ultra High Performance Concrete[C]. Kassel, Germany. Kassel university press. 2004: pp.807~817
    [167] Georgios Giakoumelis, Dennis Lam. Axial capacity of circular concrete-filled tube columns[J]. Journal of Constructional Steel Research. 2004, 60(2004): pp.1049-1068
    [168] Dalin Liu, Wie-Min Gho, Jie Yuan. Ultimate capacity of high-strength rectangular concrete-filled steel hollow section stub columns[J]. Journal of Constructional Steel Research. 2003,59(2003): pp.1499-1515
    [169] Dalin Liu. Behaviour of high strength rectangular concrete-filled steel hollow section columns under eccentric loading[J].Tin-Walled Structure 2004,42(2004): pp.1631-1644
    
    [170] Wie-Min Gho, Dalin Liu. Flexural behaviour of high-strength rectangular concrete-filled steel hollow sections[J]. Journal of Constructional Steel Research. 2004, 60(2004): pp.1681~1696
    [171] E. Dallaire, P. Aitcin and M. Lachemi. High-Performance Powder[J]. Civil Engineering. January, 1998:pp.49~51
    [172] Ekkehard Fehling, Kai Bunje, Michael Schmidt, Nguyen Viet Tue. Ultra High Performance Composite Bridge across the River Fulda in Kassel[A]. Proceedings of the International Symposium on Ultra High Performance Concrete[C]. Kassel, Germany. Kassel university press. 2004: pp.819~825
    [173] E. Fehling, K. Bunje, M. Schmidt, W. Schreiber. Ultra high performance composite bridge across the river Fulda in Kassel——conceptual design, design calculations and invitation to Tender[A]. Proceedings of the International Symposium on Ultra High Performance Concrete[C]. Kassel, Germany. Kassel university press. 2004:pp.69~75
    [174] 颜孟坚.人类可持续发展模式新探.迎接世界工程师大会论文选集.重庆:重庆市工程师协会.2004年9月:pp.97~101

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700