用户名: 密码: 验证码:
水泥混凝土道面结构收缩补偿与裂缝修复研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水泥混凝土道面裂缝的形成和发展演化非常复杂,其对结构的使用性、安全性和耐久性影响重大,实现裂缝控制和修复更是一个系统性的工程难题。基于水泥混凝土材料水化、凝结和硬化过程中的固有特性,采用全周期膨胀补偿收缩理论,以废弃的工业尾矿为原料,制备具有早、中期和后期稳定膨胀的高性能复合膨胀材料,系统研究组成、结构和性能间的相互关系,揭示其水化动力学特征和膨胀机理,提高水泥混凝土道面的主动抗裂能力;同时,针对水泥混凝土道面服役过程中的微细裂缝,为实现快速可靠的修复以阻碍有害介质的侵入,研制了丙烯酸类和环氧树脂共聚的高性能修补材料,阐明其性能特征和修复机理,提高水泥混凝土道面的防裂能力。论文研究有利于控制裂缝的产生和发展,抑制和降低道面结构性能的劣化,对提高水泥混凝土道面结构的耐久性和服役寿命具有重要的理论和工程应用价值。
     (1)鉴于传统膨胀剂的性能缺点,通过对白云石和菱镁石工业尾矿的优化配伍及煅烧制度设计,研究了不同组份、煅烧温度和保温时间等因素对高性能复合膨胀材料结构与性能的影响特征,确定了适宜的制备技术,研制了不同组份和性能的膨胀材料;分析了掺不同类型和用量膨胀材料水泥浆体凝结时间、标准稠度需水量和强度的变化规律,结果表明标准稠度用水量和凝结时间稍有增加,水泥浆体抗折强度提高6%~15%,而抗压强度略有增长;研究了水泥砂浆在不同龄期的自由变形、干缩变形和限制变形的变化特征,结果表明复合膨胀材料具有早、中和后期补偿收缩功能、且膨胀速率和总量可控,较高养护温度与湿度以及适宜煅烧制度有利于膨胀效应的发挥,在高温环境中的限制收缩可达到常温中的数倍。
     (2)研究了压蒸制度对膨胀混凝土膨胀率的影响特征,分析了压蒸前后混凝土抗压和抗折强度的变化规律;研究了膨胀材料种类、用量和养护温度等对混凝土自由变形、限制变形及自生变形在不同龄期的发展速率,用数值方法拟合了膨胀率的时变函数;计算了高性能复合膨胀材料的膨胀指数,分析了其随膨胀材料掺量和养护温度的变化特征;对膨胀混凝土在不同限制膨胀率和约束状态下内部应力场的分布特征进行了仿真分析,为其科学应用提供了依据。
     (3)分析了补偿收缩混凝土的基本理论以及膨胀和收缩两个阶段的形变关系,研究了复合膨胀材料品种以及不同水化时期的形貌、晶粒生长以及孔结构特征;试验研究了膨胀材料煅烧温度、保温时间和颗粒细度对水化活性的影响,分析了水化温度和溶液pH值对膨胀材料中MgO水化程度的影响特征,基于水化动力学方程计算了膨胀材料的水化反应速率常数和表观活化能;通过对膨胀材料水化动力学演变过程的分析,建立了膨胀材料中MgO水化成Mg(OH)2以及CaO水化成Ca(OH)2膨胀模型。
     (4)以水泥混凝土道面的微细裂缝为重点修复对象,以修补材料的初始粘度为控制点,优选甲基丙烯酸甲酯和环氧树脂为主要反应单体,进行了本体聚合的合成制度设计及试验研究,确定了高性能修补材料的合理制备技术;采用正交试验分析了修补材料组分和反应时间对初始粘度的影响规律,分析确立了初始粘度的时变特征及其与修补材料可灌性和收缩率的量化关系;研究了反应组分对高性能修补材料粘结强度、拉伸强度和断裂伸长率的影响规律,确定了高性能修补材料基体(RM)的最佳配比;采用有机硅与无机矿粉的复合进行改性,研究了高性能修补材料的力学、变形和热稳定性能,制备了有机优化(OMM)和复合优化(CMM)的高性能修补材料,综合性能显著提高,超过国家相关标准的要求。
     (5)试验研究了RM、OMM和CMM型高性能修补材料对水泥砂浆粘结能效的时变规律,分析了在盐溶液和快速冻融作用下粘结性能的变化,结果表明修复后砂浆的抗折断裂面未发生在修补处,7h粘结强度与砂浆基体相当;通过在混凝土试件中预制裂缝,对比研究了几种修复材料对混凝土修复能效,分析了断面破坏形式和界面粘结特征;利用有限元方法计算了混凝土裂缝不同修补状态下应力强度因子的变化规律,采用SEM和FT-IR测试分析了高性能修补材料断裂面的微细观形貌和结构中的特征官能团;基于高分子化学理论,阐释了环氧树脂与甲基丙烯酸甲酯、以及有机硅改性剂和无机矿粉改性的聚合反应原理,揭示了高性能修补材料力学和变形性能与其微观结构的关联性,并从物理作用力和化学键力研究了高性能修补材料对水泥混凝土裂缝的粘结修复机理。
Due to the complexity of the generation mechanism and the developing evolution of cracks inconcrete pavement and their significant influence on the availability, safety and durability of thepavement, crack control and repair in concrete pavement are systematic engineering challenges.Based on the inherent characteristics of hydration, setting and hardening in concrete and the theory ofcompensating shrinkage with expansion in different periods, environment-friendly high-performancecomposite expansive materials with stable expansion in early, mid and late age were prepared withwasted industrial tailings as raw materials. The relationships of the constitute, the structure and theperformance of the materials were studied to reveal its hydration kinetic characteristics and expansionmechanism and also to enhance the cracking resistance of concrete pavement. For fine cracks in theconcrete pavement in service, an acrylic and epoxy resin copolymerized high-performance repairmaterial was used to hinder the invasion of the harmful mass. The performance characteristics andrepair mechanism of the materials were clarified. Therefore, the defense capability of concretepavement can be improved. The investigation in the dissertation is conducive to control the generationand the development of cracks, and to weaken the deterioration of the structural performance aftercracking. Consequently, the durability and service life of concrete pavement structures can beenhanced, which is of significance in theory and engineering practice.
     (1)Considering the disadvantages of traditional expansive agents, through the design ofcompatibility and calcining procedure for industrial tailings of dolomite and magnetite, the influencecharacteristics of the components, calcination temperature, soaking time and other relative factors onthe structures and the properties of high-performance composite expansion materials were discussedto determine a suitable preparation process and also different expansive components. Experimentalstudy on the basic properties of paste with high-performance composite expansion materials wasadopted. The effects of types and amounts of expansive components on the setting time, waterrequirement of normal consistency and strength were analyzed. It is shown that as the waterrequirement of normal consistency and setting time increased slightly, and there was a6%to15%improvement in the flexural strength of paste as well as the compressive strength. The influences ofthe type and dosage of expansive components, and curing temperature on the deformation properties of the paste and mortar were explored experimentally. The characteristics of the free,shrinkage andrestrained deformation of the mortar during different hydration periods were tested. It is found that thecomposite expansion component exhibited its compensation for shrinkage at early, mid and late age.Meanwhile the expansion rate and the total expansion amount can be controlled. It is discovered thathigher curing temperature and humidity as well as a suitable calcining procedure were conductive tothe expansion and the restrained shrinkage at high temperature could be multiple times of that onecuring in room temperature.
     (2)The stability and deformation development of the concrete with the expansion materials wasinvestigated based on the experiments. The effects of the autoclave procedure on the concreteexpansion rate were studied and the variation law for the flexural strength and the compressivestrength of the concrete before and after the autoclave were summarized. The effects of the type anddosage of expansive components, and the curing temperature on the growth rate of the free, restrainedand autogenous deformation of the concrete for different hydration periods were discussed. Thenumerical method was adopted to fit the expansive rate with time. The expansive index of thehigh-performance composite expansive component was calculated as well as its variation feature withthe dosage and the curing temperature of the expansive component was studied. Simulation wasapplied to the distribution feature of internal stress field of the expansion concrete under differentexpansion rates and different restrained conditions, through which the reasonable basis for theapplication of the composite expansive component can be expected.
     (3)The basic theory of concrete shrinkage compensation and the relation of deformations in thetwo stages-expansion or shrinkage were discussed. The microstructure, grain growth and porestructure characteristics for different composite expansion component types as well as differenthydration time were studied. Experimental results demonstrated the effect of the calcinationtemperature, heat preservation time and particle fineness of the expansive component on the hydrationactivity. The hydration degree of MgO in the expansion materials at different hydration temperaturesand pHs were also tested. With the aid of the hydration kinetic equation, the hydration reaction rateconstant and the apparent activation energy of the expansive component were computed. Through theanalysis of the evolution of hydration dynamics of the expansion materials, a physical expansionmodel for MgO hydrated into Mg(OH)2as well as CaO hydrated into Ca(OH)2was established.
     (4)The fine cracks in the concrete pavement were treated as the critical repair object and theinitial viscosity of the repairing material was set as a control start. Methyl methacrylate and epoxy resin were adopted as the main reactive monomers for the bulk polymerization according to synthesisdesign to determine the rational preparation methods. The orthogonal test was employed to analyzethe effects of the repairing component and the reaction time on the initial viscosity. The time-varyingcharacteristics of the initial viscosity were tested and the quantitative relation of the characteristicswith the groutability and the shrinkage of the repairing material were set up. Based on the orthogonaltest, the effects of the reactive monomer, the initiator, the plasticizer, and the curing agent on the bondstrength, the tensile strength and the elongation at break of high-performance repairing material wereinvestigated. It presented the best proportion of the high-performance repairing matrix. After modifiedwith silicone or inorganic mineral powders, the performances regarding to mechanics, deformationand thermal stability of the repairing material were studied. Due to organic optimization (OMM) andcomposite optimization (CMM), the high-performance repairing material, of which the overallperformance was improved remarkably even exceeding the requirements in the relevant nationalstandard, was prepared.
     (5)The time-vary law of the mortar bonding efficiency with the different types of highperformance repair materials distinguished by RM, OMM and CMM was discussed experimentally.The changes of the bonding properties of the repair materials in the salt solution and in rapidfreeze-thaw cycles were analyzed. It can be found that the mortar after repair did not break again atthe repair area, and the repaired part regained the bond strength as much as the mortar itself in7hoursafter repair. A comparative study of several repair materials was adopted to evaluate their repairefficiency to the compressive strength and the flexural strength of the concrete with prefabricatedcracks before and after repair. The experiments were also carried out to analyze the sectional failuremodes and interfacial adhesion characteristics. The change of stress intensity factor of concrete crackrepaired under different states was calculated by using finite element method. With the help of SEMand FT-IR tests, the microstructure of the fracture surfaces and the characteristic functional groups inthe structures of the concrete repaired with the high-performance repair materials were investigated.Based on the theory of polymer chemistry, the principles of epoxy resin polymerized with methylmethacrylate and silicone modifier polymerized with modified inorganic mineral powder wereexplained. For high-performance repair material, the correlation of the deformation and themechanical performance with the microstructures was revealed. The bonding repairing mechanism ofthe high-performance repair materials to the cracks in concrete was interpreted in two views of thephysical force and the chemical bonding force.
引文
[1]陈萌.混凝土结构收缩裂缝的机理分析与控制[D].武汉:武汉理工大学,2006.
    [2] S.Thelandersson, A.Martensson, O.Dahlblom. Tension softening and cracking in dryingconcrete[J]. Materials and Structures,1988,(6):416-424.
    [3] C. Christodoulou, C. Goodier, S. Austin, et al. Diagnosing the cause of incipient anodes inrepaired reinforced concrete structures[J]. Corrosion Science,2013,69:123-129.
    [4] Young-jin Kwon. A study on the alkali-aggregate reaction in high-strength concrete with particularrespect to the ground granulated blast-furnace slag effect[J]. Cement and Concrete Research,2005,35:1305-1313.
    [5]谈至明,姚祖康.软土地基不均匀沉降对铺面结构影响的分析[J].岩土工程学报,1989,(2):54-63.
    [6]景清俊,张增亮.高填方路基沉降处理及裂缝分析[J].科技情报开发与经济,2002,(4):160-161.
    [7]梁贵林.浅析市政工程道路不均匀沉降特征及表现形式[J].民营科技,2012,(2):200.
    [8]侯雁南.大体积混凝土裂缝控制及处理措施研究[D].济南:山东大学,2007.
    [9] Kangkang Tang, Steve Millard, Greg Beattie. Technical and economic aspects of using GBFS forcrack control mitigation in long span reinforced concrete structures[J]. Construction and BuildingMaterials,2013,39:65-70.
    [10]安勇.混凝土结构中裂缝的分类、特征、产生原因及处理方法[J].安徽建筑,2003,(2):35-36.
    [11] Hideyuki Horii, Hak Chul Shin, Tirath Manojya Pallewatta. Mechanism of fatigue crack growthin concrete[J]. Cement and Concrete Composites,1992,14(2):83-89.
    [12]李春秋,陈肇元.荷载作用下混凝土构件裂缝控制的若干问题[J].建筑结构,2007,(1):114-119.
    [13] Fu-xiang Jiang, Yutian Wang, Tiejun Zhao, et al. Evaluation on micro-cracks development anddamage of concrete under axial compressive load [J]. Procedia Engineering,2012,27:1553-1559.
    [14]廖国新.水泥混凝土路面施工工艺及裂缝病理分析[J].湖南交通科技,2000,(2):30-31.
    [15]李金玉,曹建国,徐文雨,等.混凝土冻融破坏机理的研究[J].水利学报,1999,(01):42-50.
    [16] M. Molero, S. Aparicio, G. Al-Assadi, etal. Evaluation of freeze-thaw damage in concrete byultrasonic imaging[J]. NDT&E International,2012,52:86-94.
    [17] Seongcheol Choi, Soojun Ha, Moon C. Won. Horizontal cracking of continuously reinforcedconcrete pavement under environmental loadings[J]. Construction and Building Materials,2011,(25):4250-4262.
    [18] J. Pedziwiatr. Influence of internal cracks on bond in cracked concrete structures[J]. Archives ofCivil and Mechanical Engineering,2008,8(3):91-105.
    [19]王铁梦.建筑物的裂缝控制[M].上海:上海科学技术出版社,1987.
    [20]刘杨.大体积混凝土裂缝控制技术研究[D].成都:西南石油大学,2011.
    [21] P. K. Mehta. Durability-critical issues for the future [J]. Concrete International,1997,(4):58-62.
    [22]申爱琴.水泥混凝土路面裂缝修补材料研究[D].西安:长安大学,2005.
    [23]濮成堂.混凝土裂缝的危害及处理措施[J].山西建筑,2009,35(21):127-128.
    [24] Wang Kejin, Daniel C. Jansen, S. P. Shah. Permeability study of cracked concrete[J]. Cement andConcrete Research,1997,27(3):381-393.
    [25]王铁梦.钢筋混凝土结构的裂缝控制[J].安徽建筑,2001,(1):10-13.
    [26]林金洲.混凝土构件荷载裂缝机理分析[J].科技风,2009,(10):39-40.
    [27]王永平.混凝土收缩试验研究[D].天津:天津大学,2010.
    [28] José Mora-Ruacho, Ravindra Gettu, Antonio Aguado. Influence of shrinkage-reducingadmixtures on the reduction of plastic shrinkage cracking in concrete [J]. Cement and ConcreteResearch,2009,31(3):141-146.
    [29]田倩,孙伟,缪昌文,等.高性能混凝土自收缩测试方法探讨[J].建筑材料学报,2005,8(1):82-89.
    [30] Ei-iehi Tazawa, Shingo Miyazawa. Influence of cement and admixture autogenous shrinkage ofcement paste[J]. Cement and Concrete Research,1995,25(2):281-287.
    [31] Daniel Cusson, Ted Hoogeveen. Internal curing of high-performance concrete with pre-soakedfine lightweight aggregate for prevention of autogenous shrinkage cracking[J]. Cement andConcrete Research,2008,38(6):757-765.
    [32]郝钢.浅论混凝土结构早期裂缝的原因与防治[J].混凝土,2002,(1):46-47.
    [33] Lennart stergaard, David Lange, Henrik Stang. Early-age stress–crack opening relationships forhigh performance concrete[J]. Cement and Concrete Composites,2004,26(5):563-572.
    [34]黄国兴,惠荣炎.混凝土的收缩[M].北京:中国铁道出版社,1990.
    [35] Gao Peiwei, Lu Xiaolin. Using a new composite expansive material to decrease deformation andfracture of concrete[J]. Materials Letters,2008,62(1):106-108.
    [36]罗洪.水泥混凝土路面裂缝成因及控制措施[J].黑龙江科技信息,2010,(31):313-314.
    [37] L. David Suits, Y. Grace Hsuan. Assessing the photo-degradation of geosynthetics by outdoorexposure and laboratory weatherometer[J]. Geotextiles and Geomembranes,2003,21(2):111-122.
    [38]赵晓光.水泥混凝土路面开裂原因及防治措施[J].现代公路,2010,(11):203-204.
    [39]梁军林.水泥混凝土路面断裂破坏机理及应用研究[D].长安大学,2004.
    [40]秦奋.水泥混凝土路面裂缝成因及预防对策[J].科技信息,2009,(33):1081-1082.
    [41] Okamoto, P. Guidelines for timing contraction joint sawing and earliest loading for concretepavements[M]. U.S. Department of Transportation.1994.
    [42]刘月丽.连续配筋混凝土路面早期横向开裂分析[J].中国新技术新产品.2011,(3):219-221.
    [43]王延萍.混凝土路面裂缝成因及控制[J].工程科学,2008,(19):106-107.
    [44]王琳.基于水泥混凝土路面断板裂缝破损研究的路面养护决策分析[D].长安大学,2005.
    [45]李萍,朱灯标.大体积混凝土的施工降温技术措施[J].浙江建筑,2009(03):53-55.
    [46]杨忠,黄婕.水泥混凝土路面施工保湿养护膜养护应用研究[J].湖南交通科技,2008,(09):28-29.
    [47]牛莉萍.水泥混凝土路面的养护[J].山西建筑,2012,(1):166-167.
    [48] Tao Ji, Cai-Yi Chen, Yi-Zhou Zhuang. Evaluation method for cracking resistant behavior ofreactive powder concrete[J]. Construction and Building Materials,2012,28(1):45-49.
    [49]缪昌文,刘加平,刘建忠.外加剂对混凝土耐久性的影响[J].东南大学学报,2006,36(2):253-258.
    [50]李树磊.水泥混凝土路面裂缝成因及预防措施[J].民营科技.2009,(2):157-158.
    [51]韩建国,杨富民.混凝土减缩剂的作用机理及其应用研究[J].混凝土.2001,(4):25-29.
    [52] Alexandra Passuello, Giacomo Moriconi, Surendra P. Cracking behavior of concrete withshrinkage reducing admixtures and PVA fibers[J]. Cement and Concrete Composites,2009,31(10):699-704.
    [53] Mario C, Antonio B, Silvia C, et al. Effects of shrink-age reducing admixture in shrinkagecompensating concrete under non-wet curing conditions[J]. Cement and Concrete Composites,2005,27(6):704-708.
    [54]钱晓倩,詹树林,方明辉.高性能混凝土减缩剂的研究和应用[J].化学建材,2003,(7):42-45.
    [55]黄明城.浅谈混凝土膨胀剂[J].中国建材科技,2007,(3):11-15.
    [56] Chatterji, S. Mechanism of expansion of concrete due to the presence of dead-burnt CaO andMgO[J]. Cement and Concrete Research,1995,25(1):51-56.
    [57] J.Branch, D.J.Hannant, M.Mulheron. Factors affecting the plastic shrinkage cracking ofhigh-strength concrete[J]. Magazine of Concrete Research,2002,(54):347-354.
    [58] M. Nokken. Expansion of MgO in paste measured by different methods[J]. ACI Material Journal,2008,409(1):1-17.
    [59]薛君玕.钙矾石相的形成、稳定和膨胀[J].硅酸盐学报,1983,11(3):247-251.
    [60]游宝坤,赵顺增.我国混凝土膨胀剂发展的回顾和展望[J].膨胀剂及膨胀混凝土,2012,(2):1-5.
    [61]游宝坤,李乃珍.膨胀剂及其补偿收缩混凝土[M].中国建材工业出版社,2005.
    [62] Mehta P.K., PirtzD. Magnesium Oxide Additive for Producing Selfstress in Mass-conerete[A].Proceedings of the7th International Congressonthe Chemistry of Cement[C]. Paris, France,1980:116-119.
    [63]袁美栖,唐明述.吉林白山大坝混凝土自生体积膨胀机理的研究[J].南京工业大学学报(自然科学版),1984,(1):38-45.
    [64]马婧姝,张少明.新型复合MgO膨胀材料的膨胀效果[J].南京工业大学学报(自然科学版),2009,(4):89-93.
    [65]张守治,刘加平,田倩,等.制备工艺参数对轻烧氧化镁膨胀剂性能的影响[J].膨胀剂与膨胀混凝土,2010,(1):24-27.
    [66]蔡树元.压蒸条件下外掺氧化镁混凝土的膨胀性能[D],南京工业大学,2002.
    [67]李延波,邓敏,莫立武,等.约束条件下外掺MgO混凝土的强度与膨胀应力.建筑材料学报,2012,15(4):446-450.
    [68]李延波,邓敏,莫立武,等.不同约束条件下掺轻烧MgO混凝土的力学性能.中南大学学报(自然科学版),2012,43(7):2534-2541.
    [69] J.P.Romualdi, L.J.Cohen. Stress, strain and displacement fields in a composile materialreinforced with discountinuous fibers[J]. Journal of the Franklin Institute,1967,284(6):388-406.
    [70] R.N.Swamy, Sa’ad A.AI-Ta’an. Deformation and Ultimate Strength in Flexure of ReinforcedConcrete Beams Made with Steel Fiber Concrete[J]. ACI Journal Proceeding,1981,78(5):395-405.
    [71]赵国藩,彭少明,黄承遗.钢纤维混凝土结构[M].北京:中国建筑工业出版社,1999.
    [72]赵国藩,关丽秋,赵亦兵.配筋钢纤维混凝土构件单向拉伸性能的实验研究及理论分析[J].港口工程,1987,(1):30-37.
    [73] Sun Wei, Luo Xin, Yan H D, et al. Penetration and blast resistance of high performance steel fiberreinforced concrete[A]. In:Proceedings of2nd Asia-Pacific Specialty Conference on FiberReinforced Concerte[C]. Singapore,1999:197-203.
    [74]孙伟,刘志勇,齐承庆.纤维网片复合方式对纤维增强水泥基材料性能的影响[J].东南大学学报(自然科学版),2003,33(6):767-772.
    [75] Emma Boghossian, Leon D. Wegner. Use of flax fibres to reduce plastic shrinkage cracking inconcrete[J]. Cement and Concrete Composites,2008,30(10):929-937.
    [76] Anotine.E.Naaman, SurendraP.Shah. Pull-Out Mechanism in Steel Fiber-Reinforeed Conerete[J].Joumal of the Struetural Division,1976,102(8):1537-1548.
    [77] Xin Luo, Wei Sun, Sammy Y N Chan. Characteristics of high-performance steel fiber-reinforcedconcrete subject to high velocity impact[J]. Cement and Concrete Research,2000,30(6):907-914.
    [78] Yoshihiko Ohama. Recent progress in concrete-polymer composites[J]. Advanced Cement BasedMaterials,1997,5(2):31-40.
    [79] Richard P.and Cheyrezy M. Composition of reactive powder concretes. Cement and ConcreteResearch,1995,25(7):1501-1511.
    [80] C.S. Gutti, A. Roy, J.B. Metcalf, et al. The influence of admixtures on the strength and linearexpansion of cement-stabilized phospogypsum[J]. Cement and Concrete Research,1996,26(7):1083-1094.
    [81] Hu shuguang. An investigation of bonding behavior on the interface of Polyaerylamide-aluminouscomposites[J]. Journal of Wuhan University of Teclmology-Materials Seience,1993,(2):19-25.
    [82]胡曙光.聚丙烯酞胺-铝酸-钙水化过程的一些特性分析[J].武汉工业大学学报,1994,16(3):69-73.
    [83] Ming-Gin Lee, Yung-Chih Wang, Chui-Te Chiu. A preliminary study of reactive powderconcrete as a new repair material[J]. Construction and Building Materials,2007,1(27):182-189.
    [84] V. Kasselouri, N. Kouloumbi, Th. Thomopoulos. Performance of silica fume-calcium hydroxidemixture as a repair material[J]. Cement and Concrete Composites,2001,2(1):103-110.
    [85] M.M Al-Zahrani, M Maslehuddin, S.U Al-Dulaijan. Mechanical properties and urabilitycharacteristics of polymer-and cement-based repair materials[J]. Cement and ConcreteComposites,2003,5(4):527-537.
    [86] ACI Committee224. Causes, Evaluation, and Repair of Cracks in Concrete Structures[S].2007.
    [87]刘卫东,侯子义,王大鹏.全厚式水泥混凝土路面快速修复研究与应用现状[C].第五届(2011)国际路面养护技术论坛论文集.2011:266-268.
    [88] Alexander M. Vaysburd. Holistic system approach to design and implementation of concreterepair [J]. Cement and Concrete Composites,2006,28(8):671-678.
    [89] MH Decter. Durable concrete repair-importance of compatibility and low shrinkage [J].Construction and Building Materials,1997,11(6):267-273.
    [90] D.G.Aggelis, T.Shiotani. Repair evaluation of concrete cracks using surface andthrough-transmission wave measurements[J]. Cement and Concrete Composites,2007,10(9):700-711.
    [91]胡曙光,管学茂,丁庆军.超细水泥基灌浆材料研究动向及发展方向[J].水泥,2001,(1):11-13.
    [92]李爱军,超细水泥灌浆材料在混凝土路面裂缝修补中的应用[J].中外建筑,2008,(5):172-174.
    [93]曲燕,丛玉华. CGM高强无收缩灌浆料在加固植筋工程中的应用[J].施工技术,2006,35(8):4l-45.
    [94]董兰女,程占莲,李弘飞. HL-HGM高强无收缩灌浆料性能及其应用实践[J].膨胀剂与膨胀混凝土,2007,(1):23-25.
    [95]贺奎,王万金,常保全等. ANG-II新型高强无收缩灌浆料的研究及应用[J].建筑技术,2008,39(6):462-464.
    [96]朱建辉.聚合物改性超细水泥在混凝土路面裂缝修补中的应用研究[D].长安大学,2004.
    [97]杨学忠,单俊鸿,周明凯. MG聚合物改性水泥砂浆与混凝土的性能及其在路面修补中的应用[J].国外建材科技,2004,25(2):56-60.
    [98] M.Jamal Shannag. High-performance cementitious grouts for stnlctuml repair[J]. Cement andConcrete Research,2002,(2):803-808.
    [99] Z.Su, J.A.Larbi, J.M.Bijen. The Interface Between Polymer-Modified Cement Paste andAggregates[J]. Cement and Concerte Research,1991,1(21):983-990.
    [100]杜鹏.硫铝酸盐水泥基修补砂浆的研究[D].济南:济南大学,2011.
    [101]李铭.以矿渣为基质的水泥混凝土路面修补材料研究[D].西安:长安大学,2011.
    [102]樊自田,王继娜,汪华方,等.水玻璃粘结剂改性技术的现状及发展趋势[J].现代铸铁,2007,27(4):76-80.
    [103] Camille A. Issa, Pauls Debs. Experimental study of epoxy repairing of cracks in concrete[J].Construction and Building Materials,2007,1(1):157-163.
    [104]郝巨涛,黄昊.环氧砂浆修补薄层的原型观测试验结果研究[J].水利学报,2010,41(1):120-126.
    [105]高杰,胡高平,肖卫东.环氧砂浆在道路修复中的应用[J].粘接,2009,(6):74-75.
    [106]易伟建,农金龙,黄政宇.聚合物乳液改性砂浆的长期粘结性能[J].硅酸盐通报,2011,30(4):938-942,949.
    [107]李京利. TK聚合物砂浆在混凝土表面的修复与加固[J].建设科技,2007,(9):80-81.
    [108] X.F.Song, J.F.Wei, T.SH.He. A method to repair concrete leakage through cracks bysynthesizing super-absorbent resin in situ[J]. Construction and Building Materials,2009,1(1):386-391.
    [109] D.W.Fowler. Polymers in concrete: a vision for the21stcentury[J]. Cement&ConcreteComposites,1999,21:449-452.
    [110] A.Jenni, L.Holler, R. Zurbriggen, et al.Influence of polymers on microstructure and adhesivestrength of cementitious tile adhesive mortars [J]. Cement and Concretc Research,2005,35(1):35-50.
    [111] P.S.Mangat, M.C. Limbachiya. Repair material properties for effective structural application[J].Cement and Concrete Research,1997,4(4):601-617.
    [112]熊剑平,申爱琴,邱粤滨.聚合物水泥砂浆路用性能与改性机理研究[J].公路,2007,(5):144-148.
    [113]钱晓倩,詹树林.聚醋酸乙烯水泥砂浆的性能及其应用[J].新型建筑材料,2001,(4):5-8.
    [114]谢厚礼.新型粘结砂浆的配制与性能研究[D].重庆大学,2001.
    [115] S.Mebarkia, C.Vipulanandan. Mechanical properties and water diffusion in polyester polymerconcrete [J]. Journal of Engineering Mechanics,1995,121(12):469-476.
    [116] Andrea Saccani, Vittorio Magnaghi. Durability of epoxy resin-based materials for the repair ofdamaged cementitious composites[J]. Cement and Concrete Research,1999,1(1):95-98.
    [117]傅智,金志强.水泥混凝土路面施工与养护技术[M].2003.
    [118]孙晨红,贺冬彪,于文.采用树脂类胶粘剂修补水泥混凝土路面裂缝[J].黑龙江交通科技,2000,(3):3-4.
    [119]郎宏培.玻璃钢粘接工艺在路面修补中的应用[J].内蒙古公路与运输,2003,(4):29-30.
    [120] Camille A. D Issa. Experimental study of epoxy repairing of cracks in concrete [J]. Constructionand Building Materials,2007,21(1):157-163.
    [121] Zhang B, Liu W Q. A novel high property epoxy resin grouting material [J]. New ChemicalMaterials,2001,29(11):27-29.
    [122]韩法元,许波,徐卫河.水溶性聚氨酯化学灌浆材料性能影响因素的研究[J].河南化工,2004,(6):16-18.
    [123]李空军,刘万玲,耿同谋.非水溶性聚氨酯化学灌浆材料[J].商丘职业技术学院学报,2005,4(2):65-66.
    [124] Dar-Hao Chen, Huang-Hsiung Lin, Renjuan Sun. Field performance evaluations ofpartial-depth repairs[J]. Construction and Building Materials,2011,3(3):1369-1378.
    [125] Gengying Li. A new way to increase the long-term bond strength of new-to-old concrete by theuse of fly ash[J]. Cement and Concrete Research,2003,6(6):799-806.
    [126]谢慧才,李庚英,熊光晶.新老混凝土界面粘结力形成机理[J].硅酸盐通报,2003,22(3):7-10,18.
    [127] Yoshihiko Ohama. Polymer-based Admixtures[J]. Cement&Concrete Composites[J].1998,20:189-212.
    [128]聂彦翔,高松.混凝土裂缝灌浆修补的炫彩与处理[J].混凝土,2003,32(163):56-58.
    [129] Kim Van Tittelboom, Nele De Belie, Willem De Muynck, et al. Use of bacteria to repair cracksin concrete[J]. Cement and Concrete Research,2010,1(1):157-166.
    [130] Qian Chun-Xiang, Wang Rui-Xing, Cheng Liang. Theory of microbial carbonate precipitationand its application in restoration of cement-based materials defects [J]. Chin. J. Chem.,2010,28(5):847-857.
    [131]唐辉宇.混凝土膨胀剂的应用[J].福建建材,2003,(3):32-33.
    [132] Katsutoshi Sato, Fumiaki Sago, Katsutoshi, Nagaoka et al. Preparation and characterization ofactive Ni/MgO in oxidative steam reforming of n-C4H10[J]. International Journal of HydrogenEnergy.2010,35(11):5393-5399.
    [133]卢小琳,高培伟.用液相电导法研究氧化镁的水化活性[J].南京航空航天大学学报.2008,40(3):404-406.
    [134]王新娟.轻烧氧化镁与钙矾石的膨胀性能对比研究[D]南京:南京工业大学,2006.
    [135] Mo Liwu, Deng Min, TANG Mingshu. Effects of calcinations condition on expansion propertyof MgO-type expansion agents used in cement-based materials[J]. Cement and ConcreteResearch.2010,3(40):437-446.
    [136]李承木.外掺MgO混凝土的基本力学与长期耐久性能[J].水利水电科技进展.2000,20(5):30-35.
    [137]张红波.掺新型膨胀材料混凝土变形及抗裂性能研究[D].南京:南京航空航天大学,2011.
    [138]调俊龙,杨长辉,潘听.温湿度对混凝土膨胀剂膨胀作用的影响[J].混凝土,2007(11):73-76.
    [139]刘如峰.补偿收缩混凝土性能研究及工程应用[D].大连交通大学,2010.
    [140]卢小琳,兰文改,张红波等.氧化镁水化产物的微观结构特点表征[J].河海大学学报,2010,38(5):554-558.
    [141]楼宗汉.水泥熟料中MgO的水化和膨胀性能[J].硅酸盐学报,1998,26(4):430-436.
    [142]翟学良,杨永社.活性MgO水化动力学研究[J].无机盐工业,2000,32(4):16-18.
    [143]别安涛.轻烧氧化镁对水泥性能的影响研究[D].重庆:重庆大学,2010.
    [144]张国新,陈显明,杜丽惠.氧化镁混凝土膨胀的动力学模型[J].水利水电技术,2004,35(9):88-92.
    [145]骆菁菁.新型生态混凝土膨胀剂的制备及性能表征[D].南京:南京航空航天大学,2011.
    [146] Zuhua Zhang, Xiao Yao, Huajun Zhu. Potential application of geopolymers as protectioncoatings for marine concrete I. Basic properties[J]. Applied Clay Science.2010,49:1-6.
    [147]钱海燕,李素英.轻烧氧化镁水化动力学[J].化工矿物与加工,2007(12):1-2.
    [148] Knudson T. Particle size distribution in cement hydration [C]. The7th International Congress onChemistry of Cement. Paris,1980:125-130.
    [149]陈霞,方坤河,杨华全.掺P2O5水泥基材料水化动力学研究[J].土木建筑与环境工程.2010,32(5):119-214.
    [150]刘加平,王育江,田倩,等.轻烧氧化镁膨胀剂膨胀性能的温度敏感性及其机理分析[J].东南大学学报(自然科学版),2011,41(2):359-364.
    [151]施惠生.氧化钙的显微结构与水化活性[J].硅酸盐学报,1994,(2):117~123.
    [152]陈荣,陈志源.高钙粉煤灰中游离氧化钙水化动力学研究[J].建筑材料学报,2000,3(2):2-3.
    [153] Rafael Salom o, L.R.M. Bittencourt, V.C. Pandolfelli. A novel approach for magnesia hydrationassessment in refractory castables[J]. Ceramics International,2007,33:803-810.
    [154] E.Serris, L.Favergeon, M. Pijolat. Study of the hydration of CaO powder by gas–solidreaction[J]. Cement and Concrete Research,2011,41:1078-1084.
    [155] D R Plum. The behavior of polymer materials in concrete repair and factors influencingselection [J]. The Structural Engineer,1990,(9):337-345.
    [156] R J Varley. Toughening of epoxy resin systems using low-viscosity additives [J]. The StructuralEngineer,2004,53(1):78-84.
    [157] W C French. Epoxy repair techniques for moderate earthquake damage [J]. ACI Structural Journal,1990,87(4):416-424.
    [158] S Zaioncz, B G Soares, et al. Toughening of Epoxy Resin by Methyl Methacrylate/2-EthylhexylAcrylate Copolymers: The Effect of Copolymer Composition [J]. Macromolecular Materials andEngineering,2007,292(12):1263-1270.
    [159] S Shin, J Jang. The effect of amine/epoxy ratio on the fracture toughness of tetrafunctional epoxyresin [J]. Polymer Bulletin,1997,39(3):353-359.
    [160] P M Remiro, C Marieta, C C Riccardi, et al. Influence of curing conditions on the morphologies of aPMMA-modified epoxy matrix [J]. Polymer,2001,42(25):9909-9914.
    [161] S Ritzenthaler, E Girard-Reydet, J P Pascault. Influence of epoxy hardener on miscibility of blendsof poly(methyl methacrylate) and epoxy networks [J]. Polymer,2000,41(16):6375-6386.
    [162]《胶粘剂技术标准与规范》编写组编.胶粘剂技术标准与规范[M].北京:化学工业出版社,2004.
    [163]濯海潮.实用胶粘剂配方及生产技术[M].北京:化学工业出版社,2000.
    [164] Weidisch R, Ensslen M, Michler G H, et al. Deformation Behavior of Weakly Segregated BlockCopolymers.1. Influence of Morphology of Poly(styrene-b-butyl methacrylate) DiblockCopolymers [J]. Macromolecules,1999,32(16):5375–5382.
    [165] Sun Y, Collett J, Fullwood N J, et al. Culture of dermal fibroblasts and protein adsorption onblock conetworks of poly (butylmethacrylate–block-(2,3propandiol-1-methacrylate–stat–ethandiol dimethacrylate))[J]. Biomaterials,2007,28(4):661-670.
    [166]马承银,郑文姬,胡慧萍,等.水性环氧树脂的制备和固化机理的探讨[J].高分子通报,2006,(1):28-33.
    [167] Zheng Y, Zhou L, Yang Y. Synthesis and application of a novel epoxy grafted thermosettingacrylic resin [J]. Journal of Applied Polymer Science,2007,107(6):4053-4060.
    [168]王致禄,陈道义.聚合物胶粘剂[M].上海科学技术出版社,1988.
    [169]叶林宏,何泳生.论化灌浆液与被灌岩土的相互作用[J].岩土工程学报,1994,16(6):47-55.
    [170]任克昌,何泳生.糠醛-丙酮-环氧化灌浆液的吸渗性能及其力学机制[J].人民长江,1988,(12):27-29.
    [171]刘冰.机场道面微裂缝快速修复材料合成及其性能研究[D].南京:南京航空航天大学,2010.
    [172]潘祖仁.高分子化学(第三版)[M].北京:化学工业出版社,2003.
    [173]马丽婷,陈新文,苏彬.航空有机玻璃老化研究进展[J].材料工程,2004,(8):57-59.
    [174] Ochi M, Takahashi R. Phase structure and thermomechanical properties of primary and tertiarya mine-cured epoxy/silica hybrids [J]. Journal of Polymer Science Part B: Polymer Physics,2001,39(11):1071-1084.
    [175] Lin S T, Huang S K. Thermal degradation study of siloxane-dgeba epoxy copolymers [J].European Polymer Journal,1997,33(3):365-373.
    [176] Ahmad S, Gupta A P, Sharmin E, et al. Synthesis, characterization and development of highperformance siloxane-modified epoxy paints [J]. Progress in Organic Coatings.2005,54(3):248-255.
    [177]高建宾,陶永杰,张宏元. GAP型PU/PMMA聚合物互穿网络的力学性能研究[J].化学推进剂与高分子材料,2003,1(6):31-34.
    [178]秦东奇,王静媛,李峰,等.丁羥聚氨酯/聚甲基丙烯酸甲酯IPN的结构与性能[J].吉林大学自然科学学报,2000,2:74-78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700